STUDENT NUMBER.....

CONTROL SYSTEMS - 14/9/2018

[time 2 hours; no textbooks; no programmable pocket calculator]

1) Given the process

$$P(s) = \frac{5}{s(s+1)}$$

design a controller G(s) such that the feedback system

- (i) is asymptotically stable (use Nyquist criterion),
- (ii) the absolute value of the steady state error to inputs v(t) = t is less or equal to 0.02,
- (iii) the open loop system PG has phase margin $\geq 50^{\circ}$ and crossover frequency in the interval [8, 14] rad/sec,
- (iv) $20log_{10}|G(j\omega)| < 36dB$ for all ω .
- 2) Given the processes

$$P_1(s) = \frac{1}{s-1}, \ P_2(s) = \frac{s+4}{s-2},$$

and consider the feedback system with disturbance d, input v and output

- (i) Design G_1 in such a way that the forced response y to any disturbance d is 0,
- (ii) design G_2 in such a way that the feedback system is asymptotically stable and the absolute value of the steady state error to inputs v(t) =t is ≤ 1 .

Draw the root locus of $PG_1G_2(s)$.

- (i) Determine the values of z for which the unit feedback system has poles with real part ≤ -0.5 .
- (ii) Determine the values of z for which the unit feedback system has all real poles.