Better Landmarks within Reach

Andrew V. Goldberg* Haim Kaplan' Renato F. Werneck?

Abstract

We study the REAL algorithm for the point-to-point shortest path problem. It combines
A* search search, landmark-based lower bounds, and reach-based pruning. We suggest several
improvements to the preprocessing and query phases of the algorithm. In particular, we
propose maintaining landmark distances only for high-reach vertices, saving space that can
be used to accommodate more landmarks. This leads to a wide range of time-space tradeoffs.
The new algorithm is very effective on the road networks of Europe and the USA, each with
about 20 million vertices: it can find a random shortest path in one millisecond after one
or two hours of preprocessing, using either transit times or travel distances as edge weights.
Besides road networks, we also obtain improved performance on two-dimensional grids with
random arc lengths.

1 Introduction

We study the point-to-point shortest path problem (P2P): given a directed graph G = (V, A) with
nonnegative arc lengths and two vertices, the source s and the destination ¢, find a shortest path
from s to t. We allow preprocessing, but limit the size of the precomputed data to a (moderate)
constant times the input graph size. Preprocessing time is limited by practical considerations. For
example, in our motivating application, driving directions on large road networks, quadratic-time
algorithms are impractical. We are interested in exact shortest paths only.

Finding shortest paths is a fundamental problem. The single-source problem with nonnegative
arc lengths has been studied most extensively [1, 3, 5, 6, 10, 11, 12, 13, 17, 22, 29, 39, 43]. Near-
optimal algorithms are known both in theory, with near-linear time bounds, and in practice, where
running times are within a small constant factor of the breadth-first search time.

The P2P problem with no preprocessing has been addressed, for example, in [21, 32, 37, 44].
While no nontrivial theoretical results are known for the general P2P problem, there has been
work on the special case of undirected planar graphs with slightly super-linear preprocessing space.
The best bound in this context appears in [9]. Algorithms for approximate shortest paths that
use preprocessing have been studied; see e.g. [2, 23, 40].

Previous work on exact algorithms with preprocessing includes, e.g., [14, 18, 16, 19, 24, 27,
30, 33, 34, 35, 36, 42]. We focus our discussion here on the most relevant recent developments
in preprocessing-based algorithms for road networks. Such methods have two components: a
preprocessing algorithm that computes auxiliary data and a query algorithm that computes an
answer for a given s-t pair.

*Microsoft Research Silicon Valley, USA. E-mail: goldberg@microsoft.com.

fSchool of Mathematical Sciences, Tel Aviv University, Israel. E-mail: haimk@post.tau.ac.il. Part of this
work was done while this authors was visiting Microsoft Research Silicon Valley.

#Microsoft Research Silicon Valley, USA. E-mail: renatow@microsoft.com



Gutman [19] defines the notion of vertex reach. Informally, the reach of a vertex v is a number
that is large if v is close to the middle of a long shortest path and small otherwise. Gutman
shows how to prune an s-t search based on (upper bounds on) vertex reaches and (lower bounds
on) vertex distances from s and to ¢. He uses Euclidean distances as lower bounds, and observes
that the idea of reach can be combined with Euclidean-based A* search to improve efficiency. A*
search uses lower bounds on the distance to the destination to direct the search towards it.

Goldberg and Harrelson [14] (see also [18]) have shown that the performance of A* (without
reaches) can be significantly improved if Euclidean lower bounds are replaced by landmark-based
lower bounds. These bounds are obtained by storing (in the preprocessing step) the distances
between every vertex and a small (constant-sized) set of special vertices, the landmarks. During
queries, one can use this information, together with the triangle inequality, to obtain lower bounds
on the distances between any two vertices in the graph. This leads to the ALT (A* search,
landmarks, and triangle inequality) algorithm for the point-to-point problem.

Sanders and Schultes [33] introduce the notion of highway hierarchy and use it to design
efficient algorithms for the shortest path problem on road networks. Their latest version [34] is
the best overall solution for the problem in the literature. We refer to the algorithms based on
highway hierarchy as the HH algorithms. While building the hierarchy structure, these algorithms
use a notion of shortcuts, which is also useful in other contexts.

In [16], we show how to apply shortcuts in the context of reach-based algorithms to significantly
improve both preprocessing and query efficiency. The resulting algorithm is called RE. The paper
also shows how the ALT method can be combined with reach pruning in a natural way, leading
to an algorithm called REAL. In this paper, we continue our study of reach-based point-to-point
shortest paths algorithms, and their combination with A* search using landmarks.

We introduce the following improvements:

Reach-aware landmarks: In REAL, unless s and t are close to each other, the search visits
mostly vertices with high reach. Thus it is more important to have good lower bounds (on
distances from the source and to the target) for high-reach vertices. In fact, as we suggested
in [16], one can keep landmark data for high-reach vertices only. This can significantly reduce the
memory requirements of the algorithm while slightly increasing query times. The space saved by
not keeping distances from landmarks to low-reach vertices can be used to store more landmarks
instead, thus improving query performance. This allows a wide range of time-memory trade-offs.
Of particular interest is the fact that we are able to reduce both time and space requirements for
large graphs. We do this by maintaining landmark data for a moderate fraction of vertices and
increasing the number of landmarks by a smaller factor.

Shortcuts: Motivated by the work of Sanders and Schultes [34], we develop a preprocessing
algorithm that shortcuts vertices of arbitrary (but usually low) degree, instead of just degree-two
vertices as our previous method did. This improves both preprocessing and query performance.

Reach computation: We propose an algorithm for computing exact reaches that in practice
is more efficient than the standard algorithm, which builds a complete shortest path tree from
every vertex in the graph. While it is still not quite practical for large road networks, the
improved algorithm does help accelerate the approximate reach computation. We also suggest
some slight modifications to our partial tree algorithm (used to compute approximate reaches)
that significantly accelerate it in practice.



Improving locality: Since a shortest path computation is largely concentrated on a small
number of high-reach vertices, reordering vertices by reach leads to more locality and improved
performance.

Readers familiar with our previous paper [16] can skip Sections 2-5, which contain basic defi-
nitions and review the algorithms based on reaches and A* search. We describe our improvements
in Section 6 and give experimental results in Section 7.

The bulk of our experiments is on road networks. We conducted experiments on the graph of
Western Europe, USA, and subgraphs of USA, using both transit times and travel distances as
edge lengths. Experiments confirm that our algorithmic improvements lead to substantial savings
in time (especially in preprocessing) and memory. We have practical results for both metrics:
both Europe and the USA can be preprocessed in one to two hours and queries with our fastest
algorithm take roughly one millisecond.

We have also obtained good results for 2-dimensional grids with random arc lengths. Al-
though not as good as for road networks, the results show that our techniques have more general
applicability. To show the limitations of our techniques, we also experimented with 3-dimensional
grids. Preprocessing for reach-based algorithms becomes expensive, and query speed-up is small.
For higher dimensions, preprocessing becomes impractical, with no gains in query times. For
A* search, preprocessing remains fast for all dimensions, but query times become worse as the
dimension increases. The same is true for random graphs.

2 Preliminaries

The input to the preprocessing stage of a P2P algorithm is a directed graph G = (V, A) with
n vertices and m arcs, and nonnegative lengths ¢(a) for every arc a. The query stage also gets
as inputs a source s and a sink t. The goal is to find a shortest path from s to t. We denote
by dist(v, w) the shortest-path distance from vertex v to vertex w with respect to £. In general,
dist(v, w) # dist(w, v).

The labeling method for the shortest path problem [25, 26] finds shortest paths from the source
to all vertices in the graph. The method works as follows (see e.g. [38]). It maintains for every
vertex v its distance label d(v), parent p(v), and status S(v) € {unreached, labeled, scanned}.
Initially d(v) = oo, p(v) = nil, and S(v) = unreached for every vertex v. The method starts by
setting d(s) = 0 and S(s) = labeled. While there are labeled vertices, the method picks a labeled
vertex v, relazes all arcs out of v, and sets S(v) = scanned. To relax an arc (v, w), one checks if
d(w) > d(v) + £(v,w) and, if true, sets d(w) = d(v) + (v, w), p(w) = v, and S(w) = labeled.

If the length function is nonnegative, the labeling method terminates with correct shortest
path distances and a shortest path tree. Its efficiency depends on the rule to choose a vertex
to scan next. We say that d(v) is ezact if it is equal to the distance from s to v. If one always
selects a vertex v such that, at selection time, d(v) is exact, then each vertex is scanned at most
once. Dijkstra [6] (and independently Dantzig [3]) observed that if ¢ is nonnegative and v is a
labeled vertex with the smallest distance label, then d(v) is exact. We refer to the labeling method
with the minimum label selection rule as Dijkstra’s algorithm. If £ is nonnegative then Dijkstra’s
algorithm scans vertices in nondecreasing order of distance from s and scans each vertex at most
once.

For the P2P case, note that when the algorithm is about to scan the sink ¢, we know that d(t)
is exact and the s-t path defined by the parent pointers is a shortest path. We can terminate the



algorithm at this point. Intuitively, Dijkstra’s algorithm searches a ball with s in the center and
t on the boundary.

One can also run Dijkstra’s algorithm on the reverse graph (the graph with every arc reversed)
from the sink. The reverse of the t-s path found is a shortest s-t path in the original graph.

The bidirectional algorithm [3, 8, 31] alternates between running the forward and reverse
versions of Dijkstra’s algorithm, each maintaining its own set of distance labels. We denote by
dg(v) the distance label of a vertex v maintained by the forward version of Dijkstra’s algorithm,
and by d,(v) the distance label of a vertex v maintained by the reverse version. (We will still
use d(v) when the direction would not matter or is clear from the context.) During initialization,
the forward search scans s and the reverse search scans t. The algorithm also maintains the
length of the shortest path seen so far, p, and the corresponding path. Initially, © = co. When
an arc (v, w) is relaxed by the forward search and w has already been scanned by the reverse
search, we know the shortest s-v and w-t paths have lengths ds(v) and d,(w), respectively. If 1 >
d¢(v)+L(v,w)+d.(w), we have found a path shorter than those seen before, so we update p and its
path accordingly. We perform similar updates during the reverse search. The algorithm terminates
when the search in one direction selects a vertex already scanned in the other. Intuitively, the
bidirectional algorithm searches two touching balls centered at s and t.

3 Reach-Based Pruning

Given a path P from s to t and a vertex v on P, the reach of v with respect to P is the minimum
of the length of the prefix of P (the subpath from s to v) and the length of the suffix of P (the
subpath from v to t). The reach of v, r(v), is the maximum, over all shortest paths P through
v, of the reach of v with respect to P.

| prefix(P, v) . suffix(P,v) |
{ I !

o——— @ e e

S v t

Figure 1: The reach of v with respect to the shortest path P between s and t is the minimum
between the lengths of its prefix and its suffix (with respect to v).

For large graphs, computing exact reaches is impractical with current algorithms. Efficient
solutions use heuristics to compute only an upper bound on the reach of each vertex. We denote
an upper bound on r(v) by 7(v). Let dist(v,w) denote a lower bound on the distance from v to
w. The following fact allows using reaches for pruning Dijkstra’s search:

Suppose T(v) < dist(s,v) and 7(v) < dist(v,t). Then v is not on a shortest path from
s to t, and therefore Dijkstra’s algorithm does not need to label or scan v.

