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Exercise 1 By defining P(s) = 1(P(s) — 2) = _25(21?0) and L(s) = G(s)P(s), one has
. L(s) 1
y(s) = W(s)v(s) + Wy(s)d(s) with W(s) = T L0’ Wa(s) = T L0

Let us write G(s) = Ga(s)G1(s) so that G1(s) is designed for fulfilling steady-state specifica-
tions (i.e., (i7)) whereas Ga(s) will be later set for stability and transient performances (i.e.,
(1) and (#i7)).

(ii) Since the input-to-error transfer function We(s) = and recalling that the steady

1
T+L(s)
dWe

state response to v(t) = t is given ey (t) = W(0)t + “

satisfied one needs W,(0) = 0 and !dzgﬁ a0 S 0.2,

In this case, because an integrator is already located before the entering point of the
disturbance, one has W,.(0) = 0 so that for (i7) to be solved one sets G1(s) = ki with
k1 € R such that

(0), for the requirement to be

’ We(s)

(02 = k25

sS=

Thus, one can fix k; = 5 while guaranteeing, for (ii) to be fulfilled by the closed-loop
system, that G2(0) > 1.

(iii) For assigning w; = 2rad/sec and mj, > 50 let us first draw the Bode plots of
5s—5 1-2

Li(s) = G1(s)P(s) = _103(3 +10) 53(1 +15) Y

which are reported in Figure 1. As w} = 2rad/sec is the desired crossover frequency, we
notice that

|L1(jwi)|ap = 8433  ZL;(jw;) = —123.1113,
Accordingly, G2(s) needs to be chosen in such a way that

|G (jwi)lap + |L1(jwi)|lap =0 (2)
180° + £ Ly (jwy) + LG (jwl) > 50° (3)

with the further requirement |G2(0)| > 1 to preserve (iz).

It is a matter of computations to verify that, with no need of further actions, (3) is already
satisfied as 180° + ZL; (jw;) = 56.8°. Accordingly, one can satisfy the specification by
assigning the cross-over frequency to w; = 2rad/sec. Thus, Ga(s) needs to be designed
so to decrease the magnitude at w; = 2rad/sec without possibly affecting the phase in
the corresponding neighborhood. By noticing that a simple proportional action is not
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Bode Diagram
Gm = 0 dB (at 7.07 rad/s) , Pm = 0 deg (at 7.07 rad/s)
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Figure 1: Bode plots of (1)

compatible with the requirement |G2(0)| > 1, then an attenuating action of the form

Ti

=)

is needed in such a way to guarantee
‘Gg(jw:)’dg = —8.433, ZGQ(]'W?) > —6.80, ‘k¢|d3 > 0.

As at w;/ must be affected as least as possible by the feedback action one has k; > 0.
Denoting w, = wi;, it is evident that for decreasing the phase contribution at w; =
2 rad/s as much as possible, one needs w,, to act at high frequency. Thus, we set m; = 3,
wp, = 100 and n; = 1 so that

|G2(jwf)|dB = ‘ki|dB — 9.5390, AGQ(jw:) = —1.1454°.

Finally, the gain is set in such a way that |k;|gqp — 9.5390 = —8.433 so resulting in
|kilap = 1.106 > 0 which is indeed compatible with specification (i) as k; = 1.1358 > 1.
Figure 2 depicts the Bode plots of the open loop transfer function

1—1—%?8 s—5

L(s) = Ga2(s)G1(s)P(s) = 11.358 H0s (s 1 10)

(4)




Control Systems 9/01/2018

Bode Diagram
Gm = 8.4 dB (at 7.03 rad/s) , Pm = 55.7 deg (at 2 rad/s)
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Figure 2: Bode plots of (4)

(ii) The open loop system L(s) = Ga(s)G1(s)P(s) possesses no poles with positive real part
and one pole in zero with multiplicity one. Thus, the feedback system is asymptotically
stable if and only if the number of counter-clockwise tours around —1 + 50 on behalf of
the extended Nyquist plot of L(jw) is 0. As Figure 3 suggests, the feedback system is
asymptotically stable.

