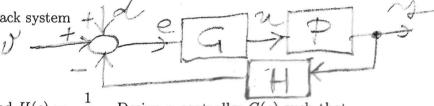
NAME, SURNAME AND STUDENT NUMBER (* mandatory fields):

CONTROL SYSTEMS - 4/2/2020 (A)

[time 3 hours; no textbooks; no programmable calculators]

1) Consider the unit feedback system


with input v, error e, output y

a controller G(s) such that

- (i) the closed-loop system is asymptotically stable (use Nyquist criterion with approximate Bode plots),
- (ii) the open loop system PG(s) has largest as possible crossover frequency ω_t^* rad/sec and phase margin $m_\phi^* \ge 25^\circ$.

(iii) $|G(j\omega)|_{dB} < 20$ dB for all ω .

2) Consider the feedback system +

with $P(s) = \frac{1}{s}$ and $H(s) = \frac{1}{s+2}$. Design a controller G(s) such that

- (i) the closed-loop system is asymptotically stable
- (ii) its steady state error $e_{ss}(t)$ to ramp inputs v(t) = t is 0,
- (iii) its steady state output $y_{ss}(t)$ to cosinusoidal disturbances $d(t) = \cos t$ is 0,
- (iv) G(s) has minimal dimension.

Finally, draw as precisely as possible the root locus of PG(s).

3) Given

with $F(s) = \frac{3+2}{5+1}$ and $G(s) = \frac{1}{s+1}$ find the transfer functions from d to y and from v to y. Finally, calculate the output response y(t) to $d(t) = (3 - \sin(2t))\delta_{-1}(t).$