CONTROL SYSTEMS - 5/6/2023

[time 3 hours; no textbooks; no programmable calculators; all the mathematical passages must be motivated and clearly explained]

Ex. # 1) Given the feedback system

with $\mathbf{P}_1(s) = \frac{1}{s+1}$ and $\mathbf{P}_2(s) = \frac{1}{s+1}$, design a one-dimensional proper controller G(s) such that

- (i) the feedback system $\mathbf{W}(s) = \frac{\mathbf{P_1P_2G}(s)}{1+\mathbf{P_1P_2G}(s)}$ is asymptotically stable (use Nyquist criterion for stability) with steady-state error $|\mathbf{e}_{ss}(t)| \leq 1$
- (ii) $|G(j\omega)|_{dB} \leq 26dB$ for all ω
- (iii) the open-loop system P_1P_2G has maximal phase margin (give a detailed and well-motivated explanation, providing the final value of the phase margin).

For the feedback system $\mathbf{W}(s)$ calculate the steady-state error $\mathbf{e}_{ss}(t)$ to a unit step input $\mathbf{v}(t)$.

Ex. # 2) Given the feedback system

- with $\mathbf{P}(s) = \frac{s^2 + b_1 s + b_2}{s^3 + 1}$, $b_1, b_2 \in \mathbb{R}$, (i) determine for which values b_1, b_2 there does not exist a controller $\mathbf{G}(s)$ such that the feedback system $\mathbf{W}(s) = \frac{\mathbf{PG}(s)}{1+\mathbf{PG}(s)}$ is (internally) asymptotically stable with steady state error $\mathbf{e}_{ss}(t) \equiv 0$ to constant inputs $\mathbf{v}(t)$
- (ii) set $b_1 = 3$ and $b_2 = 2$ and draw accurately the root locus of P(s)
- (iii) with b_1, b_2 as in point (ii) design a controller G(s) with minimal dimension such that $\mathbf{W}(s) = \frac{\mathbf{PG}(s)}{1+\mathbf{PG}(s)}$ is asymptotically stable with steady state error $\mathbf{e}_{ss}(t) \equiv 0$ to constant inputs $\mathbf{v}(t)$.

Ex. #3) Given the system $P : \dot{x} = Ax + Bu$, y = Cx with

$$A = \begin{pmatrix} -1 & 1 & 2 \\ 0 & 2 & 0 \\ 0 & 0 & -2 \end{pmatrix}, \ B = \begin{pmatrix} -1 \\ 2 \\ 0 \end{pmatrix}, C = \begin{pmatrix} 0 & 3 & 0 \end{pmatrix},$$

- (i) check instability of P
- (ii) does there exist a controller $\mathbf{u} = F\mathbf{x} + \mathbf{v}$ such that the closed-loop system is asymptotically stable? if yes, determine F
- (iii) does there exist a controller $\mathbf{u} = K\mathbf{y} + \mathbf{v}$ such that the closed-loop system is asymptotically stable? if yes, determine K. Is it possible to determine this K with the help of the root locus of P(s)? Motivate the answer
- (iii) does there exist a controller $\mathbf{u} = F\hat{\mathbf{x}} + \mathbf{v}$, $\dot{\hat{\mathbf{x}}} = G\hat{\mathbf{x}} + Q\mathbf{y}$ such that the closed-loop system is asymptotically stable? if yes, determine F, G, Q.