A Software Architecture for Progressive Scanning of On-line Communities

Roberto Baldoni, Fabrizio d'Amore, Massimo Mecella, <u>Daniele Ucci</u> Sapienza Università di Roma, Italy

Motivations

On-line communities

- a fundamental source of information in business and information security intelligence
- contain information that can be used for inferring trends and evolution about specific topics
- A social community, and what it publishes, often influences other communities, and vice-versa ...
- ... thus creating a network of causal relationships that can contain useful information about the evolution of a specific phenomenon

Model

- Set of social communities $C = \{C_1 \dots C_n\}$
- each community C_i performs several updates $U_{i,j}$ with $j = 1 \dots m_i$ of the published information
- each published information can, in turn, influence updates of some other communities

Semantic Causal Relationships

Definition

It exists a *semantic causal relationship* between two updates $U_{x,y}$ and $U_{w,z}$ (with $x,w=1 \dots n_i$ and $y,z=1 \dots m_i$) **iff**:

- $U_{x,y}$ and $U_{w,z}$ are semantically-related
- $U_{x,y}$ and $U_{w,z}$ are causally-related

- semantic causal relationship
- community update

Objectives of this work

To propose an architecture to build a directed graph of semantic causal relationships

Formally, the built graph G_s is defined as:

$$G_s: (V,E), E \subseteq \{ (u,v) \mid u,v \in V$$

u,v are *causally* and *semantically* related \}

V is the set of updates of social communitiesE is the set of semantic causal relationships between updates

Architecture Overview

Employed Technologies

- MapR
- Apache Solr
- Apache Nutch
- Apache Mahout

Why MapR ? (1/2)

- a production-ready distribution for Apache Hadoop developed by MapR Technolologies
- easy to use
- dependable
- especially fast
- Hadoop-API compatible

Why MapR ? (2/2)

Furthermore:

- includes a MapReduce module for parallel processing of large data sets
- supports the Hadoop distributed file system abstraction interface
- maintains compatibility with the Hadoop ecosystem and with the other Hadoop-related projects

Apache Solr (1/2)

- an open source enterprise distributed search platform
- highly reliable, scalable and fault tolerant
- able to support distributed indexing and distributed searching capabilities

All these capabilities are handled by a Solr sub-layer, called SolrCloud

Apache Solr (2/2)

The services offered by SolrCloud relies on *replication* and *sharding* techniques:

- sharding allows to split an index into multiple pieces, called shards
- replication ensures data redundancy and each index update can be issued to any shard

Apache Nutch & Apache Mahout

Apache Nutch is a highly extensible, robust and scalable open source crawler supporting the MapReduce paradigm. It observes politeness and implements a robot-exclusion protocol

Apache Mahout is a software library useful to produce free implementations of scalable machine learning and data mining algorithms

Technologies in the Architecture

Using Apache Mahout (1/2)

Once the updates of social communities have been successfully crawled:

- their content is both indexed in Solr and stored in the MapR-FS
- LSA (Latent Semantic Analysis) is performed to establish semantic relationships between updates
- In Mahout, LSA is implemented through SSVD (Stochastic Single Value Decomposition) dimensionality reduction technique

Using Apache Mahout (2/2)

Hence, the architecture:

- exploits the Mahout framework to extract semantic relationships between updates using SSVD dimensionality reduction technique
- apply k-Means clustering to the extracted semantic relations
- post-process clustering results

Semantic Causal Relationship Graph Construction

After the clustering phase, the semantic graph is built through the following steps:

- within each cluster, the eventual duplicates of each social community's update are detected and deleted, maintaining only the oldest update's copy
- if after this preliminary phase, in a cluster, exist two or more updates referring to the same URL, the nodes representing such updates are included in the graph. These nodes are connected reflecting the causal relationship between them
- in an analogous way, similar pages belonging to the same cluster but to different domains are detected and added to the semantic graph

Detection of Similar and Duplicated Documents

Similar and duplicated documents detection is performed by using some similarity measure in information retrieval

Idea: to use the cosine similarity

Given two vectors and, respectively representing two documents and, the cosine similarity between these latter two is defined as:

similarity =
$$\cos \vartheta = \frac{\overrightarrow{d_1} \cdot \overrightarrow{d_2}}{|d_1| |d_2|}$$

Cosine similarity is not enough!

INNOVATION INSIGHTS

community content

featured b

blog

FOLLOW INNOVATION INSIGHTS

Should Your Startup's CEO Have Technical Chops?

BY TIM TUTTLE, EXPECT LABS 04.21.14 11:03 AM

MOST RECENT WIRED POSTS

Your Guide to Good IRL Behavior, From Vaping to Dressing Like a Techie

This Startup Says It Can Make Any Car Autonomous for \$10,000

The Cold War Relics Three Photographers Are Documenting Before They Disappear

Amazon's Fire Phone May Be Too Magical for Its Own Good

Cosine similarity is not enough!

INNOVATION INSIGHTS

community content

FOLLOW INNOVATION (C) (1) **INSIGHTS**

Revving Up IT Performance by Recycling

BY DEREK BRITTON, MICRO FOCUS 04.21.14 11:03 AM

MOST RECENT WIRED POSTS

A Sleek New Hearing Aid That Solves a Nagging Problem

Volcano World Cup: Group G

Does the Introductory Physics Course Cover Too Much?

"Individual Actions Are Doomed to Failure": Coalition Asks for Global Action on Antibiotics

Case Study (1/2)

Three technology news and information websites:

- Ars Technica
- Engadget
- Wired

These three communities have been crawled continuously for a period of about two weeks

Case Study (2/2)

The crawling is performed by a five-node MapR cluster, composed of:

- 3 Nutch crawlers
- 2 Solr shards (no replication)

The majority of the nodes runs Zookeeper coordination services. The Mahout machine learning jobs are executed on three nodes

Semantic Causal Relationship Graph Sample

Conclusions

- on-line social communities are a fundamental source of information in business and information security intelligence
- an architecture to extract semantic causal relationships between updates of social communities has been presented
- most of the architecture relies on open source frameworks
- detection of similar and duplicated documents needs a preprocessing phase
- additional tools can use the semantic causal relationship graph, as input, for further investigations

Questions?