Note that this holds for the bidirectional algorithm as well.

3.1 Queries Using Upper Bounds on Reaches

In this section we give a quick summary of reach-based query algorithms based on bidirectional
Dijkstra’s algorithm. For more details, see [15].



As described in Section 3, to prune the search based on the reach of some vertex v, we need
a lower bound on the distance of v to the source and a lower bound on the distance of v to the
sink.

One way is to use lower bounds implicit in the search itself. Consider the search in the forward
direction, and let v be the smallest distance label of a labeled vertex in the reverse direction (i.e.,
the topmost label in the reverse heap). If a vertex v has not been scanned in the reverse direction,
then v is a lower bound on the distance from v to the destination ¢. (The same idea applies to
the reverse search: we use the topmost label in the forward heap as a lower bound for unscanned
vertices in the reverse direction.) When we are about to scan v we know that d¢(v) is the distance
from the source to v. So we can prune the search at v if v has not been scanned in the reverse
direction, 7(v) < df(v), and 7(v) < v. When using these bounds, the stopping condition is
the same as for the standard bidirectional algorithm (without pruning). We call the resulting
procedure the bidirectional bound algorithm. See Figure 2.

d¢(s,v)

Figure 2: Pruning using implicit bounds. Assume v is about to be scanned in the forward direction,
has not yet been scanned in the reverse direction, and that the smallest distance label of a vertex not yet
scanned in the reverse direction is y. Then v can be pruned if 7(v) < dy(v) and 7(v) < 7.

An alternative is to use the distance label itself for pruning. Assume we are about to scan a
vertex v in the forward direction (the procedure in the reverse direction is similar). If7(v) < ds(v),
we prune the vertex. Note that if the distance from v to ¢ is at most 7(v), the vertex will still be
scanned in the reverse direction, given the appropriate stopping condition. It is easy to see that
the following stopping condition works.

Stop the search in a given direction when either there are no labeled vertices or the
minimum distance label of labeled vertices for the corresponding search is at least half
the length of the shortest path seen so far.

We call this the self-bounding algorithm. The reason why this algorithm can safely ignore the
lower bound to the destination is that it leaves to the other search to visit vertices that are closer
to it. Note, however, that when scanning an arc (v,w), even if we end up pruning w, we must
check if w had been scanned in the opposite direction and, if so, check if the candidate path using
(v, w) is the shortest path seen so far.

The following natural algorithm falls into both of the above categories. It balances the radii
of the forward search and the reverse search by scanning in each iteration the labeled vertex with
minimum distance label, considering both directions. Note that the distance label of this vertex
is also a lower bound on the distance to the target, as the search in the opposite direction has
not selected the vertex yet. The algorithm can be implemented with only one priority queue. We



refer to this algorithm as distance-balanced. Note that one could also use explicit lower bounds in
combination with the implicit bounds.

3.2 Preprocessing

The preprocessing algorithm computes upper bounds on reaches and adds shortcut arcs to the
graph to reduce the reaches of some vertices. Lowering vertex reaches makes pruning more effective
during queries, thereby reducing the number of scanned vertices. Our algorithm is similar to
the preprocessing algorithm described in [16] with several improvements which we describe in
Sections 6.3, 6.4 and 6.5. The remainder of this section gives an overview of the preprocessing
of [16].

The algorithm in fact computes upper bounds on the reaches of arcs, not vertices. Let P be
the shortest path from s to ¢, and assume it contains an arc (v,w). The reach of (v,w) with
respect to P is the minimum between the distance from s to w and the distance from v to . The
reach of (v,w) (with respect to the entire graph) is the maximum over all shortest paths P of the
reach of (v, w) with respect to P. Eventually, when all arc reaches are computed, the algorithm
converts them to vertex reaches and stores vertex reaches to save space. The main advantage of
computing arc reaches is that is allows for more efficient shortcutting: a high-reach vertex can be
bypassed as soon as enough low-reach arcs incident to it are eliminated.

The computation of arc reaches proceeds in iterations, or levels. At level ¢ the algorithm tries
to bound all arc reaches below some threshold ¢;, which grows exponentially with . Level ¢ starts
by removing from the graph all arcs whose reach was bounded in the previous level. It then
shortcuts vertices that have exactly two neighbors. Finally, it grows partial shortest path trees
from all remaining vertices and uses them to find upper bounds on reaches of arcs with reach less
than €;.

The preprocessing algorithm described in [16] shortcuts a vertex v with neighbors u and w
by replacing the arcs (u,v) and (v,w) (if both exist) by an arc (u,w), and the arcs (w,v) and
(v,u) (if both exist) by (w,u). The new arcs have length equal to the sum of the lengths of the
arcs they replace, thus keeping the original distances unchanged. When breaking ties, however,
we consider the new arc to be slightly shorter. As a result, v will no longer be on any shortest
path that contains both u and w, which will in effect reduce v’s reach.

We construct partial shortest path trees to bound the reach of the arcs that remain in the
graph. For these upper bounds to be valid in the original graph, we must take into consideration
the arcs that have already been deleted (either in previous iterations or when introducing shortcuts
in the current iteration). We do that by associating penalties to each vertex v. The in-penalty of
v is the maximum reach upper bound of an incoming arc that has already been eliminated. The
out-penalty of v is similar, but considering outgoing arcs from v. When evaluating the partial
shortest paths trees, we use the penalties as upper bounds on the lengths of subpaths that no
longer belong to the current graph.

The procedure outlined above will proceed until all arc reaches have been bounded. This will
happen once the threshold ¢; is large enough. At this point, arc reaches are converted to vertex
reaches.

This is followed by a refinement phase: in order to obtain more accurate reaches, we com-
pute exact reaches on the subgraph induced by the § vertices with highest reach, where 4 is a
user-defined parameter (set to [104/n] in [16]). The remaining vertices are considered in the
computation, but only implicitly, as penalties.



Section 6.3, 6.4 and 6.5 will present a more detailed description of various elements of the
preprocessing algorithms, including some improvements.

4 A* Search and the ALT Algorithm

Suppose we need to find shortest paths on a graph G with distance function £. A potential
function maps vertices to reals. Given a potential function 7, the reduced cost of an arc is defined
as Ur(v,w) = l(v,w) —m(v) + m(w). Suppose we replace ¢ by ¢,. Then for any two vertices x and
y, the length of every z-y path (including the shortest) changes by the same amount, 7 (y) — 7(x).
Thus the problem of finding shortest paths in G is equivalent to the problem of finding shortest
paths in the transformed graph.

Now suppose we are interested in finding the shortest path from s to ¢t. Let m¢ be a (perhaps
domain-specific) potential function such that 7¢(v) gives an estimate on the distance from v to
t. In the context of this paper, A* search [7, 20] is an algorithm that works like Dijkstra’s
algorithm, except that at each step it selects a labeled vertex v with the smallest key, defined as
kg(v) = dy(v) + m¢(v), to scan next. It is easy to see that A* search is equivalent to Dijkstra’s
algorithm on the graph with length function fz . If 7¢ is such that ¢ is nonnegative for all arcs
(i.e., if 7y is feasible), the algorithm will find the correct shortest paths. We refer to the class of
A* search algorithms that use a feasible function 7¢ with 7;(t) = 0 as lower-bounding algorithms.

We combine A* search and bidirectional search as follows. Let ¢ be the potential function
used in the forward search and let m, be the one used in the reverse search. Since the latter works
in the reverse graph, each original arc (v, w) appears as (w,v), and its reduced cost w.r.t. m, is
Ur, (w,v) = l(v,w) — 7(w) + 7-(v), where £(v,w) is in the original graph. We say that 7; and
m are consistent if, for all arcs (v, w), £z,(v,w) in the original graph is equal to {r, (w,v) in the
reverse graph. This is equivalent to 7y + m, = constant.

If 7 and m, are not consistent, the forward and reverse searches use different length functions.
When the searches meet, we have no guarantee that the shortest path has been found. Assume
¢ and 7, give lower bounds to the sink and from the source, respectively. We use the average

_ (o) (v)
2

function suggested by Ikeda et al. [21], defined as ps(v) for the forward computation

and p,(v) = M = —pys(v) for the reverse one. Although py and p, usually do not give
lower bounds as good as the original ones, they are feasible and consistent.

The ALT algorithm is an A*-based algorithm that uses landmarks and triangle inequality to
compute feasible lower bounds. We select a small subset of vertices as landmarks and, for each
vertex in the graph, precompute distances to and from every landmark. Consider a landmark L:
if d(-) is the distance to L, then, by the triangle inequality, d(v) — d(w) < dist(v,w); if d(-) is
the distance from L, d(w) — d(v) < dist(v,w). To get the tightest lower bound, one can take the
maximum of these bounds, over all landmarks (for efficiency reasons, a query uses only a subset of
the available landmarks). Intuitively, the best lower bounds on dist(v, w) are given by landmarks
that appear “before” v or “after” w. The version of ALT algorithm that we use balances the work
of the forward search and the reverse search (see Section 2). This version had better performance
than other variants.

For more details on landmark selection algorithms and on using a subset of active landmarks
for a given query, see [18].



5 Combining Reach and Landmarks

Reach-based pruning can be easily combined with A* search. The general approach is to run A*
search and prune vertices (or arcs) based on reach conditions. Specifically, when A* is about to
scan a vertex v we extract the length of the shortest path from the source to v from the key of
v (recall that for the unidirectional algorithm, kr(v) = d¢(v) + py(v)). Furthermore, 7y(v) is a
lower bound on the distance from v to the destination. If the reach of v is smaller than both d¢(v)
and 7¢(v), we prune the search at v.

The reason why reach-based pruning works is that, although A* search uses transformed
lengths, the shortest paths remain invariant. This applies to bidirectional search as well. In
this case, we use dy(v) and 7¢(v) to prune in the forward direction, and d,(v) and 7.(v) to
prune in the reverse direction. Using pruning by reach does not affect the stopping condition
of the algorithm. We still apply the usual condition for A* search, which is similar to that of
the standard bidirectional Dijkstra, but with respect to reduced costs (see [18]). We call our
implementation of the bidirectional A* search algorithm with landmarks and reach-based pruning
REAL. As we did for ALT, our implementation of REAL balances the work of the forward search
and the reverse search. Implicit bounds cannot be used with A* search to prune by reach, but
landmark bounds can.

Note that REAL has two preprocessing algorithms: the one used by RE (which computes
shortcuts and reaches) and the one used by ALT (which chooses landmarks and computes distances
between them and all vertices). These two procedures can be independent from each other: since
shortcuts do not change distances, landmarks can be generated regardless of what shortcuts are
added. Furthermore, the query is still independent of the preprocessing algorithm: the query
only takes as input the graph with shortcuts, the reach values, and the distances to and from
landmarks. As we will see in the next section, however, it might be useful to take reaches into
account when generating landmarks.

6 Algorithmic Improvements

In this section we give a summary of the most significant changes that improved preprocessing or
query performance of our algorithms.

