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Exercise 1 By defining P̄ (s) = 1
s (P (s)− 2) = −2 s−5

s(s+10) and L(s) = G(s)P̄ (s), one has

y(s) = W (s)v(s) +Wd(s)d(s) with W (s) =
L(s)

1 + L(s)
, Wd(s) =

1

1 + L(s)
.

Let us write G(s) = G2(s)G1(s) so that G1(s) is designed for fulfilling steady-state specifica-
tions (i.e., (ii)) whereas G2(s) will be later set for stability and transient performances (i.e.,
(i) and (iii)).

(ii) Since the input-to-error transfer function We(s) = 1
1+L(s) and recalling that the steady

state response to v(t) = t is given e1(t) = We(0)t + dWe
ds (0), for the requirement to be

satisfied one needs We(0) = 0 and
∣∣dWe
ds

∣∣
s=0
≤ 0.2.

In this case, because an integrator is already located before the entering point of the
disturbance, one has We(0) = 0 so that for (ii) to be solved one sets G1(s) = k1 with
k1 ∈ R such that ∣∣∣We(s)

s

∣∣∣
s=0
≤ 0, 2 =⇒ k1 ≥ 5.

Thus, one can fix k1 = 5 while guaranteeing, for (ii) to be fulfilled by the closed-loop
system, that G2(0) ≥ 1.

(iii) For assigning ω∗t = 2rad/sec and m∗φ ≥ 50o let us first draw the Bode plots of

L1(s) = G1(s)P̄ (s) = −10
s− 5

s(s+ 10)
= 5

1− s
5

s(1 + s
10)

(1)

which are reported in Figure 1. As ω∗t = 2rad/sec is the desired crossover frequency, we
notice that

|L1(jω
∗
t )|dB = 8.433 ∠L1(jω

∗
t ) = −123.1113.

Accordingly, G2(s) needs to be chosen in such a way that

|G2(jω
∗
t )|dB + |L1(jω

∗
t )|dB = 0 (2)

180o + ∠L1(jω
∗
t ) + ∠G2(jω

∗
t ) ≥ 50o (3)

with the further requirement |G2(0)| ≥ 1 to preserve (ii).

It is a matter of computations to verify that, with no need of further actions, (3) is already
satisfied as 180o + ∠L1(jω

∗
t ) = 56.8o. Accordingly, one can satisfy the specification by

assigning the cross-over frequency to ω∗t = 2rad/sec. Thus, G2(s) needs to be designed
so to decrease the magnitude at ω∗t = 2rad/sec without possibly affecting the phase in
the corresponding neighborhood. By noticing that a simple proportional action is not
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Figure 1: Bode plots of (1)

compatible with the requirement |G2(0)| ≥ 1, then an attenuating action of the form

G2(s) = ki

(1 + τi
m1
s

1 + τis

)ni

is needed in such a way to guarantee

|G2(jω
∗
t )|dB = −8.433, ∠G2(jω

∗
t ) ≥ −6.8o, |ki|dB > 0.

As at ω∗t must be affected as least as possible by the feedback action one has ki > 0.
Denoting ωn = ω∗t τi, it is evident that for decreasing the phase contribution at ω∗t =
2 rad/s as much as possible, one needs ωn to act at high frequency. Thus, we set mi = 3,
ωn = 100 and ni = 1 so that

|G2(jω
∗
t )|dB = |ki|dB − 9.5390, ∠G2(jω

∗
t ) = −1.1454o.

Finally, the gain is set in such a way that |ki|dB − 9.5390 = −8.433 so resulting in
|ki|dB = 1.106 > 0 which is indeed compatible with specification (ii) as ki = 1.1358 > 1.
Figure 2 depicts the Bode plots of the open loop transfer function

L(s) = G2(s)G1(s)P̄ (s) = 11.358
1 + 50

3 s

1 + 50s

s− 5

s(s+ 10)
. (4)
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Figure 2: Bode plots of (4)

(ii) The open loop system L(s) = G2(s)G1(s)P̄ (s) possesses no poles with positive real part
and one pole in zero with multiplicity one. Thus, the feedback system is asymptotically
stable if and only if the number of counter-clockwise tours around −1 + j0 on behalf of
the extended Nyquist plot of L(jω) is 0. As Figure 3 suggests, the feedback system is
asymptotically stable.

