STUDENT NUMBER.....

CONTROL SYSTEMS (A) - 2/2/2018

[time 2 hours; no textbooks; no programmable pocket calculator]

1) With

$$P(s) = \frac{1}{s+1}$$

design a controller G(s) with dimension 2 such that for the feedback system

- (i) asymptotic stability (use the Nyquist criterion)
- (ii) $|y_1| \le 0.1$ (y_1 is the output steady state response to d(t) = t) and for the open loop system one has
- (iii) as large as possible phase margin m_{ϕ}^* .

2) Given

$$P(s) = \frac{(s+2)^2}{(s-1)(s+4)(s+6)}$$

- a) draw the root locus of P(s) (with the help of the Routh criterion)
- b) determine a controller G(s) such that the feedback system has poles with real part ≤ -3
- 3) Given $\dot{x} = Ax + Bd$, y = Cx with $x(0) = x_0 \in \mathbb{R}^2$, input d, output y and

$$A = \begin{pmatrix} -3 & 1\\ 0 & 2 \end{pmatrix}, C = \begin{pmatrix} 1 & 0 \end{pmatrix} \tag{1}$$

- (i) set d=0 and determine the initial conditions x_0 for which the output response y(t) tends to 0 as $t\to +\infty$
- (ii) set $x_0=0$ and give conditions on B under which the output response y(t) is 0 for all $t\geq 0$ and all inputs d
- (iii) set $B = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ and $x_0 = 0$ and calculate the output response to $d(t) = \sin(t)\delta_{-1}(t-1)$