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Exercise 1 For the control scheme in figure we have

1+40.3s
5(14+0.15)(1 +s)

P(s) =20
for which the corresponding gain is
Kp=P(0)=20

Notice that the feedback is not unitary. In order to turn to a unitary feedback control loop,
we transform the control loop in the equivalent one o

= 9+
5] @—Lﬁjﬂ

(i) requires that the angular velocity 6 be constant which corresponds to a reference ramp
input for the angular position. In other words

04(t) = 2 = 04(t) = 2t = 0,(t) = 2% 0.2t = 0.4¢

To have null steady state error to an input 6,.(t) = 0.4¢ it is necessary that the closed-loop
system be of type 1. This is guaranteed by the presence of a pole at s = 0 in P(s). As a
consequence the controller will have the form

G(S) = KGJGQ(S)
in which G5(s) has unitary gain. To meet the requirement on the error, we must have that

We(
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The disturbance-to-output transfer function is

2(1+0.15)
s(14s)(1+0.1s) +4G(s)(1 + 0.3s)

Way(s) =

The steady state response for a unitary constant disturbance is given by

1
2Kg,1

W4(0) =

Therefore for the limitation on this response
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Figure 2: Bode plots of F(s)

Set K071 = 25.

As to the requirement (iii), if G(s) := Kg 1G2(s), the open loop transfer function is

(1+0.3s) ~100(1 4 0.3s)
s(1+0.1s)(1+s) s(1+0.1s)(1+ )

F(s) = Go(s)F(s), F(s) :=0.2% Kg1 % 10

The choice of Ga(s) can be done on the inspection of the Bode plots of F(s) in Fig. 1.
Since w; ~ 16 rad/sec and my ~ 23°, we must increase the phase with Ga(s). Since there is
no requirement on the crossover frequency, we can do this either with an attenuative action
G>(s) or an anticipative action Ga(s). Due to the low rate of phase bode plot we should use
an attentive action with large magnitude which require multiple functions to be used. For
this reason we use an anticipative action. Inspection of the compensating function diagram
shows that for m, = 4 it is possible to obtain a phase increase of approximately 31° at the
normalized frequency wy = w7, = 1 rad/sec. Consequently, adding this phase increase at the
crossover frequency w; we obtain a phase value —157° + 31° = —126° which guarantees the
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required phase margin m}. We set 167, = 1 obtaining 7, = 5.
g ¢ 16

The controller is finally

1+%5

Ga(s) =251+L3
64

The Bode plots of F(s) = Gy(s)F(s) (Fig. 2) show that we obtained a crossover frequency
of approximately 20 rad/sec and a phase margin of approximately 54°.

The stability of the closed-loop system is met as shown by the Nyquist plot in Fig. 3.
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Exercise 2 It is convenient to design G1(s) in such a way to stabilize the internal loop and then
G2(s) to stabilize the external loop and guarantee the steady state performances for the error.

First, design G1(s). Consider the root locus of P;(s) = 3(8—1_2) (Figs. 4 and 5). This shows that

we must use a zero-pole action for moving the asymptote center into the negative complex
half-plane. In this way the dimension of Gi(s) is one. For example, we can choose

s+3
G =K
1(s) Gy +7
The asymptote center becomes
2-7+3
PO b

2

and K¢ 1 will be chosen in such a way that the internal loop is stable. The denbminator of
the internal loop is

NUM(1 4+ Py(s)G1(s)) = s° + 552 + (Kg1— 14)s + 3Kg

Computing the corresponding Routh table one sees that it is sufficient to choose any Kg 1 >
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Figure 3: Positive root locus of Pj(s)

35. For example, select K¢ 1 = 72 for which the poles of the internal loop F}(s) = %fg—s)

are —4 and —0.5 & j7.33. This value of K ; can be also obtained by imposing that
NUM(1+ Pi(s)Gi(s)) = s° + 55° + (Kg1 — 14)s + 3Kg,1 = (5 +4)(5 + 0.5 — 57.33)(s + 0.5 + 57.33)

This is helpful in view of the fact that the knowledge of the poles of the internal loop is needed
for the subsequent computations. Therefore,

2 (8) . P1(S)G1(S) - s+3
; 1+ P(s)G1(s) (s +4)(s +0.5 — j7.33)(s + 0.5 + j7.33)

Next, the choice of Ga(s) has to be done in such a way to include a pole at s = 0 (for the
requirement on the steady state error). Notice that the pole at s = 0 in the internal loop
is not effective since this loop moves this poles away from the origin. Therefore, since Go (s)
must be one dimensional, our choice of Gz (s) will be

_Kgpa
S

Ga(s)
The choice of K¢ 2 is obtained from the Routh table correspoﬁding to the external loop

s—2
s+3

NUM(1 + Ga(s)Fi(s) ) =s?+55% +585% + (216 + KG,2)s — 2K¢ o

We have —180.54 < /72 < Kg 2 < 0 for stability. For example, Go(s) = -1

Exercise 3. First, let us study the observability and controllability of the open loop © = Az + Bu,
y=Cz.

The controllability matrix

R=(B AB)= (; 1:125)

and detR =1 — (3. Therefore, the system is controllable for § # 1.
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Figure 4: Negative root locus of P;(s)

The observability matrix

0= () = (L1ha —20)

and det = —a(l + a). Therefore, the system is controllable for 8 # 1.

We must discuss the values of @ and 8 for which the eigenvalues of the controlled process can
be moved (by state feedback) with real part < —2 and the eigenvalues of the observer can be
moved with real part < —2 (i.e. state observation goes at least as e~2!). Therefore, we must
discuss the values of o and § for which the invariant spectrum Fg of A + BF has real part
< —2 and the invariant spectrum Fp of A — KC has real part < —2. The cases for which we
have no invariant spectrum is trivial, because we can move the eigenvalues wherever required.
For this we use the Hautus tests. The iegnevalues of A are {—1, —2}.

1) Controllability. Case 8 = 1. Hautus test gives: for eigenvalue A = —1

gno 0L

rcmk(A—)\I B)=<1 11

>=2=>)\=—1¢]:R

for eigenvalue A = —2

I[P 6 ¢

rank(A—)\I B)=(l 0 1

>=1=>)\=—2€]-'R

We conclude that for § = 1 the invariant spectrum of A + BF' satisfies the requirement that
the real parts of the eigenvalues of A + BF be < —2.

1) Observability. Case o = 0. Hautus test gives: for eigenvalue A = —1
rank = e 8
A=)

=22 A=-1¢Fo
=i ,

=
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for eigenvalue \ = —2

C
rank (A—)\I) =

We conclude that for & = 0 the invariant spectrum of A — KC satisfies the requirement that
the real parts of the eigenvalues of A — KC be < —2.

0
0)=1=A=-2¢€Fp
0

ol et

1) Observability. Case a = —1. Hautus test gives: for eigenvalue A = —1
c 1 -1
rank =10 0 ]=1=Ax=-1€Fp
A— I
1 -1
for eigenvalue A = —2
c 1 -1
rank =11 0 |=2=)X=-2¢Fo
A— I
1 0
We conclude that for « = —1 the invariant spectrum of A — KC' does not satisfy the require-

ment that the real parts of the eigenvalues of A — KC be < —2.