Exercise 2 (a) As the root locus of P (s) describes the location of the poles of the feedback system

under static feedback G(s) = k (i.e., of the transfer function W (s) = kP (s)
1+kP (s)) the root

locus of P (s) is equivalent to the one of

P̄ (s) =
1

(s− 1)(s+ 2)

deduced when neglecting the proportional term 3 and relabeling k̃ = 3k.

Denoting by n and m respectively the number of poles and zeros, the relative degree
is r = n − m = 2, the positive and negative locus possess respectively two branches.
Moreover, the positive locus exhibits two vertical asymptotes centered at s0 = −1.

Defining p(s, k̃) = (s−1)(s+2)+k̃ as the polynomial of the closed-loop poles, singularities
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Figure 3: Nyquist plot of (4)

(s∗, k̃∗) ∈ C× R are given by the solution of the coupled equations

p(s, k̃) = 0,
∂

∂s
p(s, k̃) = 0

given by s∗ = −1
2 and k̃∗ = 2 (and thus k = 2

3). Thus, the positive locus possesses a
singularity of order two at s∗ = −1

2 corresponding to k = 2
3 .

The positive and negative locus of P (s) are thus reported in Figures 4 and 5

(b) For assigning all poles with damping ≥ .7, it is enough to assign them real. Moreover,
as the root locus suggests, a static feedback is not enough for assigning all poles with
real part ≥ 1 as the center of the asymptotes is at s0 = −1

2 . Thus, a feedback G(s)
with dimension at least one is needed so to move the center of the asymptotes beyond
s = −1. To preserve the relative degree and simplify the design, let us design a feedback
of the form

G(s) = k1
s+ 2

s+ p

with k1, p ∈ R also generating uncontrollability of the mode associated to the eigenvalue
−2.
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Figure 4: Positive root locus of P (s) = 3
(s−1)(s+2)

At this point p > 0 needs to be set in such a way that

s′0 =
1− p

2
≤ −1 =⇒ p > 3.

For completing the design, it is enough to assign p so to generate a singularity of order
2 at some s∗ ∈ R and s∗ ≤ −1. It is a matter of computations to verify that such a
singularity is unavoidably located in correspondence of the center of the asymptotes s′0.
Hence, one can set p = 5 in such a way that the closed-loop poles are located at −2
corresponding to k1 = 3. Thus, the closed-loop transfer function is given by

W (s) =
9

(s+ 2)2
. (5)

(c) As the disturbance is affecting the output, the output-disturbance transfer function is
given by

Wd(s) =
1

1 +G(s)P (s)
=

(s+ 5)(s− 1)

(s+ 2)2
.

Accordingly, as d(t) = t, the steady state response is given by

yd,ss(t) = ∇sWd(0) +Wd(0)t

with

Wd(0) = −5

4
, ∇sWd(0) = −1

4
.

Exercise 3.
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Figure 5: Negative root locus of P (s) = 3
(s−1)(s+2)

(i) The forced response to the input u(t) = cost+ can be computed as

yf (t) = L−1(Y (s))[t], Y (s) = P (s)U(s) U(s) = L(u(t))[s]

with L and L−1 being the Laplace and inverse Laplace transforms.

As the system is in canonical controllable form, the transfer function P (s) = C(sI − A)−1B
is given by

P (s) =
1

(s+ a)2
.

Accordingly, as U(s) = L(cost)[s] = s
s2+1

one has

Y (s) =
s

(s+ a)2(s2 + 1)
=

R11

s+ a
+

R12

(s+ a)2
+
As+B

s2 + 1

with

R11 = lim
s→−a

∇sY (s)(s+ a)2 =
1− a2

(1 + a2)2

R12 = lim
s→−a

Y (s)(s+ a)2 = − a

1 + a2

A =
a2 − 1

a4 + 2a2 + 1

B =
2a

a4 + 2a2 + 1
.
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Accordingly, by exploiting linearity of the Laplace operator one gets

yf (t) =R11L−1(
1

s+ a
)[t] +R12L−1(

1

(s+ a)2
)[t] +AL−1( s

s2 + 1
)[t] +BL−1( 1

s2 + 1
)[t]

=(R11 + tR12t)e
−at
+ +A cos t+ +B sin t+.

(ii) As the system only possesses one eigenvalue at s = −a with multiplicity 2, the output steady-
state response only if the system is asymptotically stable that is if a > 0. Accordingly, it
can be easily deduced from the forced response by neglecting the terms whose effect vanish
in time so getting

yss(t) = A cos t+B sin t

which can be rewritten as

yss(t) = M cos (t+ ϕ)

with M = |P (j)| = 1
a2−1 , ϕ = −∠(j + a)2.


