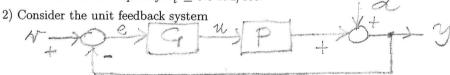

NAME, SURNAME AND STUDENT NUMBER (* required fields):


CONTROL SYSTEMS - 16/9/2019

[time 3 hours; no textbooks; no programmable calculators]

with disturbance d, input v, error e and output y, $P_1(s) = \frac{1}{s(s+2)}$ and $P_2(s) = \frac{s-2}{(s+1)^2}$. Design a controller G(s) such that

- (i) the closed-loop system is asymptotically stable (use Nyquist criterion), the steady state output response $y_{ss}(t)$ to constant disturbances d(t) is 0, the steady state error response $e_{ss}(t)$ to unit ramp inputs v(t) = t satisfies $|e_{ss}(t)| \leq 0.1$,
- (iii) the open loop system has phase margin $m_\phi^* \geq 45^\circ$ rad/sec and crossover frequency $\omega_t^* \geq 0.5$ rad/sec.

with disturbance d, input v and output y and

$$\begin{split} P: \dot{x} &= Ax + Bu, \ y = Cx, \\ A &= \begin{pmatrix} 0 & 2 \\ -1 & -3 \end{pmatrix}, \ B &= \begin{pmatrix} 1 \\ -1 \end{pmatrix}, \ C &= \begin{pmatrix} -1 & -2 \end{pmatrix}. \end{split}$$

Design a controller G(s) with minimal dimension such that for the closed-loop system:

- (i) the steady state output response $y_{ss}(t)$ to constant disturbances d(t) and sinusoidal disturbances $d(t) = \sin(t)$ is 0,
- (ii) all the eigenvalues have real part ≤ -0.3 .

Draw the root locus for PG(s) and find all the real values of the gain K for which the system $W(s) = \frac{KPG(s)}{1+KPG(s)}$ is asymptotically stable.

3) Given $\dot{x}(t) = Ax(t)$, with $A = \begin{pmatrix} -3 & 0 \\ 1 & 2 \end{pmatrix}$, find the initial condition $x(0) = x_0$ for which at $t_f = 2$ sec we have $x(t_f) = \begin{pmatrix} 0 & 1 \end{pmatrix}^T$. Determine $\lim_{t \to +\infty} \|x(t)\|$ for the solution x(t) starting from x_0 and say if there are any solutions x(t) such that $\lim_{t \to +\infty} x(t) = 0$.