
Control Systems
8/1/2019(A)

Exercise 1 In Laplace domain the disturbance and input-to-output responses are given by

y(s) = L(s)e(s) + d2(s) +
P1(s)

1 + L1(s)
d1(s)

with

L(s) = G1(s)P2(s)P (s),

L1(s) = G1(s)P1(s),

P (s) =
L1(s)

1 + L1(s)
.

In order to meet requirements (ii) and (iii) set

G1(s) =
1

s
, G2 =

1

s
Ḡ(s)

with one-dimensional Ḡ(s) (recall that G1 is required to be one dimensional and G2 two-
dimensional). Therefore

P (s) =
2.1s+ 0.1

s2 + 1.1s0.1
, L(s) =

Ḡ(s)

s

1

2.1s+ 0.1

2.1s+ 0.1

s2 + 1.1s0.1
=
Ḡ(s)

s

10

s(s+ 1)(1 + 10s)
.

From the Bode plot of L(s) = P2(s)P (s) (Fig. 1) we see that we have to increase the phase
(to maximize the phase margin) using an anticipative+proportional action Ḡ(s) = KRa(s) =
K 1+τas

1+ τa
ma

s
.

In order to maximize the phase margin, we choose ma = 16 with ωN = 4 rad/sec (maximum
phase value) at ω∗t = 0.0001 rad/sec (where the Bode plot of the phase of L(s) is higher:
actually, any ω∗t ≤ 0.0001 is good as well). We obtain τa = 4/0.0001 = 4000. Therefore, the
anticipative action is Ra(s) = 1+4000s

1+ 4000
16

s
. For colocating ω∗t at 0.0001 rad/sec we see from the

Bode plots of L(s) 1+τas
1+ τa

ma
s

(Fig. 2) that we need a proportional attenuation K =≈ −93dB =

2.23 ∗ 10−5.

The controller G1(s) is given finally by

G1(s) =
2.23 ∗ 10−5

s

1 + 4000s

1 + 4000
16 s

.

The Bode plot of G1(s)L(s) is drawn in Fig. 3 and shows that we have a crossover frequency
ω∗t = 10−3 rad/sec with a phase margin m∗φ ≈ 150◦. The Nyquist plot shows that the closed-
loop system is asymptotically stable (we have 0 counterclockwise tours around the point
−1 + 0j).

Exercise 2 (a) The root locus of P (s) = s+3
s(s−3)(s+10)2

is drawn in Fig. 1.
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Figure 1: Bode plots of L(s) = P2(s)P (s)
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Figure 2: Bode plots of L(s)Ra(s)

The zero-pole excess is n−m = 3 and the asymptote center is at s0 = 3−20+3
3 = −14

3 ≈ 4.67.
The Routh table applied to NUM(1 +KP (s)) = s4 + 17s3 + 40s2 + (K − 300)s+ 3K has the
first column given by

1

17

980−K
−K2 + 413K − 294000

980−K
51K

The number of sign variation in this column confirms the presence of 2 closed-loop poles
with positive real part for K > 0 and 1 closed-loop pole with positive real part for K < 0.
Moreover, neither locus crosses the imaginary axis. Therefore, there is no K such that the
closed-loop system W (s) = KP (s)

1+KP (s) is asymptotically stable (point (b)).

(c) It is required to find one dimensional G(s) such that the closed-loop system W (s) =
G(s)P (s)

1+G(s)P (s) is asymptotically stable with poles having real part ≤ −2 and steady state error
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Figure 3: Bode plots of G1(s)L(s)
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Figure 4: Nyquist plot of G(s)P (s)

to unit ramp input |e1| ≤ 0.1. Since the asymptote center is < −2 and the zeroes of P (s)
have real part < −2, we have only to decrease the zero-pole excess from 3 to 2 (keeping the
asymptote center < −2) and then increase the gain to move the poles. Let

G(s) =
G1(s)

1 + Ts

with G1(s) = K(1 + z̄s) and z > 0. Choose K in such a way that, whatever z̄ > 0 is,

|e1| =
∣∣∣1
s
We(s)

∣∣∣
s=0

=
∣∣∣1
s

1

1 +G(s)P (s)

∣∣∣
s=0

=
∣∣∣1
s

1

1 +G1(s)P (s)

∣∣∣
s=0

=
∣∣∣ (s− 3)(s+ 10)2

K(1 + z̄s)(s+ 3) + (s− 3)(s+ 10)2s

∣∣∣
s=0

=
∣∣∣100

K

∣∣∣ ≤ 0.1

which gives |K| ≥ 1000. Next, noticing that

P (s)G1(s) = Kz̄
(s+ 1

z̄ )(s+ 3)

(s− 3)(s+ 10)2
= K̄

(s+ 1
z̄ )(s+ 3)