Exercise 2 (a) As the root locus of P(s) describes the location of the poles of the feedback system
under static feedback G(s) = k (i.e., of the transfer function W(s) = 131:1(38()3)) the root

locus of P(s) is equivalent to the one of

_ 1
PO =6+

deduced when neglecting the proportional term 3 and relabeling k = 3k.

Denoting by n and m respectively the number of poles and zeros, the relative degree
is r = n —m = 2, the positive and negative locus possess respectively two branches.
Moreover, the positive locus exhibits two vertical asymptotes centered at sg = —1.

Defining p(s, k) = (s—1)(s+2)+k as the polynomial of the closed-loop poles, singularities
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Figure 3: Nyquist plot of (4)

(s*, l;:*) € C x R are given by the solution of the coupled equations

~ o _
s, k) =0, —p(s,k)=0
Ps.F) =0, = p(s.)
given by s* = —% and k* = 2 (and thus k = %) Thus, the positive locus possesses a
singularity of order two at s* = —% corresponding to k = %

The positive and negative locus of P(s) are thus reported in Figures 4 and 5

(b) For assigning all poles with damping > .7, it is enough to assign them real. Moreover,
as the root locus suggests, a static feedback is not enough for assigning all poles with
real part > 1 as the center of the asymptotes is at so = —%. Thus, a feedback G(s)
with dimension at least one is needed so to move the center of the asymptotes beyond
s = —1. To preserve the relative degree and simplify the design, let us design a feedback

of the form

s+ 2
1s+p

G(s)=k

with k1, p € R also generating uncontrollability of the mode associated to the eigenvalue
—2.
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Figure 4: Positive root locus of P(s) = (34

At this point p > 0 needs to be set in such a way that

1—
sh=—5-<-1 = p>3

For completing the design, it is enough to assign p so to generate a singularity of order
2 at some s* € R and s* < —1. It is a matter of computations to verify that such a
singularity is unavoidably located in correspondence of the center of the asymptotes sj,.
Hence, one can set p = 5 in such a way that the closed-loop poles are located at —2
corresponding to k1 = 3. Thus, the closed-loop transfer function is given by

9

Wi(s) = ———. )
)= 1 )
(c) As the disturbance is affecting the output, the output-disturbance transfer function is
given by
1 (s+5)(s—1)
W - =
W8 = TG P0) (s +2)?

Accordingly, as d(t) = t, the steady state response is given by

Yd,ss(t) = VsWy(0) + Wy (0)t

with

Exercise 3.
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Root Locus
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Figure 5: Negative root locus of P(s) = m

(i) The forced response to the input u(t) = cost; can be computed as
yr(t) =LY (s))E,  Y(s)=P(s)U(s)  U(s) = Llu(t))[s]

with £ and £7! being the Laplace and inverse Laplace transforms.

As the system is in canonical controllable form, the transfer function P(s) = C(sI — A)~'B

is given by
1
P(s) = )
() (s+a)?
Accordingly, as U(s) = L(cost)[s| = ;7 one has
S Ri1 Ris As+ B
Y — =
() (s +a)?(s2+1) S+a+(8+a)2+ s2+1
with
1—a?
. E 2 _
R11 = SEIEIG VSY(S)(S + a) = (1 I CL2)2
— ki 2 _ a
Rip = lim Y(s)(s +a)" = =375
_ a? -1
Cat+2a2 41
2a

T r2a2+1
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Accordingly, by exploiting linearity of the Laplace operator one gets

1 1 S 1
t) =Ry L (——)[t] + Rio L™ (+——)[t] + AL™! t|+BL! t
yr(t) =R L7 ()t + Fa ((S+a)2)[]+ ()l + (Gl
=(Ri1 + tngt)ejr“t + Acosty + Bsinty.
(ii) As the system only possesses one eigenvalue at s = —a with multiplicity 2, the output steady-

state response only if the system is asymptotically stable that is if ¢ > 0. Accordingly, it
can be easily deduced from the forced response by neglecting the terms whose effect vanish
in time so getting

Yss(t) = Acost + Bsint
which can be rewritten as
Yss(t) = M cos (t + )

with M = |P(j)| = o0, ¢ = —£(j +a)*.