6.1 Improving Locality

When reaches are available, a typical point-to-point query spends most of its time scanning high-
reach vertices. Except at the very beginning of the search, low-reach vertices are pruned by
reach. This suggests an obvious optimization: during preprocessing, reorder the vertices such
that high-reach vertices are close together in memory to improve cache locality.

The simplest way to achieve this would be to sort vertices in non-increasing order of reach.
This, however, will destroy the locality of the input: in many applications (including road net-
works), the original vertex order already has high locality.

Instead, we adopt the following approach to order the vertices. We fix a constant o« > 1 (we
use « = 2) and partition the vertices into two sets: the first contains the 1/« fraction of vertices
with highest reach, and the other contains the remaining vertices. We keep the original relative
ordering in each part, then recursively process the first part. Besides improving locality, this
reordering also facilitates other optimizations described below.



6.2 Reach-Aware Landmarks

Here we investigate the interaction of landmarks and reaches. We can reduce the memory require-
ments of the algorithm by storing landmark distances only for high-reach vertices. As we shall
see, however, this results in some degradation of query performance. If we add more landmarks,
we get a wide range of trade-offs between query performance and memory requirement. We call
the resulting method, a variant of REAL, the partial landmark algorithm.

Queries for the partial landmark algorithm work as follows. Let R be the reach threshold: we
store landmark distances for all vertices with high reach, i.e., with reach at least R. We start a
query by running the bidirectional Dijkstra algorithm, with reach pruning but without A* search,
until either the algorithm terminates or both balls searched have radius R. In the latter case, we
know that, from this point on, we need to examine only vertices with reach R or more. We switch
to A* search by removing labeled vertices from the heaps and re-inserting them using new keys
that incorporate lower bound values.

Recall that, for every vertex v it visits, A* search may need lower bounds on the distance
from v to ¢ (in the forward search) or from s to v (in the reverse search). They are computed
with the triangle inequality, which requires distances between these vertices (v, s, and t) and the
landmarks. These are guaranteed to be available for v, which has high reach, but not for s or ¢,
which are arbitrary vertices. We need to specify how to compute a lower bound on the distance
between a low-reach vertex (s or t) and a high-reach one (v).

Suppose s has low reach (¢ is treated symmetrically). Let s, the proxzy for s, be the high-
reach vertex that is closest to s.! One can compute proxies during preprocessing and store them,
or compute them during the initialization phase of the query algorithm; we choose the latter
approach. Two executions of a multiple-source version of Dijkstra’s algorithm (one in the forward
graph and one in the reverse graph) suffice to compute both the proxies and the appropriate
distances.

As already mentioned, when processing a high-reach vertex v, the A* search needs lower
bounds on dist(s,v) and dist(v,¢). Given a landmark L, we can obtain these bounds using either
distances from L or distances to L. With the help of proxies, these bounds can be easily computed.

A lower bound on dist(s, v) using distances to L is given by

dist(s,v) > dist(s’, L) — dist(v, L) — dist(s’, s). (1)
Using distances from L, the lower bound can be computed as follows:
dist(s,v) > dist(L,v) — dist(L, s') — dist(s’, s). (2)

Lower bounds on distances from v to the target ¢ can be computed similarly. Using distances
from landmarks, the following relation applies:

dist(v,t) > dist(L,t") — dist(L, v) — dist(¢, t'). (3)
With distances to landmarks, the appropriate expression is

dist(v,t) > dist(v, L) — dist(¢', L) — dist(¢,t). (4)

'Each vertex s actually has two proxies: the high-reach vertex s’ that minimizes dist(s’, s) and the high-reach
vertex s” that minimizes dist(s,s”). We will assume they are the same to simplify the discussion, but they need
not be.



Note that distances between L and v, s’ and ' are computed during the preprocessing stage,
since all three vertices have high reach. As already mentioned, the distances between every vertex
and its proxy (or, more precisely, proxies) are computed in the initialization phase of the query
algorithm.

The quality of the lower bounds obtained by the partial landmark algorithm depends not
only on the number of landmarks available, but also on the value of R. In general, the higher
the reach threshold, the farther the proxy s will be from s (and ¢ from t¢), thus decreasing
the accuracy of the lower bounds. If all landmark distances are available, R will be zero, and
the algorithm will behave exactly as the standard REAL method. By decreasing the number of
distances per landmark (representing distances only to higher-reach vertices), R will increase; a
trade-off between memory usage and query efficiency is thus established.

It turns out, however, that we can often improve both memory usage and query times. Starting
from the base algorithm, we can increase the number of landmarks while decreasing the number
of distances per landmark so that the total memory usage is lower. On large road networks,
the availability of more landmarks makes up for the fact that only a fraction of all distances is
available, and query times in fact improve.

In our experiments, we generate up to 64 landmarks, as opposed to only 16 in our previous
study [16]. We use the avoid algorithm to select landmarks. Among the landmark selection
algorithms studied in [18], avoid is the second best in terms of solution quality. It is only surpassed
by mazxcover, which is essentially avoid followed by local search and is about five times slower.
We have discovered a minor issue with our previous implementation of awvoid that caused it to
obtain slightly worse landmarks than it should. The fixed version of avoid provides slightly better
landmarks, and is almost as good as mazxcover.

The avoid method works by adding one landmark at a time. In each iteration, it tries to
pick a landmark in a region that is still not well-covered by existing landmarks. To do so, it first
builds a complete shortest path tree T, rooted at a vertex r picked in a randomized fashion. It
then assigns a weight to each vertex v, which depends on the quality of the lower bound on the
distance from 7 to v (based on previously selected landmarks). Vertices with bad lower bounds
will have higher weights. The algorithm determines the vertex p that, among all vertices that
have no landmark as a descendent, maximizes the sum of the weights of its descendents in T,. A
leaf of the subtree of T rooted at p is then selected as the new landmark.

Computing the lower bound on the distance from r to a particular vertex takes time propor-
tional to the number of landmarks already selected, which makes avoid quadratic in the number
k of landmarks. This is not a major issue when only 16 landmarks are selected, but the algorithm
does get measurably slower with 64 or more landmarks. We propose a simple modification to the
algorithm to make it linear in the number of landmarks.

When processing the shortest path tree rooted at r, we still define the weight of v to be the
difference between the distance from 7 to v and the current lower bound on this distance, but
only if v belongs to a set of n/k relevant vertices. For all other vertices, we define the weight
as zero. If no reach information is available, the set of relevant vertices is picked uniformly at
random. If reaches are available, the set is defined as the n/k vertices with smallest labels.
Because vertices are approximately sorted in decreasing order of reach (as seen in the previous
subsection), this means that only vertices with high reach are taken into account. These changes
made the algorithm substantially faster, with no discernible decrease in solution quality.

10



6.3 Adding Shortcuts

Our previous implementation of the preprocessing procedure only shortcuts lines, i.e., connected
subgraphs induced by vertices with exactly two neighbors. Sanders and Schultes [34] suggested
shortcutting not only degree-two vertices, but other vertices of small degree as well. This approach
is more general and works better for both preprocessing and queries.

We can shortcut a vertex v as follows. First, we examine all pairs of incoming/outgoing arcs
((u,v), (v,w)) with u # w. For each pair, if the arc (u, w) is not in the graph, we add an arc (u, w)
of length ¢(u,v) + ¢(v,w). Otherwise, we set £(u,w) < min{l(u,w), l(u,v)+£(v,w)}. Finally, we
delete v and all arcs adjacent to it.

In principle, any vertex in the graph could be subject to this procedure. However, bypassing
high-degree vertices would significantly increase the number of arcs in the graph. To avoid an
excessive expansion, we consider the ratio ¢, between the number of new arcs added and the
number of arcs deleted by the procedure above. A vertex is deemed bypassable if ¢, < ¢, where
c is a user-defined parameter.? Higher values of ¢ will cause the graph to shrink faster during
preprocessing, but may increase the final number of arcs substantially. We used values of ¢ from
0.5 to 2.0 in our experiments. For road networks, we used 0.5 on the first level, 1.0 on the second,
and 1.5 on the remaining levels. This prevents the algorithm from adding too many shortcuts at
the beginning of the preprocessing algorithm (when the graph is larger but shrinks faster) and
ensures that the graph will shrink fast enough as the algorithm progresses.

We impose some additional constraints on a vertex v to deem it bypassable (besides having
a low value of ¢,). First, we require both its in-degree and its out-degree to be bounded by a
constant (5 in our experiments). This guarantees that the total number of arcs added by the
algorithm will be linear in n. We also consider two additional measures (besides ¢,) related to
v: the length of the longest shortcut arc introduced when v is bypassed, and the largest reach
of an arc adjacent to v (which will be removed). The maximum between these two values is
the cost of v, and it must be bounded by ¢;/2 during iteration i for the vertex to be considered
bypassable (recall that ¢; is the threshold for bounding reaches at that iteration). As explained in
[16], long arcs and large penalties can decrease the quality of the reach upper bounds provided by
the preprocessing algorithm. Imposing these additional bypassability criteria prevent such long
arcs and large penalties from appearing too soon.

On any given graph, many vertices may be bypassable. When a vertex is bypassed, the fact
that we remove existing arcs and add new ones may affect the bypassability of its neighbors.
Therefore, the order in which the vertices are processed matters. Vertices with low expansion
(cy) and low cost are preferred, since they are the least likely to affect the bypassability of their
neighbors. When deciding which vertex v to bypass next, we take the vertex that minimizes the
product of these two measures (expansion and cost). When a vertex is bypassed, its neighbors
must have their priorities updated. We use a heap to efficiently determine which vertex to bypass
next.

6.4 Growing Partial Trees

This section reviews the basic aspects of the main routine of our preprocessing algorithm, originally
described in [16]. We then mention a few simple modifications in the way penalties are handled
that make the procedure roughly twice as fast in practice. For simplicity, we describe the algorithm
as if it computed vertex reaches; the procedure for computing arc reaches essentially the same.

2We follow the notation proposed by Sanders and Schultes.

11



Given a graph G = (V, A) and a constant € (the threshold), our goal is to find valid reach upper
bounds for the vertices in V' whose actual reach is smaller than e. For the remaining vertices,
the upper bound is co. While the algorithm is allowed to report false negatives (i.e., it may find
an upper bound of oo for vertices whose actual reach is less than €), it must never report a false
positive.

Fix a vertex v. To prove that r(v) < €, we must consider all shortest paths through v.
Fortunately, we do not have to evalute all such paths explicitly: we only need to consider minimal
paths. Consider a shortest path Py = (s,8',...,v,...,t t) between s and ¢, and assume that v
has reach at least € with respect to this path. Path Py is e-minimal with respect to v if and only
if the reaches of v with respect to Py; and Py are both smaller than e.

The algorithm works by growing a partial tree T, from each vertex r € V. It runs Dijkstra’s
algorithm from r, but stops it as soon as it can prove that all minimal paths starting at r are
part of the tree. In order to determine when to stop growing the tree, we need the notion of
inner vertices. Let v # r be a vertex in this tree, and let = be the first vertex (besides r) on the
path from 7 to v. We say that v is an inner vertez if either (1) d(r,v) < € or (2) d(r,v) > € and
d(z,v) < e. The root r is defined to be an inner vertex as well. When v is not an inner vertex,
no path P, starting at r will be e-minimal with respect to v: if v’s reach is greater than ¢ with
respect to P, it will also be greater than e with respect to Py.,.

