NAME, SURNAME AND STUDENT NUMBER (* mandatory fields):

CONTROL SYSTEMS - 7/1/2020 (B)

[time 3 hours; no textbooks; no programmable calculators]

1) Consider the unit feedback system

with input v, error e, output y, $P(s) = \frac{100(s+1)}{(s+5)(s^2+12s+20)}$. Design a controller G(s) such that

- (i) the closed-loop system is asymptotically stable (use Nyquist criterion with approximate Bode plots) and its steady state error $e_{ss}^{\P}(t)$ to ramp inputs v(t) = t is in absolute value less or equal to 0.04,
- (ii) the open loop system has crossover frequency $\omega_t^* \in [3,6]$ rad/sec and phase margin $m_{\phi}^* \geq 50^{\circ}$.

with $P_1(s)=\frac{1}{s(s-2)}$ and $P_2(s)=-\frac{5}{s+3}$. Design controllers $G_1(s)$ and $G_2(s)$ such that

- (i) the closed-loop system is asymptotically stable and its steady state error $e_{ss}^{(t)}(t)$ to ramp inputs v(t) = t is 0,
- (ii) $G(s) = G_1(s)G_2(s)$ has dimension less or equal to 2.

Draw the root locus for PG(s). Finally, design controllers $G_1(s)$ and $G_2(s)$ satisfying (i) above and

- (iii) the steady state error $e_{ss}(t)$ to inputs $v(t) = \sin t$ is 0,
- (iv) $G(s) = G_1(s)G_2(s)$ has minimal dimension.
- 3) Given $P: \dot{x} = Ax + Bu$, y = Cx, with A =

 $(1 \ 1 \ 1)^{\mathsf{T}}$, $C = (0 \ 0 \ 1 \ 0)$, and using the separation principle, determine if possible an output feedback controller ${\cal C}$ which asymptotically stabilizes P.