CONTROL SYSTEMS - 5/2/2019 (B)

[time 3 hours; no textbooks; no programmable calculators] with $P(s) = \frac{2s+1}{s^2}$ design a 1-dimensional controller G(s), if any, such that (i) the feedback system $W(s) = \frac{PG(s)}{1+PG(s)}$ is asymptotically stable (use the Nyquist criterion with reasonable approximations for the Bode plots) and its steady state output response yss to constant disturbances d (ii) $| \text{IWG(IW)}|_{\text{dB}} \le -\text{BdB} \ \forall \omega$ (iii) the open loop system PG has phase margin $m_{\phi} \ge 30^{\circ}$ and crossover frequency $\omega_t \in [0.5, 1]$ rad/sec. $m_{\phi} = \frac{1}{2} \left(\frac{1}{2} \right) \left(\frac$ with $P(s) = \frac{2s+3}{s^3-3s^2-3}$, determine, if any, a 2-dimensional controller G(s)such that the given feedback system has the following properties: i) it is asymptotically stable with poles having negative real part ≤ -1 ii) the steady state output response to constant disturbances d_1 is 0 ii) the absolute value of the steady state output response to unit ramp disturbances d_2 (i.e. $d_2 = t$) is ≤ 0.1 . 3) Given $P(s) = \frac{(s+1)^2}{(s^2+1)s}$ draw the root locus of P and design, if any, a controller $G_1(s) = K$ such that the closed-loop system $W(s) = \frac{PG_1(s)}{1+PG_1(s)}$ is asymptotically stable. With $G_1(s) = \frac{1}{s-1}$ draw the root locus of $PG_1(s)$ (help: the positive root locus has the singular points $s \approx 0.2 \pm 0.6j$ for $k \approx 0.2$ and $s \approx 0.4$ for $k \approx 0.1$; the negative root locus has the singular point $s \approx -2.4$ for $k \approx -28$). Design, if any, a controller $G_2(s) = K$ such that the closed-loop system $W(s) = \frac{PG_1G_2(s)}{1+PG_1G_2(s)}$ is asymptotically stable.

4) Given the system

$$\dot{x} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} x + \begin{pmatrix} 0 \\ 1 \end{pmatrix} d + \begin{pmatrix} 1 \\ 0 \end{pmatrix} u, \quad y = \begin{pmatrix} 0 & 1 \end{pmatrix} \chi, \quad (1)$$

with state $x \in \mathbb{R}^2$, control u, controlled output y, disturbance d = Dt, with unknown $D \in \mathbb{R}$, and reference input $v = e^{-t}$, find, if possible, a controller such that the closed loop system is asymptotically stable and its steady state output response y_{ss} is v.