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Maximal Independent set

 Given graph G = (V, E)
 Maximal Independent Set

 Subset A of the nodes such that:
1) Each node is either in A or is adjacent to a node 

in A

2) If u and v both belong to A → u and v are not 
adjacent

 Notation
 n: upper bound on |V|
 D: upper bound on number of active (see further) 

neighbours of any node (possibly n)



   

Distributed MIS

 Identical nodes
 Synchronous model
 In a round, a node can only tell whether or not it 

received a message
 It cannot count the number of messages it received



   

Previous work

 Distributed MIS impossible using deterministic 
algorithms [Cohen et al. 1984]

 Polylogarithmic time probabilistic algorithms 
[Luby 1986, Alon et al. 1986]
 Require knowledge of number of active neighbours 

(nodes who have not yet been assigned to A or V-
A)

 Require messages of size function of the number of 
nodes in the network



   

A biological perspective

 Sensory organ precursors of the fly's bristles

 SOPs form a MIS computed over a set of initially indifferentiated cells

 The MIS is computed using a biological process that roughly follows the 
beacon algorithm described in the next slide



   

Beacon algorithm

 Active node: a node for which a decision has 
not been made yet



   

Generic round: first possibility

Exchange 1                             Exchange 2

 Black node joins A, yellow nodes don't
 All three nodes become inactive
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Generic round: second possibility

Exchange 1                             Exchange 2

 Both red and green node send beacons
 All three nodes remain active

B

B

B



   

Generic round: third possibility

Exchange 1                             Exchange 2

 No broadcast
 All three nodes remain active



   

Properties of the algorithm

 Lemma 1: No two nodes in A are connected to 
each other

 Lemma 2: if node w becomes inactive and it 
does not belong to A, then it is adjacent to a 
node in A

 Corollary 3: if run forever, the algorithm 
eventually produces a MIS for G

 Proofs of lemmas 1 and 2: see previous two 
slides



   

Running time

1−
logD
n2

Theorem 4: with probability at least              

all nodes are either in A or adjacent to a node in A 
by the end of the algorithm

Corollary 5  with high probability, the algorithm 
computes a MIS for G in O(log2n) rounds



   

Proof of thm. 4

1) Lemmas 1 and 2 ensure that the only reason 
why the algorithm does not compute a MIS for 
G is that there are still active nodes when it 
terminates

2) The proof follows from the following Lemma 6: 

with probability at least              there are no 

nodes with degree >      at the end of phase i
 Phase: an iteration of lines 3 – 14 of the algorithm
 Degree of u in a phase: # u's active neighbours + 1  

1−
i

n2
D

2i



   

Proof of Lemma 6/1

 By induction on i
 Trivial for i = 0
 Assume true for i – 1 and consider node v with 

> D/2i neighbours. Then: 

P v∨neighbour of v broadcasts ≥1−
1
e



   

Proof of Lemma 6/2

 On the other hand, as a node broadcast a 
message:

 As a consequence, in any round of phase i: 

P Nocollisionsoccur ≥1− 1

D /2i 
2D /2i

≈
1

e2

P v removed ≥1−1
e  1

e2



   

Proof of Lemma 6/3

 As a consequence:

 Proof of lemma then follows since i) at most n 
nodes, ii) above bound and iii) induction 
hypotheses

P v removed during i−th phase≥1−
1

n3



   

Proof of Thm. 4/cont.

 From Lemma 6, all nodes left in the algorithm at 
the end of phase logD have degree 1 with

 probability at least 

 They have no active neighbours and thus they 
will insert themselves into A

1−
logD

n2
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