(s− 3)(s+ 10)2
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Figure 5: Positive root locus of P (s)

with K̄ = Kz̄, choose z̄ > 0 such that the new asymptote center s′0 remains < −2

s′0 =
−14 + 1

z̄

2
< −2⇒ z̄ > 0.1

Let’s try the values z̄ = 1/4 and (tentatively large) K = 103. The Routh table applied to
NUM(1 +G1(s)P (s)) = s4 + 9s3 + 212s2 + 462s+ 1140 has the first column given by

1

3

241/3

1

570

which implies stability of the closed-loop G1(s)P (s)
1+G1(s)P (s) . However, G1(s) is not implemntable as

such and we have to add the pole 1
1+Ts for obtaining the implementable controller

G(s) =
G1(s)

1 + Ts

Choose tentatively (small) T = 10−4 and check through the Routh table, applied to NUM(1+
G(s)P (s)), not to have sign variations in the first column.

(d) We seek a controller

G(s) = K
(s+ 10)2

s+ 3

s+ z

s+ p

1

1 + Ts

where we are canceling as many stable poles and zeroes of P (s) as possible. The closed-loop
transfer function is

W (s) =
L(s)

1 + L(s)
, L(s) = K

s+ z

(s− 3)(s+ p)(1 + Ts)
= K̄

s+ z

(s+ p1)(s+ p2)(s+ p3)(s+ p4)
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Figure 6: Negative root locus of P (s)

for K̄ = K
T and for some p1, p2, p3, p4 > 0 such that

(s+ p1)(s+ p2)(s+ p3)(s+ p4) = s(s+ T̄ )(s+ p)(s− 3) + K̄(s+ z)

where T̄ 1
T . In particular, we obtain by comparison from above

T̄ + p− 3 = p1 + p2 + p3 + p4

T̄ p− 3p− 3T = p3(p1 + p2) + p1p2 + p4(p1 + p2 + p3)

K − 3T̄ p = p4(p3(p1 + p2) + p1p2) + p1p2p3

Kz = p1p2p3p4 (1)

Since the output response in Laplace domain to a unit step input is

Y (s) = W (s)
1

s
= K̄

s+ z

s(s+ p1)(s+ p2)(s+ p3)(s+ p4)

we obtain in time

y(t) = K̄[R1e
−p1t
+ +R2e

−p2t
+ +R3e

−p3t
+ +R4e

−p4t
+

z

p1p2p3p4
δ−1(t)

with residuals

R1 = − z − p1

(p2 − p1)(p3 − p1)(p4 − p1)p1
, R2 = − z − p2

(p1 − p2)(p3 − p2)(p4 − p2)p2

R3 = − z − p3

(p1 − p3)(p2 − p3)(p4 − p3)p3
, R4 = − z − p4

(p1 − p4)(p2 − p4)(p3 − p4)p4

The steady state output response is

yss(t) = K̄
z

p1p2p3p4

The transient output respons is

|y(t)− yss(t)| = |K̄[R1e
−p1t
+ +R2e

−p2t
+ R3e

−p3t
+ +R4e

−p4t
+ ]| ≤ [|R1|+ |R2|+ |R3|+ |R4|]e−mini pit
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We require that

|y(t)− yss(t)| ≤
5

100
|yss(t)|, ∀t ≥ Ta = 20−2.

We obtain the condition

eTa mini pi ≥ 25
p1p2p3p4

z
[|R1|+ |R2|+ |R3|+ |R4|]

⇒ Ta min
i
pi ≥ ln(25

p1p2p3p4

z
[|R1|+ |R2|+ |R3|+ |R4|]) (2)

For instance, if p1 = z and p3 = p4 + 1, p2 = p3 + 1, p3 = p2 + 1, and setting Ta = 20−2 in
(2), we get

25 · 10−4p4 ≥ ln 25 + ln(3p4 + 2) (3)

from which p4 = 104.

Exercise 3. The closed-loop I/O transfer function is

W (s) =
KdP (s)

1 +KdKrP (s)
=

Kd

s+ 1 +KdKr

The steady state forced response to the input v(t) = 1− t = v1(t)− v2(t) with v1(t) = 1 and
v2(t) = t

yss(t) = yss,1(t)− yss,2(t) = W (0)− (W (0)t+
dW

ds
|s=0) = −W (0)t+ (W (0)− dW

ds
|s=0)

We must require that yss(t) = 2t+ 1 which implies

−W (0) = 2, W (0)− dW

ds
|s=0 = 1

i.e.

Kd

1 +KdKr
= −2,

Kd

(1 +KdKr)2
= 3

Moreover, for the existence of steady state regime we must require that the closed-loop is
asymptotically stable, i.e. the closed-loop poles are in C−:

1 +KdKr > 0

From the first condition we obtain Kd = 4/3, Kr = −5/4 which however do not satisfy the
second condition since 1 + KdKr = 1 − 20/12 < 0. We conclude that there are no values of
Kr and Kd for which we have the desired steady state output response.


