NAME, SURNAME AND STUDENT NUMBER (* mandatory fields):

.....

CONTROL SYSTEMS - 7/1/2020 (A)

[time 3 hours; no textbooks; no programmable calculators]

1) Consider the unit feedback system

with input v, error e, output y and $P(s) = \frac{1}{s(s+1)(s+5)}$. Design a controller G(s) such that

- (i) the closed-loop system is asymptotically stable (use Nyquist criterion with approximate Bode plots),
- (ii) the open loop system has largest as possible crossover frequency ω_t^* ,
- (iii) $|G(j\omega)|_{dB} \leq 30$ dB for all ω .
- 2) Consider the unit feedback system at point 1) with $P(s) = \frac{s+2}{s^2+1}$. Design a controller G(s) such that
 - (i) the closed-loop system is asymptotically stable and its steady state error $e_{ss}^{(t)}(t)$ to constant inputs v(t) is 0,
 - (ii) G(s) has minimal dimension.

Draw the root locus for PG(s). Determine if, with a one-dimensional controller $G(s)=K\frac{s+z}{s+p},\,K,z,p\in\mathbb{R}$, it is possible to satisfy (i) above and to have all the closed-loop poles with the same real part $-\alpha<0$ and determine the value of α . Finally, design a controller G(s) satisfying (i) above and

- (iii) G(s) is strictly proper.
- 3) Given $P: \dot{x} = Ax + Bu$, y = Cx, with $A = \begin{pmatrix} -1 & 0 \\ 1 & -2 \end{pmatrix}$, $B = \begin{pmatrix} 1 \\ \beta \end{pmatrix}$, $C = \begin{pmatrix} 1 & \alpha \end{pmatrix}$, and using the separation principle, determine for which values of $\beta, \alpha \in \mathbb{R}$ it is possible to design an output feedback controller such that:
 - (i) the eigenvalues of the controlled process P are all equal to -2,
 - (ii) the observer error tends asymptotically to 0 at least as e^{-2t} .