CONTROL SYSTEMS (b) - 8/1/2024

[time 3 hours; no textbooks or notes; no programmable calculators; all the mathematical passages must be motivated and clearly explained]

Ex. # 1) Draw accurately the root locus of $P(s) = \frac{(s+\frac{2}{3})(s+\frac{4}{3})}{(s-3)^2(s+9)}$, using the Routh table for determining the crossing points of the imaginary axis (there is a singular point at s=-1). Moreover,

(i) design a controller $\mathbf{G}(s) = K$ such that the feedback system $\frac{\mathbf{G}(s)\mathbf{P}(s)}{1+\mathbf{G}(s)\mathbf{P}(s)}$ is asymptotically stable with all negative real poles

(ii) design a one-dimensional controller G(s) such that the feedback system $\frac{G(s)P(s)}{1+G(s)P(s)}$ is asymptotically stable with all real poles $<-\frac{4}{3}$

(iii) design a two-dimensional controller G(s) such that the feedback system $\frac{G(s)P(s)}{1+G(s)P(s)}$ is asymptotically stable with all real poles <-10

(iv) design a two-dimensional controller G(s) such that the feedback system $\frac{G(s)P(s)}{1+G(s)P(s)}$ is asymptotically stable with all real negative poles and steady-state error $e_{ss}(t) = 0$ to inputs $\mathbf{v}(t) = \cos(t)$.

Ex. # 2) With $P(s) = -\frac{1}{s(10s+1)}$ design a controller G(s) such that

(i) the feedback system $\frac{\mathbf{G}(s)\mathbf{P}(s)}{1+\mathbf{G}(s)\mathbf{P}(s)}$ is asymptotically stable (use Nyquist criterion for proving stability) with steady-state error $|\mathbf{e}_{ss}(t)| \leq 0.1$ to inputs $\mathbf{v}(t) = t$

(ii) the open-loop system G(s)P(s) has crossover frequency $\omega_t^* = 1$ rad/sec and phase margin $m_\phi^* \ge 40^\circ$

(iii) G(s) has minimal dimension and $|G(j\omega)|_{dB} \le 36$ dB for all $\omega \ge 0$.

with $P_1(s) = \frac{s+2}{s+1}$ and $P_2(s) = \frac{1}{s+2}$

(i) determine a state space realization S with two states $\mathbf{x} = (\mathbf{x}_1, \mathbf{x}_2)^{\mathsf{T}}$, input \mathbf{r} , disturbance \mathbf{d} and output \mathbf{w} .

For S with $\mathbf{d} = 0$:

(ii) compute the set of reachable states from the origin with control \mathbf{r} ; determine if $x_f = (1, 1 + \frac{1}{e})^{\mathsf{T}}$ is reachable from $x_0 = (0, 1)^{\mathsf{T}}$ and, if yes, compute the corresponding control input function $\mathbf{r}(t)$

(iii) (only for students with 3-credits integration) find the controllable and observable subsystems.