The partial tree T, must be large enough to include all inner vertices—these will be the vertices
whose reaches we will try to bound. To get accurate bounds on reaches, we must make sure that
every inner vertex v has one of two properties: (1) v has no labeled (unscanned) descendents; or
(2) v has at least one scanned descendent whose distance to v is € or greater. We actually use
a relaxed version of the second condition: we stop growing the tree when every labeled vertex is
within distance greater than € from the closest inner vertex.

Once the tree is built, processing it is straightforward. For each inner vertex, we know its
depth, i.e., the distance from the root. In O(|7,|) time, one can also compute the height of every
inner vertex v, defined as the distance from v to its farthest descendent. Clearly, the reach of v
with respect to the partial tree is the minimum between its depth and its height. The reach of
v with respect to the entire graph is the maximum over all such reaches. If this maximum is at
least €, we declare the reach to be oco.

Dealing with penalties. As described, the algorithm assumes that partial trees will be grown
from every vertex in the graph. We would like, however, to run the partial-trees routine even after
some of the vertices have been eliminated (either because they were bypassed, or because their
reach was bounded in a previous iteration). Eliminated vertices must be taken into account, since
they may belong to paths that determine the reach of the remaining vertices. However, growing
partial trees from them would be too expensive.

Instead, we use the notion of penalties to account for the eliminated vertices. If v is a vertex
that remains in the graph, its in-penalty is the maximum over the reaches of all arcs (u,v) that
have already been eliminated. Similarly, the out-penalty of v is the maximum reach of all arcs
(v,w) that have already been eliminated. (It is possible to define penalties in terms of vertex
reaches, but the definition in terms of arc reaches is simpler.)

Our original algorithm [16] did not take penalties into account when growing partial trees.
Penalties were only used to process the partial tree. The (redefined) depth of a vertex v within
a tree T, is the distance from r to v plus the in-penalty of r. Similarly, the height of a vertex
is redefined to take out-penalties into account. For that, we consider that each vertex v in T is

12



attached to a pseudo-leaf v', and that the length of the edge between v and v is equal to the
out-penalty of v. Heights are computed not with respect to 7T, but with respect to the pseudo-tree
obtained if the pseudo-leaves are taken into account.

Although taking penalties into account when growing partial trees is not required for cor-
rectness, it turns out to be helpful to accelerate the algorithm. We therefore make two simple
modifications to the partial-trees algorithm.

First, when deciding whether v is an inner vertex with respect to a root r, we must compute
depth,.(v) taking in-penalties into account, i.e., as dist(r, v)+in-penalty(r). Vertex v will be con-
sidered an inner vertex if either (1) depth,(v) < € or (2) depth,(v) > € and depth,(v) < € (recall
that x is the second vertex on the path from 7 to v). Here, depth,(v) also takes in-penalty(z) into
account. There is one exception to the two criteria above: if depth,(v) < in-penalty(v), v will not
be considered an inner vertex (because its modified depth will be even higher in the tree rooted
at v), and neither will its descendents.

The second modification is in the stopping criterion. We grow the tree until none of the
labeled (unscanned) vertices is relevant. All inner vertices are considered relevant. In addition,
an outer vertex v may also be consider relevant if it satisfies certain constraints. Let u be the
inner ancestor of v in the current tree that is closest to v. Let d(u,v) be the distance (in the tree)
between w and v. Vertex v will be considered relevant if d(u,v)+out-penalty(v) < e (note that
this is the expression used to compute the modified depth of u).

Note that this stopping criterion is not exact, and therefore may lead to false negatives: the
algorithm may find infinite upper bounds for some reaches that are less than e¢. For a more precise
computation, one should stop only after ensuring that every inner vertex u either has no labeled
descendent, or has at least one scanned descendent v such that d(u,v)+out-penalty(v) > e. The
heuristic stopping criterion makes the algorithm much faster, however, with little effect on the
quality of the upper bounds obtained.

Once again, we note that we actually use the algorithms to compute arc reaches instead of
vertex reaches. The procedure is essentially the same.

6.5 Approximate vs. Exact Reach Computation

As our preprocessing algorithm proceeds, the partial trees become large relative to the graph size,
which makes the computation slower. Therefore, when the graph is small enough, computing
exact reaches is more cost-effective. The computation produces accurate reaches even faster than
the partial-trees algorithm does.

Standard algorithm. The standard algorithm for computing exact reaches processes all n?
shortest paths by building shortest path trees from each vertex in the graph. The shortest path
tree rooted at a vertex r implicitly represents all shortest paths that start at . The reach of a
vertex v restricted to these paths is given by the minimum between its depth (the distance from
r) and its height (the distance to its farthest descendent) in this tree. The reach of v with respect
to all paths is the maximum reach v obtains in any of these shortest path trees.

Improved algorithm. We developed an algorithm that has the same worst-case performance
as the method above, but can be significantly faster in pratice on road networks. It follows the
same basic principle: build a shortest path tree from each vertex in the graph and compute reaches
within these trees. Our improvement consists of building parts of these trees implicitly by reusing
subtrees previously found.

13



The algorithm works as follows. First, partition the vertices of the graph into k& subsets, for
a given parameter k (usually around /n). The algorithm will work with any such partition, but
some are better than others, as we shall see. We call each subset a region of the graph. The
frontier of a region A, denoted by f(A), is the set of vertices v € A such that there exists at least
one arc (v, w) with w # A. The remainder of the region consists of inner vertices.

Given any set S C V, we say that a vertex v is stable with respect to S if it has the same
parent in all shortest path trees rooted at vertices in S; otherwise, we call it unstable. For any
region A, the following holds:

Lemma 1 Ifv € V' \ A is stable with respect to f(A), then v is stable with respect to A.

Proof. Let p.(v) denote the parent of v in 7T, (the shortest path tree rooted at r) and py(4)(v)
denote the common parent of v in all shortest path trees rooted at f(A). Suppose the lemma is
not true, i.e., that there exist a vertex r € A and a vertex v € V'\ A such that p.(v) # psa)(v).
Consider the path P from r to v in T,.. Because r € A and v € A, at least one vertex in P must
belong to f(A). Let s be the last such vertex, i.e., the one closest to r. The subpath of P from
s to r is itself a shortest path, and therefore it must appear in the shortest path tree rooted at s
(we assume all shortest paths are unique). But recall that v has p,(v) as its parent in this path,
and our initial assumption was that its parent on all trees rooted at f(A) was py4y(v) # pr(v).
We have reached a contradiction. [J

A vertex v € V is considered tainted with respect to f(A) if at least one of the following
conditions holds: (1) v is unstable with respect to f(A); (2) v has an unstable descendent in at
least one of the |f(A)| trees; or (3) v € A. If none of these conditions hold, v is untainted. An
untainted vertex v will be the root of the exact same subtree in every shortest path tree rooted
at f(A). The lemma above also ensures that it would be the root of the same subtree if we grew
shortest path trees from the inner vertices of A as well. We know that even without actually
growing the trees.

Our algorithm takes advantage of this. In its first stage, it grows full shortest path trees from
every vertex in f(A). For these trees, it computes the height and the depth of every vertex, as
usual. The second stage of the algorithm grows partial trees from every inner vertex of A (i.e.,
every vertex in A\ f(A)). These partial trees contain only tainted vertices; no untainted vertex is
ever visited. Even so, it is still possible to compute the reach of the tainted vertices as if we had
grown the entire tree. The depth can be computed as before. For the height, we need to consider
vertices that were not visited.

This is done as follows. Consider a maximal untainted subtree rooted at a vertex w. The
height of this tree can be easily precomputed. Because w is untainted, its parent p will be the
same (tainted) vertex in every shortest path tree rooted at A. Therefore, w imposes an implicit
penalty on p equal to w’s own height plus the length of the arc (p, w). The extended penalty of a
tainted vertex is defined as the maximum between its own out-penalty and the implicit penalties
associated with its untainted children. Note that the extended penalty needs to be computed
only once, after all trees rooted at the frontier are built. When trees are built from inner vertices,
the height of each vertex visited (which must be tainted) is computed as usual, using extended
penalties instead of out-penalties.

Our description so far allows us to correctly compute the reach of each tainted vertex. We
also need to determine the reach of the untainted vertices. Although the height of an untainted
vertex v is the same across all trees, the depth varies, and so does the reach. Fortunately, we

14



do not need to know the reach of v within each tree; it suffices to know the maximum reach.
Since the height is constant, the maximum is realized in the tree that maximizes the depth of
v. If, when growing full and partial shortest path trees, we remember the maximum depth of
each tainted vertex, we can later compute (in linear time) the maximum depth of the untainted
vertices. Since their heights are known, their reaches (with respect to the trees rooted at A) can
be easily determined.

Regions. The algorithm above is correct regardless of how the regions are chosen. In particular,
if each region has exactly one vertex, we have exactly the standard algorithm. Of course, there
are better choices of regions. There are two main goals to achieve: (1) the size of the frontier
should be small compared to the size of the entire region and (2) the number of tainted vertices
should be minimized. On road networks, these two goals are conflicting. In general, a larger
region will have a smaller fraction of its vertices in the frontier. However, they will also increase
the probability of an external vertex being tainted. A good compromise is to choose regions with
roughly \/n vertices.

To create a partition with at least k sets, we pick k vertices at random to be centers and
determine their Voronoi regions (we use k = 2[y/n]). Recall that the Voronoi region associated
with a center v is the set of vertices w that are closer to v than to any other center (ties are broken
arbitrarily). One can compute the Voronoi diagram of a graph with a multiple-source version of
Dijkstra’s algorithm. Unreachable vertices are assigned to regions by themselves.

Although the Voronoi diagram is a simple way of defining the regions, it is certainly not the
best conceivable partition. A topic for future research is to determine regions with relatively
smaller frontiers.

Using the algorithm. As already mentioned, having a faster exact algorithm allows us to
switch to the exact algorithm earlier when the graph is larger. Specifically, we switch when either
of two conditions is satisfied: (1) the number of remaining vertices is less than [5y/n/2]; or (2)
after a level in which average size of partial tree was greater than one eighth of the total number
of remaining vertices.

Of course, the exact algorithm finds reaches for all arcs that remain in the graph. It is not in
our interest to stop the algorithm at this point, however: we would like to add more shortcuts in
order to improve query performance. Therefore, we only take into account the bottom third of the
computed reaches. The corresponding arcs are eliminated from the graph; the other two-thirds
remain, and we ignore their reaches. The next iteration will then add shortcuts which would not
be added otherwise. These shortcuts reduce reaches of high-reach vertices and improve query
performance.

The new version of the exact algorithm is also used during the refinement step of the pre-
processing algorithm. After all reaches are computed, we build the graph induced by the [5/n]
vertices with highest reach and computing exact reaches on it. The remaining vertices are ac-
counted for as penalties. This significantly improves the reach bounds for these vertices, which
are the ones visited most often during the queries.

