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Exercise 1 Denoting L(s) = G(s)P(s) and

s—2

P(s) = (1 + Pi(s)) a(s) = sG+2)

in the Laplace domain the input-output evolutions are described by
y(s) = W(s)u(s) + Wa(s)d(s)

with W (s) = 1f(Ls()s) and Wy(s) = fT(Z)'

First, let us note that the invariant spectrum with respect to controllability is provided by
Zc = {—1} C C~ so that the system is still stabilizable.

At this point, let us set G(s) = G2(s)G1(s) where G1(s) and Ga(s) are designed so to fulfil,
respectively, the steady-state and transient specifications.

(i) By the structure of the system, one has that an integrator is already acting before the
entering point of the disturbance so that yss(¢) = 0 under constant disturbances d(t).
Setting G1(s) = k1 and for the time-being Ga(s) = 1, one gets that |ess(t)| < M = 0.1 if
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with We(s) = H#L(S) which is satisfied setting |x1] > 10. Moreover, by investigating the
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Figure 1: Root locus of P(s) = 5;22)



Control Systems 16/09/2019

root locus associated to P(s) (Figure 1), one immediately verifies that a negative gain
is necessary for asymptotically stabilizing the closed-loop system. As a consequence, we
set k1 = —10 and Ga(s) = koG (s)with ko > 1 and denote

_ s—2

P(s) = —P(s) = — ) (1)

Bode Diagram
Gm = 11.8 dB (at 1.95rad/s) , Pm = 56.1 deg (at 0.503 rad/s)
T T T T T

—P(s) B
—L(s) = G(s)P(s)|

Magnitude (dB)

Phase (deg)

k= !
: 3 2

ot
Frequency (rad/s)

Figure 2: Bode plots of (1) and (2)

(ii) By inspecting (Figure 2) the Bode plots of (1), one has that at w = 0.5 rad/s
|P(0.5)|ap =~ 26.02dB  and ZP(0.55) + 180° ~ 61.93°

with hence decreasing values as w > 0.5 rad/s. Accordingly, as ko > 1 for fulfilling
specification (i), we set Ga(s) so to decrease the cross-over frequency at w} ~ 0.5 + ¢
rad/s (with € > 0 small) while ensuring that

LP(0.55) + £G5(0.55) + 180° = £Go(0.55) + 61.93° > 45° = LG5(0.55) > —16.93°.

To this end, we set k9 = 1 and thus
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Figure 3: Nyquist plot of (2)
with m; = 10 and mg = 2 and 7 = Z& with wy = 100 so to get
t
/G9(0.55) ~ —5.83°,  |G2(0.5))|qp ~ —26dB.
Accordingly, the overall controller is given by
2000s? + 120s + 1
G(s) = — .
40000s2 + 400s + 1
(i) The Nyquist plot of the open loop system
2000s% +120s +1 s—2
L(s)=G(s)P(s) = — 2
(s) = G(s)P(s) 4000052 + 400s + 1 s(s + 2) 2)

is reported in Figure 3. The number of counter-clockwise encirclements of —1 + 50 on
behalf of the extended Nyquist plot of L(jw) is 0 as the number the open loop poles of
L(s) with positive real part. Thus, the system is asymptotically stable in closed loop.

Exercise 2 It is a matter of computation to verify that the system (A, B, C) is not controllable.

As a matter of fact, the invariant spectrum with respect to controllability is given by Zgo =
{—1} C C™ so that the system is stabilizable under feedback.
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At this point, we compute the transfer function associated to (A, B, C) as given by

so getting

with W(s) = —28)_ 1y7,(s) =

Eae) and L(s) = G(s)P(s).

1
1+L(s)

(i) For fulfilling specification (7) it is necessary to embed a copy of the signals to reject in the
open loop transfer function L(s) so guaranteeing that the corresponding steady-state
responses are zero. As a consequence, we set

1

Gls) = s(s2+1)

Gr(s).

(ii) As the dimension of the feedback is lower bounded by specification (i) we set G,(s) =
as® + bs + ¢ so to increase the relative degree (i.e., the pole-zero excess) of the corre-
sponding open loop transfer function L(s) to r = 2 so getting

as® 4+ bs+ ¢
L(s) = .
O = T D6+

Also, under a suitable choice of a, b, ¢ € R the center of the asymptotes of L(s) (denoted

by sp € R) can be constrained to be sy < —0.3. By computing the pole polynomial

associated to the input-output transfer function W(s) = 14{(;()5) one gets

p(s;a,b,c) = s* +25° + (1 +a)s> + (2+b)s + ¢

so getting that the poles of the closed-loop system can be all assigned at a proper
—p < —0.3 that is the following set admits a solution

p(s;a,b,c) = (s +p)*
p > 0.3.

In particular, one gets
f=c 4p3=24b, 6p =1+4aqa, 4p=2

and thus the solution

Accordingly, the overall feedback is given by

1 8s2—24s+1
G(g)= ——— =7 =
)= 6@+ D)

assigning for poles in p = —%. Accordingly, the root locus of
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Figure 4: Root Locus of K L(s) with L(s) in (3).

KL(s) = G(o)P(s) = 1o 02T~ ORI, ®

possesses relative degree r = 2 and center of asymptotes sg = 2.5. By construction of
G(s), it possesses one singularity of order p = 4 at (sf,K7) = (—3,1). In addition,
KL(s)

1+KL(s)

considering the pole-polynomial of the closed-loop transfer function W(s) =
provided by

K 3K K
ﬁ(s,K):s4+253+<2+1> 52+<2—2> S+1—6

one gets that other two singularities of order y = 2 arise corresponding to (s3, K3) =
(0.208,2.10) and (s3, K3) = (4.79,—179.04). The point in which the locus crosses the
imaginary axis correspond to K € R making the Routh table non-regular that is



Control Systems 16/09/2019
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0 K
" 1
so getting K € {0, %} Also, it is immediate to verify that the closed-loop system is

asymptotically stable as K € (0, %) The locus is reported in Figure 4.

Exercise 3 The eigenvalues of the systems are given by Ay = —3 and Ay = 2 with

a=(2). = ()

being the corresponding eigenvectors. Thus, the system possesses two aperiodical modes
describing the corresponding free evolution

3 2t

x(t) = eMag = cre uy + coelug

C1 =1 o 5 0
<02> =U o, U= <_1 1>.

By noticing that z(ty) € span{uz} one concludes that necessarily zo € span{us} so that

¢1 =0 and thus zg = (0 x%)T and 22 = e* as the solution to

with ¢1, co € R provided by

Atyr—1 At e 0
x(ty) =Ue™U "xg, e :<0 62t>

fort =t; =2 and z(t;) = (0 1)". As ¢t — oo, the corresponding solutions from zg = e %uy

diverge that is ||z(t)| — oc.

On the other side, solutions converge to the origin if and only if zy € span{u;} so to guarantee
Cy = 0.



