## CONTROL SYSTEMS - 4/9/2023

[time 3 hours; no textbooks; no programmable calculators; all the mathematical passages must be motivated and clearly explained]



with  $\mathbf{P}_1(s) = \frac{1}{s+10}$ , K = 30,  $\mathbf{P}_2(s) = -2$ , design a controller  $\mathbf{G}(s)$  with minimal dimension and such that

(i) the feedback system (from  $\mathbf{v}$  to  $\mathbf{y}$ ) is asymptotically stable (use Nyquist criterion for assessing stability) with steady-state error  $|\mathbf{e}_{ss}(t)| \leq 0.2$  to inputs  $\mathbf{v}(t) = t$  and steady-state output  $\mathbf{y}_{ss}(t) \equiv 0$  to constant disturbances  $\mathbf{d}_1(t)$  and  $\mathbf{d}_2(t)$ 

(ii) the open-loop system (from e to y) has crossover frequency  $\omega_t^* = 2 \text{ rad/sec}$  and phase margin  $m_{\phi}^* \ge 50^{\circ}$ .

with  $P_1(s) = 3$  and  $P_2(s) = \frac{1}{(s-1)(s+2)}$ ,

(i) draw accurately the root locus of  $\mathbf{P}_1(s)\mathbf{P}_2(s)$ , using the Routh table for determining the crossing points of the imaginary axis and finding analytically the singular points, if any

(ii) design a minimal dimensional controller G(s) such that the feedback system is asymptotically stable with all real poles  $\leq -1$ 

(iii) for the resulting feedback system calculate the steady state output response  $\mathbf{y}_{ss}(t)$  to disturbances  $\mathbf{d}(t) = t$ 

(iv) is it possible to find a one-dimensional controller G(s) such that the feedback system is asymptotically stable with poles  $p = -1 \pm j$ ? If yes, find it.

Ex. # 3) Given the feedback system

1

T + Ral P

with  $\mathbf{P}(s) = \frac{1}{s+1}$  find all the values  $K_d, K_r \in \mathbb{R}$  such that the feedback system is asymptotically stable with steady-state output response  $\mathbf{y}_{ss}(t) = -t + a$ ,  $|a| \leq 0.1$ , to inputs  $\mathbf{v}(t) = -t + 1$ .