7 Experimental Results

We implemented our algorithms in C++ and compiled them with Microsoft Visual C++ 2005. All
tests were performed on a dual-core, 2.4 GHz AMD Opteron machine running Microsoft Windows

15



Server 2003 with 16 GB of RAM, 32 KB instruction and 32 KB data level 1 cache per processor,
and 2 MB of level 2 cache. Our code is single-threaded and runs on a single core.
The main goals of our experimental analysis are:

e Measure algorithm performance on the 9th DIMACS Challenge road networks.

e Determine how much various improvements contribute to performance gain.

e Study the preprocessing/query as well as time/space trade-offs.

e Determine if our heuristics work on some P2P problems other than road networks.

We ran ALT, RE and REAL-(7, j) algorithms, where the REAL-(7, j) algorithm uses ¢ landmarks
and maintains landmark data for n/j highest-reach vertices. We call parameter j the sparsity of
the landmarks. For instance, REAL-(64,16) maintains 64 landmarks, but with distances only to
the n/16 vertices with highest reach; REAL-(16,1) uses 16 landmarks, each with distances to all
vertices in the graph. On grid graphs, we also ran our own implementation of the bidirectional
version of Dijkstra’s algorithm, denoted by BD. For machine calibration purposes, we ran the
DIMACS Challenge implementation of the P2P version of Dijkstra’s algorithm, denoted by D, on
the largest road networks.

For Europe and USA graphs with time-based lengths, additional data from previous works is
available. We give the data for our previous implementations, RE-OLD and REAL-OLD from [16]
(run on the same machine). REAL-OLD uses 16 landmarks selected with the mazcover method. In
addition, we give the data for the highway hierarchy-based algorithm of Sanders and Schultes [34],
where a slightly slower 2.0 GHz AMD Opteron machine was used. (The running times should be
roughly comparable.) There are two versions their algorithm: HH-mem, entirely based on highway
hierarchies, and HH, which replaces high levels of the hierarchy by a table with distances between
all pairs of vertices in the corresponding graph.

For USA and Europe, we give data for both random and local queries. For the USA subgraphs,
we give only random query data, as local query performance is mostly independent of the graph
size.

We also tested grid graphs with 2 and 3 dimensions. These are square- and cube-shaped grids,
with each vertex connected by two directed arcs (one in each direction) to each neighbor. Lengths
are chosen uniformly at random.

We also tried grids of higher dimensions (including hypercubes) and random graphs, but
on those reach-based techniques offer no significant improvement compared to the bidirectional
version Dijkstra’s algorithm. Detailed results are therefore omitted. We give data on the 3-
dimensional grids (even though our algorithm is not substantially faster that bidirectional Dijk-
stra) as it is more likely that progress will be made for these graphs in the near future.

7.1 Road Networks

The USA (Tiger) [41] and Europe [28] graphs are those from the DIMACS Challenge [4] data
set. We worked with the largest strongly connected components of each graph. The USA is
symmetric and has 23947347 vertices and 58 333444 arcs; Europe is directed, with 18010173
vertices and 42560279 arcs. (These sizes refer to the largest strongly connected component.) To
test performance on smaller graphs, we used the subgraphs of USA described in Table 1. We used
both transit times and distances as length functions.

16



Table 1: USA Road Networks derived from the TIGER/Line collection.

NAME DESCRIPTION VERTICES ARCS LATITUDE (N) LONGITUDE (W)
USA — 23947347 58333344 — —
CTR  Central USA 14081816 34292496 [25.0; 50.0] [79.0;100.0]
W Western USA 6262104 15248146 [27.0; 50.0] [100.0; 130.0]
E  Eastern USA 3598623 8778114 [24.0; 50.0] [—00; 79.0]
LKS  Great Lakes 2758119 6885658 [41.0; 50.0] [74.0;93.0]
CAL  California and Nevada ~ 1890815 4657 742 [32.5;42.0] [114.0;125.0]
NE  Northeast USA 1524453 3897636 [39.5,43.0] [—00; 76.0]
NW  Northwest USA 1207945 2840208 [42.0;50.0] [116.0; 126.0]
FLA  Florida 1070376 2712798 [24.0;31.0] [79; 87.5]
COL  Colorado 435666 1057066 37.0;41.0] [102.0; 109.0]
BAY  Bay Area 321270 800172 37.0; 39.0] [121;123]
NY  New York City 264 346 733 846 [40.3;41.3] [73.5;74.5]

Random queries. Table 2 gives data for random queries on the two largest road graphs avail-
able, Europe and USA, each with both length functions.

Our algorithms were run on 1000 queries picked uniformly at random. We report the average
query time (in milliseconds), the average number of scanned vertices and, when available, the
maximum number of scanned vertices (over the queries in the set). Also shown are the total
preprocessing time (in minutes) and the total space in disk (in megabytes) required by the pre-
processed data. For D, this is only the graph itself; for ALT, this includes the graph and landmark
data; for RE, it includes the graph with shortcuts (which is larger) and an array of vertex reaches;
finally, the data for REAL includes the graph with shortcuts, the array of reaches, and landmark
data.

Note that for ALT, RE and REAL, query performance is worse for the distance-based metric,
but not drastically so. Preprocessing performance is similar, and depends both on the base graph
and on the length function. Comparing REAL-(16,1) to REAL-(64,16), we see they have almost
identical query performance with transit times, and that REAL-(64,16) is slightly better with travel
distances. Given that REAL-(64,16) requires about half as much disk space, it has the edge for
these queries. On graphs with the distance metric, REAL-(64,16) wins both in time and in space.
However, preprocessing for it takes roughly twice as long. RE is less robust than REAL.

We can compare the new methods to previous ones when travel times are used as the length
function. RE and REAL substantially improve on their old counterparts, especially in terms of
preprocessing time. RE has worse performance than HH-mem, but not by much. For queries,
REAL-(64,16) performs similarly to HH: REAL-(64,16) uses a little less space, while HH is slightly
faster. Preprocessing for HH, however, is significantly faster. With no data available, we cannot
comment on the performance of HH and HH-mem on graphs with travel distances.

Graph size dependence. Tables 3 and 4 show how the performance of our algorithms scales
with graph size. Although times tend to increase as the graph grows, they are not strictly
monotone: the graph structure and the way the reach computation switches to the exact variant
affect query performance. However, it is clear that reach-based algorithms have better asymptotic
performance than ALT. As the graph size increases by two orders of magnitude, so does the time
for ALT queries. Running times of RE and REAL change by a factor of six or less.

Regarding preprocessing, with a fixed number of landmarks ALT is roughly linear in the graph

17



Table 2: Data for random queries on Europe and USA graphs.

PREP. TIME | DISK SPACE QUERY
GRAPH METHOD (min) (MB) AVG SC. MAX SC. TIME (ms)
EUROPE ALT 134 1631 82348 993015 158.33
(times) RE 82.8 626 4563 8 866 3.48
REAL-(16,1) 96.2 1864 741 3518 1.17
REAL-(64,16) 143.9 935 683 2817 1.14

RE-OLD 1558 570 16122 34118 13.5

REAL-OLD 1625 1793 1867 8499 2.8

HH 15 1570 884 — 0.8

HH-mem 95 692 1976 — 1.4
D — 393 8984 289 — 4365.81
USA ALT 18.5 2608 187968 2183718 399.21
(times) RE 48.6 890 2264 4667 1.86
REAL-(16,1) 67.2 2962 581 2732 1.03
REAL-(64,16) 142.5 1408 543 2509 1.08
RE-OLD 366 830 3851 8722 4.50
REAL-OLD 459 2392 891 3667 1.84
HH 18 1686 1076 — 0.88
HH-mem 65 919 2217 — 1.60
D — 536 | 11808864 — 5440.49
EUROPE ALT 10.5 1656 240750 3306755 417.83
(distances) RE 50.3 664 7007 12940 5.81
REAL-(16,1) 60.8 1926 847 3996 1.47
REAL-(64,16) 98.0 979 575 2876 1.17
D — 393 | 8991955 — 2934.24
USA ALT 16.2 2463 276195 2910133 533.53
(distances) RE 73.8 928 6 866 13589 6.06
REAL-(16,1) 90.0 2854 872 5563 1.83
REAL-(64,16) 153.2 1410 633 3312 1.52
D — 536 | 11782104 — 4576.02

size. For 16 landmarks, ALT preprocessing is faster than RE, and the ratio of the two remains
roughly constant as the graph size increases. With 64 landmarks, the times for landmark selection
and reach computation are roughly the same: preprocessing takes about twice as long for REAL-
(64,16) than for RE.

Local queries. Up to this point, we have reported data only on random queries. A more
realistic assumption for road networks is that most queries will be more local. To define the
notion of local queries formally, we use the concept of Dijkstra rank. Suppose we run Dijkstra’s
algorithm from s, and let v be the k-th vertex it scans. Then the Dijkstra rank of v with respect
to s is |logy k|. To generate a local query with rank r, we pick s uniformly at random from V|
and pick ¢ uniformly at random from positions [27,2"F!) in the scanning order. Note that our
definition of Dijkstra rank differs slightly from the one proposed by Sanders and Schultes [33],
but it has a similar purpose.

For each of the large graphs (Europe and USA, with both length functions), we generated
1000 random queries for each Dijkstra rank between 28 and 22%. The results are reported in

18



Table 3: Data for USA graphs with travel times.

PREP. TIME | DISK SPACE QUERY
GRAPH METHOD (min) (MB) | AVG SC. MAX SC. TIME (ms)
NY Arr 0.1 26 2735 23739 2.16
RE 0.9 10 1075 2845 0.67
REAL-(16,1) 1.0 29 227 1171 0.25
REAL-(64,16) 1.4 15 426 1253 0.39
BAY ALt 0.2 31 3251 31953 2.28
RE 0.5 11 751 2037 0.41
REAL-(16,1) 0.6 35 184 877 0.22
REAL-(64,16) 1.1 17 274 1117 0.28
COL ALr 0.2 46 6533 70857 4.95
RE 0.5 16 738 2404 0.38
REAL-(16,1) 0.8 52 172 807 0.23
REAL-(64,16) 1.4 25 227 1162 0.22

FLA ALT 0.5 108 8195 126608 7.03
RE 1.9 37 766 1576 0.48
REAL-(16,1) 24 121 199 1037 0.28
REAL-(64,16) 4.1 58 226 920 0.28

NW arLr 0.6 127 13106 166870 13.00
RE 1.8 42 1051 3609 0.62
REAL-(16,1) 2.4 143 211 1095 0.30
REAL-(64,16) 4.7 67 223 1277 0.31

NE ALT 0.8 155 12161 148647 13.83
RE 3.7 56 1455 3561 0.98
REAL-(16,1) 4.5 175 300 1596 0.39
REAL-(64,16) 7.6 86 328 1267 0.44

CAL ALT 1.0 201 22418 227812 29.08
RE 4.4 68 1109 3558 0.77
REAL-(16,1) 5.4 226 302 1591 0.45
REAL-(64,16) 9.0 107 362 2120 0.41

LKS ALT 1.6 297 21616 218084 26.98
RE 6.5 101 1522 3893 1.12
REAL-(16,1) 8.1 335 328 1708 0.52
REAL-(64,16) 13.9 160 357 1540 0.55

E arLr 2.2 382 26712 516585 36.30
RE 8.6 126 1410 3434 1.05
REAL-(16,1) 10.7 427 321 1565 0.52
REAL-(64,16) 18.6 202 331 1532 0.56

W ALT 3.9 695 75494 888950 132.89
RE 13.4 226 1636 4154 1.14
REAL-(16,1) 17.2 781 409 2026 0.64
REAL-(64,16) 33.5 365 394 1710 0.69
CTR ALT 14.1 1640 | 119303 1335378 332.89
RE 40.1 522 2129 5003 2.20
REAL-(16,1) 54.2 1846 532 2931 1.33
REAL-(64,16) 107.6 853 447 2154 1.27

USA ALT 18.5 2608 | 187968 2183718 399.21
RE 48.6 890 2264 4667 1.86
REAL-(16,1) 67.2 2962 581 2732 1.03
REAL-(64,16) 142.5 1408 543 2509 1.08

19




Table 4: Data for USA graphs with travel distances.

