CONTROL SYSTEMS - 3/11/2023

[time 3 hours; no textbooks; no programmable calculators; all the mathematical passages must be motivated and clearly explained]

Ex. # 1) Given the feedback system

with $\mathbf{P}(s) = \frac{1-s}{s^2}$ design a one-dimensional controller $\mathbf{G}(s)$ such that

- (i) the feedback system $\mathbf{W}(s) = \frac{\mathbf{PG}(s)}{1+\mathbf{PG}(s)}$ is asymptotically stable (use Nyquist criterion)
- (ii) $20log_{10}|\mathbf{G}(j\omega)| \leq -8dB$ for all $\omega > 0$
- (iii) $20log_{10}|\mathbf{PG}(j\omega)| \geqslant 9dB$ for all $\omega \in (0,0.1]$ rad/sec
- (iv) PG has a phase margin $\geq 10^{\circ}$

with $P(s) = \frac{s+2}{s^2(s-1)}$, design a minimal dimensional controller G(s) such that the feedback system

- (i) is asymptotically stable with steady-state output response $|\mathbf{y}_{ss}(t)| \leq 0.1$ to disturbances $\mathbf{d}(t) = t$ and $\mathbf{y}_{ss}(t) \equiv 0$ to $\mathbf{d}(t) = 1$
- (ii) has all the poles with real part ≤ -3 .
- (iii) Draw the root locus of P(s).

Ex. # 3) Given $P(s) = \frac{s+2}{s-10}$, design a one dimensional controller G(s) such that the feedback system $W(s) = \frac{PG(s)}{1+PG(s)}$ is asymptotically stable with a 5% settling time (for an output response to a unit step input) less than 0.1 sec.