PREP. TIME | DISK SPACE QUERY
GRAPH METHOD (min) (MB) | AVG SC. MAX SC. TIME (ms)
NY Arr 0.1 25 3083 35210 2.52
RE 1.1 11 1638 3492 1.00
REAL-(16,1) 1.2 29 225 1403 0.33
REAL-(64,16) 1.6 15 533 1714 0.50
BAY ALt 0.1 30 4875 80310 4.08
RE 0.5 12 952 2205 0.58
REAL-(16,1) 0.7 35 192 932 0.28
REAL-(64,16) 1.1 18 282 1149 0.31
COL ALr 0.2 43 5774 78677 4.88
RE 0.7 16 1066 3380 0.66
REAL-(16,1) 0.9 49 179 1186 0.23
REAL-(64,16) 1.5 24 259 1431 0.31

FLA ALT 0.5 103 12394 153621 12.38
RE 2.3 38 1073 2654 0.73
REAL-(16,1) 2.8 117 243 1196 0.38
REAL-(64,16) 4.4 58 279 1611 0.36

NW arLr 0.6 120 13994 131191 12.91
RE 21 43 1285 3966 0.89
REAL-(16,1) 2.6 136 216 1112 0.36
REAL-(64,16) 4.7 66 250 1531 0.34

NE ArT 0.8 147 15533 214572 18.27
RE 4.8 58 2823 6294 2.03
REAL-(16,1) 5.6 170 337 2214 0.59
REAL-(64,16) 8.4 86 407 1952 0.59

CAL ALT 1.0 189 27524 315506 36.11
RE 4.5 70 1767 5302 1.23
REAL-(16,1) 5.5 217 337 2060 0.52
REAL-(64,16) 8.8 107 396 1904 0.55

LKS Arr 1.5 281 41832 622476 60.44
RE 9.5 106 3861 9055 3.14
REAL-(16,1) 11.0 324 473 2774 0.81
REAL-(64,16) 16.3 160 458 2668 0.75

E arr 1.9 360 43539 674704 67.28
RE 10.1 132 3202 7117 2.64
REAL-(16,1) 12.1 412 397 2202 0.81
REAL-(64,16) 19.3 202 401 1985 0.70

W ALT 3.6 654 75682 669930 109.23
RE 14.4 234 2580 6316 1.94
REAL-(16,1) 18.0 747 453 3537 0.78
REAL-(64,16) 31.4 362 408 2163 0.77
CTR ALT 12.7 1567 | 154980 1859858 369.74
RE 62.9 547 6539 12619 6.86
REAL-(16,1) 75.5 1798 735 4270 2.22
REAL-(64,16) 120.1 859 519 2773 1.69

USA ALT 16.2 2463 | 276195 2910133 533.53
RE 73.8 928 6866 13589 6.06
REAL-(16,1) 90.0 2854 872 5563 1.83
REAL-(64,16) 153.2 1410 633 3312 1.52

20




1000 T T T T T T T
ALT —+—
RE -
REAL-(16,1) %
REAL-(64,16) &
100
m 10
E
(]
E
'_
P
3
o 1
01§
001 1 1 1 1 1 1 1
8 10 12 14 16 18 20 22 24
Dijkstra Rank
1000000 T T T T T T T
ALT —+—
RE -
REAL-(16,1) ---%---
REAL-(64,16) &
100000 |
& 10000 |
o
>
e}
@
c
c
3
& 1000 |
100 ¢
g
10 1 1 1 1 1 1 1
8 10 12 14 16 18 20 22 24

Dijkstra Rank

Figure 3: Local queries on Europe with travel times: running times (top) and scan counts (bot-
tom).

21



1000 T T T T T T T
ALT —+—
RE ---x---
REAL-(16,1) -~
REAL-(64,16) ~~&
100
w 1
:é’, 0
()
£
'_
ey
S
& 1
01~
001 1 1 1 1 1 1 1
8 10 12 14 16 18 20 22 24
Dijkstra Rank
1000000 T T T T T T T
ALT —+—
RE -~
REAL-(16,1) %
REAL-(64,16) &
100000 | .
8 10000 |
o
>
el
()
=
c
3
& 1000 |
100 |
10 1 1 1 1 1 1 1
8 10 12 14 16 18 20 22 24

Dijkstra Rank

Figure 4: Local queries: running times (top) and average number of vertices scanned (bottom)

for USA with travel times.

22



1000000 [

100000

Scanned Vertices

100

10

Figure 5: Local queries: average number of vertices scanned on Europe

1000000

100000 |

Scanned Vertices

100 |~

10

10000 |

1000 |

ALT ——

RE
REAL-(16,1) ---
REAL-(64,16) -

‘
‘
oxx

14

16
Dijkstra Rank

18

20

22 24

with travel distances.

10000 |

1000 |

REAL-(16,1) %
REAL-(64,16) &

Dijkstra Rank

/’X//<>/><;;--:
B
1 1 1 1 1 1 1
10 12 14 16 18 20 22 24

Figure 6: Local queries: average number of vertices scanned on USA with travel distances.

23



Figures 3 to 6.

Figures 3 and 4 present results for Europe and USA with travel times as the length function.
Comparing the two plots in each figure to one another, we observe that the curves representing
running times and operation counts are essentially shifted by a constant that is related to the
time per vertex scan of each method. Therefore, we discuss operations counts, unless mentioned
otherwise. In particular, for travel distances we report only operation counts (Figures 5 and 6).

As random queries tend to produce vertex pairs that are very far apart, our previous discussion
applies to local queries with high Dijkstra rank. In particular, in this context ALT is the slowest
of the four algorithms, and the REAL variants are the fastest (with very similar performance).

Now consider very local queries, with small Dijkstra rank. REAL-(16,1) scans the fewest
vertices, but due to higher overhead its running time is slightly worse than that of RE. REAL-
(64,16) mostly visits low-reach vertices and thus fails to take advantage of the landmark data. It
scans about the same number of vertices as RE, but is slower due to higher overhead. ALT has the
worst asymptotic performance as a function of the Dijkstra rank, but for small ranks it scans only
slightly more vertices than RE. As the rank grows, ALT becomes worse than the other codes, and
RE becomes worse than REAL-(16,1). REAL-(64,16) improves, and catches up with REAL-(16,1)
for large ranks.

In terms of query times and scan counts, REAL-(16,1) is the best code. REAL-(64,16) is
somewhat worse for very local queries, but performs similarly for higher Dijkstra ranks. Its
main advantage is its lower space requirement.

Table 5: Data for REAL on USA for various landmark/sparsity combinations.

PREP. | DISK QUERY
TIME | SPACE AVG  MAX TIME
METRIC ~ METHOD (min) | (MB) | SCANS SCANS  (ms)

times REAL-(16,1) 67.2 2962 081 2732 1.03
REAL-(16,2) 67.2 1926 991 2724 1.30
REAL-(16,4) 67.2 1408 598 2650  1.27
REAL-(16,8) 67.2 1148 610 2627 1.33
REAL-(16,16) 67.2 | 1019 647 2735  1.28
REAL-(64,4) | 1425 | 2962 | 495 3529  1.09
REAL-(64,8) | 1425 | 1926 | 505 2477  1.06
REAL-(64,16) | 142.5 1408 943 2509 1.01
REAL-(64,32) | 142.5 1148 612 2557 1.09
REAL-(64,64) | 142.5 1019 744 2736 1.14

distances REAL-(16,1) 90.0 2854 872 5563  1.84

(
(
(
(
(
(
(
(
(

REAL-(16,2) 90.0 1891 887 5565  2.41
REAL-(16,4) 90.0 1410 897 5564  2.44
REAL-(16,8) 90.0 1169 911 5604  2.34
REAL-(16,16) 90.0 1048 947 0495  2.36
REAL-(64,4) 153.2 2854 569 3551  1.53
REAL-(64,8) 153.2 1891 o983 3063  1.50
REAL-(64,16) | 153.2 1410 633 3312 1.52
REAL-(64,32) | 153.2 1169 780 3972 1.56
REAL-(64,64) | 153.2 1048 975 3858  1.72

24



Table 6: Data for REAL on Europe for various landmark/sparsity combinations.

PREP. | DISK QUERY
TIME | SPACE AVG ~ MAX TIME
METRIC ~ METHOD (min) | (MB) | SCANS SCANS (ms)

times REAL-(16,1) 96.2 1864 741 3518 1.17
REAL-(16,2) | 96.2 | 1245 | 763 3529  1.52
REAL-(16,4) 96.2 935 T 3524  1.52
REAL-(16,8) 96.2 781 790 3543 1.50
REAL-(16,16) 96.2 703 878 3562  1.53
REAL-(64,4) 143.9 1864 570 2855  1.12
REAL-(64,8) 143.9 1245 585 2815 1.11
REAL-(64,16) | 143.9 935 683 2817 1.12
REAL-(64,32) | 143.9 781 909 3104 1.22
REAL-(64,64) | 143.9 | 703 | 1591 5746  1.80

distances REAL-(16,1) 60.8 1926 847 3996  1.50

(
(
(
(
(
(
(
(
(

REAL-(16,2) 60.8 1295 860 4004  1.98
REAL-(16,4) 60.8 979 868 3993 1.98
REAL-(16,8) 60.8 822 883 4001 1.97
REAL-(16,16) 60.8 743 920 3912 1.95
REAL-(64,4) 98.0 1926 503 3843  1.11
REAL-(64,8) 98.0 1295 522 3755  1.08
REAL-(64,16) 98.0 979 575 2876 1.17
REAL-(64,32) 98.0 822 681 2856  1.20
REAL-(64,64) 98.0 743 1053 2868  1.52

Reach-aware landmarks. Next consider Tables 5 and 6. For 16 and 64 landmarks, we vary
the fraction of vertices for which landmark data is maintained. As the fraction decreases, we get
a substantial improvement in the memory overhead associated with landmarks. The number of
vertex scans increases only slightly except for the last steps ((16,8) to (16,16) and (64,32) to
(64,64)), where the increase is moderate. The running time remains nearly constant except for
the last step because as the fraction decreases, the proportion of cheaper vertex scans that do not
use landmarks increases.

One can win in all measures of query complexity. For example, compared to REAL-(16,1)
which is not landmark-aware, REAL-(64,16) uses less space and runs faster. Note that our current
preprocessing algorithm runs landmark generation on the full graph; for the landmark-aware case,
one could work with the graph induced by the high-reach vertices, improving performance.

7.2 Grid Graphs

Grid graphs with uniform random arc lengths are interesting because they do not have an obvious
highway hierarchy. We used square 2-dimensional and cube-shaped 3-dimensional grids in our
experiments. The 2-dimensional grids were generated using the spgrid generator, available at
the 9th DIMACS Challenge download page. The 3-dimensional grids were generated by our own
generator, kGrid. Both families are directed (not symmetric), with a vertex connected to its
neighbors in the grid with arcs of length chosen uniformly at random from the range [1,n], where
n is the number of vertices. We generated five grids of each size, and report the average results
obtained; the only exception is the maximum number of nodes scanned, which is taken over all

25



Table 7: Data for 2-dimensional grids.

PREP. TIME | DISK SPACE QUERY
GRAPH METHOD (min) (MB) | AVG SC. MAX SC. TIME (ms)
65536 D — 2.2 33752 — 14.83
BD — 2.2 21358 51819 16.69
ALT 0.05 11.7 840 10003 1.30
RE 1.76 3.4 2147 3706 1.53
REAL-(16,1) 1.81 12.8 219 1775 0.37
REAL-(64,16) 1.97 5.8 1947 3151 1.78
131044 D — 4.5 66865 — 30.72
BD — 4.5 41682 103770 40.48
ALT 0.10 241 1407 18232 3.36
RE 4.70 6.8 3032 5024 2.44
REAL-(16,1) 4.80 26.3 284 2050 0.65
REAL-(64,16) 5.14 11.7 2352 3516 2.56
262144 D — 9.0 | 134492 — 63.58
BD — 9.0 85587 205668 78.80
ALT 0.21 48.7 2666 34039 7.56
RE 14.38 13.3 4391 7022 4.00
REAL-(16,1) 14.58 53.0 384 2701 1.01
REAL-(64,16) 15.31 23.2 2283 3445 2.93
524176 D — 18.0 | 275589 — 112.80
BD — 18.0 174150 416925 160.14
ALT 0.38 97.9 5459 72601 13.68
RE 33.13 26.0 6288 10074 5.79
REAL-(16,1) 33.50 105.8 537 3521 1.32
REAL-(64,16) 34.84 45.9 1971 3213 2.71

five instances.

Table 7 shows computational results for 2-dimensional grid graphs, similar to those used in our
previous paper [16]. The table includes results for ALT, RE, two versions of REAL, D (the reference
implementation of Dijkstra’s algorithm) and BD (our own implementation of the bidirectional
version of Dijkstra’s algorithm). Note that BD scans fewer nodes than D, but has higher overhead
per scan, due to the fact that our implementation of BD is compatible with our more elaborate
algorithms, whereas D is more restricted.

Our new preprocessing algorithm (to computes reaches and shortcuts) is an order of magnitude
faster on these graphs. The algorithm is still much slower than for road graphs of similar size.
We did not, however, attempt to tune the algorithms for grid graphs, except by setting ¢ = 1.0
for all iterations of the reach generation algorithm (the use of increasing values of ¢, starting
at 0.5, is tuned for road networks). Query times improve as well, by about a factor of 6. This
makes RE competitive with ALT; in fact, RE appears to be asymptotically faster. Performance of
REAL-(16,1) improves as well.

Unlike what happens for random queries on road networks, on 2-dimensional grids REAL-
(64,16) performs substantially worse than REAL-(16,1). This is probably because the graphs are
relatively small and well-structured, thus making an increase in the number of landmarks not as
advantageous as for large road networks. The fact that the relative performance gap between the
two algorithms narrows as the graph size increases confirms this conjecture. For the smallest grid

26



in our test, REAL-(64,16) is almost five times slower than REAL-(16,1) and even slower than RE.
For the largest grid, however, it is faster than RE and only about twice as slow as REAL-(16,1).

The experiments on 2-dimensional grids show that reaches help even when a graph does not
have an obvious highway hierarchy, and that the applicability of REAL is not restricted to road
networks. On the largest grid, it is five times faster than ALT, and two orders of magnitude faster
than the bidirectional Dijkstra algorithm.

Table 8: Data for 3-dimensional grids.

PREP. TIME | DISK SPACE QUERY
GRAPH METHOD (min) (MB) | AVG SC. MAX SC. TIME (ms)
32768 D — 1.6 16747 — 6.90
BD — 1.6 5840 18588 4.10
ALT 0.02 4.5 483 5264 0.61
RE 4.76 2.6 3166 7433 2.83
REAL-(16,1) 4.78 5.5 350 2609 0.74
REAL-(64,16) 4.86 3.3 3819 8056 3.73
64000 D — 3.1 31759 — 13.54
BD — 3.1 11338 36732 8.63
ALT 0.04 10.1 723 8931 1.03
RE 12.70 5.0 5053 11860 5.07
REAL-(16,1) 12.74 12.0 473 3824 1.17
REAL-(64,16) 12.91 6.8 5926 12839 7.00
132651 D — 6.5 66045 — 32.98
BD — 6.5 23738 79600 23.64
ALT 0.09 24.0 1183 12104 2.01
RE 39.45 10.3 8463 18379 10.01
REAL-(16,1) 39.55 27.9 688 5605 2.05
REAL-(64,16) 39.96 14.7 9674 20103 13.58
262144 D — 12.8 | 133552 — 89.65
BD — 12.8 48699 161036 52.31
ALT 0.23 50.1 2286 29926 9.20
RE 116.35 19.9 13156 27434 19.29
REAL-(16,1) 116.57 57.3 1077 7926 5.12
REAL-(64,16) 117.47 29.3 14734 29136 24.56

Next we discuss 3-dimensional grid data, given in Table 8. Since these graphs have higher
degree, we used ¢ = 2.0 when generating shortcuts. The table shows that both reach and landmark
heuristics are less effective as on 2-dimensional grids. ALT queries are only modestly slower,
however, and ALT preprocessing time is not affected much. In contrast, RE preprocessing becomes
asymptotically slower—the time roughly triples when the graph size doubles. With this rate of
growth, it would take about two months to preprocess a grid with 16 000 000 vertices, comparable
in size to the Europe graph.

Next we consider RE and ALT queries. The average number of scans for RE is six to seven
times greater than that for ALT. The running time is about five times greater, except for the
biggest problem, where it is greater by only slightly over a factor of two. The average number of
scans suggest that REAL-(16,1) has a small asymptotic advantage over ALT and RE. It is slightly
slower than ALT on the smallest problem and a little faster on the largest one.

REAL-(64,16) is the slowest code and on average scans more vertices than RE. We note that

27



REAL and RE use different strategies for balancing the forward and the reverse search. REAL
strictly alternates between the two searches, while RE balances the radii of the two balls. This
explains the discrepancy.

These results show that 3-dimensional grids are on the edge of usefulness of current reach-based
methods. Preprocessing is useful only for large graphs, but on those it is expensive. Whether this
is a basic limitation of the method, or a limitation of our preprocessing algorithm, is an interesting
open question.

7.3 Exact Reaches and the Refinement Step

To illustrate the effectiveness of our new algorithm for computing exact reaches, we ran it on
BAY (with travel times), which has 321270 vertices. The standard algorithm for computing
exact reaches on this graph takes almost 20 hours; the new algorithm takes 2 hours and 18
minutes. The speedup is even bigger for larger graphs. Unfortunately, the algorithm is still far
from being practical. The partial trees algorithm takes only 30 seconds and, because it changes
the input graph (by adding shorcuts), it actually finds better reaches. As we have seen, with the
normal preprocessing algorithm RE scans 751 vertices and takes 0.41ms on average. With exact
reaches (but no shortcuts), these figures increase to 6,345 and 2.92 ms, respectively.

Of course, one can always use the partial-trees algorithm to generate shortcuts and then
compute exact reaches in the resulting graph. Even though the graph with shortcuts has about
50% more arcs than the original one, computing exact reaches on it took 2 hours and 19 minutes,
about the same as before. But RE queries became significantly better: the number of scanns is
reduced to 473, and the average time to 0.25 ms. This confirms the importance of shortcuts.

Even though computing exact reaches does improve queries, the preprocessing time is pro-
hibitive. A more practical use of the exact reach algorithms is as an addition to the partial trees
heuristic. As already mentioned, it is used in the refinement step of our algorithm. We perform
exact reach computation on the subgraph induced by the § vertices with highest reach. All the
experiments we have presented so far use 6 = [5y/n], which provides a good balance between
reach quality and preprocessing time.

As already mentioned, when there is a refinement step, the algorithm switches to exact reach
computation during its first phase as soon as it starts an iteration where the number of vertices
left is at most §/2. Once the exact arc reaches are computed, the algorithm eliminates the 1/3
that have small reach and adds shortcuts to the graph. This process is repeated until there are
no arcs left. As a result, significantly more shortcuts are added at the final iterations; the effect
is to reduce the reaches of high-reach vertices, at the expense of making the subgraph induced by
them denser.

Table 9 shows how the choice of § affects the performance of the RE algorithm on the USA
graph with travel times, in terms of both preprocessing and queries. Besides the original value of §
(24 469), we also tested 97 873 (which is equal to [204/n]) and zero (i.e., no refinement step). For
each value, the table shows the preprocessing time and the query performance on 1000 random
pairs.

As one would expect, one can trade longer preprocessing for better query times. With 6 =
24469, the algorithm scans 10% fewer vertices on average than it would without the refinement
step. The running time, however, does not decrease accordingly because high-reach vertices have
higher degree. A more significant increase in §, however, can substantially decrease the running
time.

The results of this section show that there is still room for improvement in our algorithm. At

28



Table 9: Performance of RE on the USA with travel times when the size of the refinement step
varies.

0 | PREP. TIME QUERY
(min) | AVG SC. MAX SC. TIME (ms)
0 32.4 2555 5242 1.88
24469 48.6 2264 4667 1.86
97873 177.3 1803 4228 1.53

the very least, it could be better tuned. Ideally, however, one would like to have a more stable
algorithm for generating and computing reaches once the graph is small enough (and only vertices
of very high reach remain).

7.4 Retrieving the Shortest Path

The query times reported so far for RE and REAL consider only the task of finding the shortest
path on the graph with shortcuts. Although this path has the same length as the corresponding
path in the original graph, it has much fewer arcs. On USA, for example, the shortest path
between a random pair of vertices has around 5000 vertices in the original graph, but only about
30 in the graph with shortcuts.

Our algorithm can retrieve the original path from the path with shortcuts in time proportional
to the size of the original path. For this, it uses an arc map, which maps each arc to the two arcs
it replaces. The arc map is built during the preprocessing step and has roughly the same size as
the graph with shortcuts, but it is not included in the “disk space” column in previous tables,
since not all applications require it.

Since paths in the original graph have many more arcs than the paths found by RE or REAL,
retrieving the original path can be relatively costly. To measure this, we reran the RE algorithm.
After each query, we dumped the list of arc identifiers to an array, and at the same time computed
the sum of the costs of these arcs. Even though we already know what the sum will be, this
procedure is a good approximation of what an actual application might do.

Table 10 shows the running time of the standard RE algorithm on all road networks we studied,
together with the time that would be necessary to retrieve the original paths. Note that retrieving
the original path would increase the query times of RE by up to 50%. With REAL, the absolute
time to retrieve the path would be the same; since REAL is faster than RE, path retrieval would
represent an even higher fraction of the total time. In particular, if one finds and retrieves a
shortest path on the USA graph with the distance metric using REAL-(64,16), 45% of the time
will be spent retrieving the original path, almost as much as actually finding it.

8 Concluding Remarks

For computing driving directions, our algorithms are extremely practical for large road networks,
both for servers and, because they scan so few vertices, even portable devices. Our improvements
made the algorithms faster and reduced memory requirements. The algorithms also work well on
2-dimensional grids.

An interesting direction of future research is to make the algorithm effective on a wider range of
graphs. We have shown that it has only limited applicability to 3-dimensional grids, for instance.

29



Table 10: Running times of RE algorithm on random pairs: SEARCH ONLY is the time to find
the path on the graph with shortcuts (in milliseconds); PATH RETRIEVAL is the additional time
necessary to retrieve the original path, given both in milliseconds and as a fraction of the search
time. Note that the search time does mot include the path retrieval time. The top half of the
table uses the travel time metric; the bottom half uses travel distances.

GRAPH | SEARCH ONLY PATH RETRIEVAL
(ms) | TIME (ms) OVERHEAD (%)
NY 0.672 0.031 4.6
BAY 0.407 0.061 15.0
COL 0.375 0.172 45.9
FLA 0.484 0.094 194
NW 0.625 0.156 25.0
NE 0.985 0.155 15.7
CAL 0.765 0.345 45.1
LKS 1.125 0.188 16.7
E 1.047 0.375 35.8
W 1.140 0.595 52.2
CTR 2.203 0.687 31.2
USA 1.860 0.796 42.8
Europe 3.485 0.421 12.1
NY 1.000 0.172 17.2
BAY 0.578 0.031 5.4
COL 0.656 0.172 26.2
FLA 0.734 0.219 29.8
NW 0.891 0.203 22.8
NE 2.031 0.406 20.0
CAL 1.234 0.235 19.0
LKS 3.141 0.749 23.8
E 2.641 0.625 23.7
W 1.938 0.453 234
CTR 6.859 1.047 15.3
USA 6.063 1.250 20.6
Furope 5.812 1.048 18.0

30



Many open problems remain. The performance of our best query algorithms depend crucially
on the quality of the reaches available. Devising faster algorithms to compute exact reaches (or
at least better reaches) might make our queries even faster. More importantly, the problem of
finding good shortcuts deserves a more detailed study. Our current algorithm uses a series of
heuristics to determine when to add shortcuts, but there is no reason to believe they are the
best that can be done. It is also desirable to get theoretical justification for the good practical
performance of our algorithms.

Finally, it would be interesting to find other applications for the concepts and techniques we
developed. For example, reach information may also be useful for highway design: high-reach
local roads are natural candidates for becoming highways with increased speed limits.

References

[1] B. V. Cherkassky, A. V. Goldberg, and T. Radzik. Shortest Paths Algorithms: Theory and Experi-
mental Evaluation. Math. Prog., 73:129-174, 1996.

[2] L. J. Cowen and C. G. Wagner. Compact Roundtrip Routing in Directed Networks. In Proc. Symp.
on Principles of Distributed Computation, pages 51-59, 2000.

[3] G. B. Dantzig. Linear Programming and Extensions. Princeton Univ. Press, Princeton, NJ, 1962.

[4] C.Demetrescu, A. V. Goldberg, and D. S. Johnson. 9th DIMACS Implementation Challenge: Shortest
Paths. http://www.dis.uniromal.it/~challenge9/, 2006.

[5] E. V. Denardo and B. L. Fox. Shortest-Route Methods: 1. Reaching, Pruning, and Buckets. Oper.
Res., 27:161-186, 1979.

[6] E. W. Dijkstra. A Note on Two Problems in Connexion with Graphs. Numer. Math., 1:269-271, 1959.
[7] J. Doran. An Approach to Automatic Problem-Solving. Machine Intelligence, 1:105-127, 1967.

[8] D. Dreyfus. An Appraisal of Some Shortest Path Algorithms. Technical Report RM-5433, Rand
Corporation, Santa Monica, CA, 1967.

[9] J. Fakcharoenphol and S. Rao. Planar graphs, negative weight edges, shortest paths, and near linear
time. In Proc. 42nd IEEE Annual Symposium on Foundations of Computer Science, pages 232-241,
2001.

[10] M. L. Fredman and R. E. Tarjan. Fibonacci Heaps and Their Uses in Improved Network Optimization
Algorithms. J. Assoc. Comput. Mach., 34:596-615, 1987.

[11] G. Gallo and S. Pallottino. Shortest Paths Algorithms. Annals of Oper. Res., 13:3-79, 1988.

[12] A. V. Goldberg. A Simple Shortest Path Algorithm with Linear Average Time. In Proc. 9th ESA,
Lecture Notes in Computer Science LNCS 2161, pages 230-241. Springer-Verlag, 2001.

[13] A. V. Goldberg. Shortest Path Algorithms: Engineering Aspects. In Proc. ESAAC 01, Lecture Notes
in Computer Science. Springer-Verlag, 2001.

[14] A. V. Goldberg and C. Harrelson. Computing the Shortest Path: A* Search Meets Graph Theory. In
Proc. 16th ACM-SIAM Symposium on Discrete Algorithms, pages 156-165, 2005.

[15] A. V. Goldberg, H. Kaplan, and R. F. Werneck. Reach for A*: Efficient Point-to-Point Shortest Path
Algorithms. Technical Report MSR-TR-2005-132, Microsoft Research, 2005.

[16] A. V. Goldberg, H. Kaplan, and R. F. Werneck. Reach for A*: Efficient Point-to-Point Shortest Path
Algorithms. In Proc. 7th International Workshop on Algorithm Engineering and Experiments. STAM,
2006.

[17] A. V. Goldberg and C. Silverstein. Implementations of Dijkstra’s Algorithm Based on Multi-Level
Buckets. In P. M. Pardalos, D. W. Hearn, and W. W. Hages, editors, Lecture Notes in Economics
and Mathematical Systems 450 (Refereed Proceedings), pages 292-327. Springer Verlag, 1997.

31



[18]

[19]

A. V. Goldberg and R. F. Werneck. Computing Point-to-Point Shortest Paths from External Memory.
In Proc. 7th International Workshop on Algorithm Engineering and Ezxperiments, pages 26—40. STAM,
2005.

R. Gutman. Reach-based Routing: A New Approach to Shortest Path Algorithms Optimized for Road
Networks. In Proc. 6th International Workshop on Algorithm Engineering and Ezxperiments, pages
100-111, 2004.

P. E. Hart, N. J. Nilsson, and B. Raphael. A Formal Basis for the Heuristic Determination of Minimum
Cost Paths. IEEE Transactions on System Science and Cybernetics, SSC-4(2), 1968.

T. Tkeda, Min-Yao Hsu, H. Imai, S. Nishimura, H. Shimoura, T. Hashimoto, K. Tenmoku, and K. Mi-
toh. A Fast Algorithm for Finding Better Routes by AI Search Techniques. In Proc. Vehicle Navigation
and Information Systems Conference. IEEE, 1994.

R. Jacob, M.V. Marathe, and K. Nagel. A Computational Study of Routing Algorithms for Realistic
Transportation Networks. Oper. Res., 10:476-499, 1962.

P. Klein. Preprocessing an Undirected Planar Network to Enable Fast Approximate Distance Queries.
In Proc. 13th ACM-SIAM Symposium on Discrete Algorithms, pages 820-827, 2002.

Ekkehard Koéhler, Rolf H. Méhring, and Heiko Schilling. Acceleration of shortest path and constrained
shortest path computation. In WEA, pages 126138, 2005.

Jr. L. R. Ford. Network Flow Theory. Technical Report P-932, The Rand Corporation, 1956.
Jr. L. R. Ford and D. R. Fulkerson. Flows in Networks. Princeton Univ. Press, Princeton, NJ, 1962.

U. Lauther. An Extremely Fast, Exact Algorithm for Finding Shortest Paths in Static Networks

with Geographical Background. In IfGIprints 22, Institut fuer Geoinformatik, Universitaet Muenster
(ISBN 3-9366106-22-1), pages 219-230, 2004.

PTV Traffic Mobility Logistic. Western europe road network. http://www.ptv.de/, 2006.

U. Meyer. Single-Source Shortest Paths on Arbitrary Directed Graphs in Linear Average Time. In
Proc. 12th ACM-SIAM Symposium on Discrete Algorithms, pages 797-806, 2001.

Rolf H. Mohring, Heiko Schilling, Birk Schiitz, Dorothea Wagner, and Thomas Willhalm. Partitioning
graphs to speed up dijkstra’s algorithm. In WEA, pages 189-202, 2005.

T. A. J. Nicholson. Finding the Shortest Route Between Two Points in a Network. Computer J.,
9:275-280, 1966.

I. Pohl. Bi-directional Search. In Machine Intelligence, volume 6, pages 124-140. Edinburgh Univ.
Press, Edinburgh, 1971.

P. Sanders and D. Schultes. Fast and Exact Shortest Path Queries Using Highway Hierarchies. In
Proc. 13th Annual Furopean Symposium Algorithms, 2005.

P. Sanders and D. Schultes. Engineering Highway Hierarchies. In Proc. 14th Annual Furopean Sym-
posium Algorithms, 2006.

D. Schultes. Fast and Exact Shortest Path Queries Using Highway Hierarchies. Master’s thesis,
Department of Computer Science, Universitt des Saarlandes, Germany, 2005.

F. Schulz, D. Wagner, and K. Weihe. Using Multi-Level Graphs for Timetable Information. In Proc.
4th International Workshop on Algorithm Engineering and Experiments, pages 43-59. LNCS, Springer,
2002.

R. Sedgewick and J.S. Vitter. Shortest Paths in Euclidean Graphs. Algorithmica, 1:31-48, 1986.

R. E. Tarjan. Data Structures and Network Algorithms. Society for Industrial and Applied Mathe-
matics, Philadelphia, PA, 1983.

M. Thorup. Undirected Single-Source Shortest Paths with Positive Integer Weights in Linear Time.
J. Assoc. Comput. Mach., 46:362-394, 1999.

32



[40] M. Thorup. Compact Oracles for Reachability and Approximate Distances in Planar Digraphs. In
Proc. 42nd IEEE Annual Symposium on Foundations of Computer Science, pages 242-251, 2001.

[41] DC US Census Bureau, Washington. UA  Census 2000 TIGER/Line files.
http://www.census.gov/geo/www/tiger/tigerua/ua.tgr2k.html, 2002.

[42] D. Wagner and T. Willhalm. Geometric Speed-Up Techniques for Finding Shortest Paths in Large
Sparse Graphs. In European Symposium on Algorithms, 2003.

[43] F. B. Zhan and C. E. Noon. Shortest Path Algorithms: An Evaluation using Real Road Networks.
Transp. Sci., 32:65-73, 1998.

[44] F. B. Zhan and C. E. Noon. A Comparison Between Label-Setting and Label-Correcting Algorithms
for Computing One-to-One Shortest Paths. Journal of Geographic Information and Decision Analysis,
4, 2000.

33



