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ABSTRACT

In this paper we study the issue of service composition, for services that export a
representation of their behavior in the form of a finite deterministic transition system.
In particular, given a specification of the target service requested by the client as a finite
deterministic transition system, the problem we face is how we can exploit the computa-
tions of the available services for realizing the computations of the target service. While
ways to tackle such a problem are known, in this paper we present a new technique
that is based on the notion of simulation, which is still optimal from the computational
complexity point. Notably, such a technique, opens up the possibility of devising com-
position in a “just-in-time” fashion. Indeed, we show that, by exploiting simulation, it

is actually possible to implicitly compute all possible compositions at once, and delay
the choice of the actual composition to run-time.

1. Introduction

Service Oriented Computing (SOC) is the computing paradigm that utilizes ser-

vices as fundamental elements for realizing distributed applications/solutions. Ser-

vices are self-describing, platform-agnostic computational elements that are advo-

cated to support rapid, low-cost and easy composition of loosely coupled distributed

applications [2, 31, 20]. From a practical point of view services are modular appli-

cations that can be described, published, located and invoked over a network: any

piece of code and any application component deployed on a system can be wrapped

and transformed into a network-available service. Interestingly description of ser-

vices are quite high level: typically services, or better the computations provided

by the services, are described in term of finite state transition systems of some sort

[17].

The availability of high level descriptions of the computations provided by a

services opens the possibility of composing services in an automatic way to realize
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target computations. Automatic service composition has been investigated in sev-

eral contexts: services seen as atomic actions, e.g., [1], by relying on the research

on Planning in AI [12]; service seen as information providers, e.g., [21], by relying

on the work in data integration [29, 14, 18]; and services seen as complex processes

that can engage in a variety of conversations, e.g., [24, 19, 7, 5], by relying, at least

implicitly, on the literature on process synthesis [25, 30, 28].

In this paper we look at the latter context. In particular we look to one of

the most intriguing proposals of service composition known as the Roman Model

[4, 5]. In such a proposal available services are characterized by their conversational

behavior, compactly represented in terms of finite deterministic transition systems.

The target of the composition is to realize a new service, specified by the client again

in terms of a finite deterministic transition system, by making use of fragments of

the computation provided by the available services.

In other words, the Roman Model envisions a kind of “service integration sys-

tem”. In particular the system makes available to client virtual building blocks.

Making use of such virtual blocks the client can write its own service as a sort of

high-level program, abstractly represented as finite deterministic transition system.

In fact the virtual blocks are not implemented directly, but made available through

the service composition. Indeed the actual services that are available to the system

are themselves formally described in terms of high level programs that are built out

of such virtual blocks. Such a description can be considered as a sort of mapping

from the concrete service to the virtual blocks of the integration system. The idea

is to exploit the reverse of such mapping to automatically get a realization of the

virtual blocks. Obviously a service places constraints on how the virtual blocks can

be used, so that the service can actually realize them. The composition must be

compatible with such constraints in order to actually exist.

The main composition synthesis technique developed on the Roman Model is

based on a reduction to satisfiability of a Propositional Dynamic Logic [15] formula.

Such a reduction is polynomial and this gives an EXPTIME-upper-bound on the

problem [4, 5]. EXPTIME-hardness of the problem was recently shown by Muscholl

and Walukiewicz [23].

In this paper we look again at such form of composition, but from a very differ-

ent perspective, building on the following observation: a composition exists if and

only if a simulation relation [22] exists from the target to the (nondeterministic)

transition system formed by the asynchronous product of the transition systems of

the available services. This observation was made several times by the authors of

the paper in workshop and tutorials [9, 6, 8], and it was also informally discussed

in Daniela Berardi’s PhD thesis [3], however it was not fully worked out in a pub-

lication yet. The connection with simulation was also independently made in [13],

and although simulation is not explicitly mentioned, such connection is also related

to the form treatment of to the extensions of the Roman model proposed in [11].

Once this observation is acquired we can develop a new technique for synthe-

sizing composition that is based on computing the maximal simulation, and verify

that the initial states of the target transition system and the asynchronous product
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of the available transition system are in the simulation. Such a computation is

polynomial in the size of the target transition system and polynomial in the size of

the asynchronous product of the available transition systems. As a result, the new

technique is again in EXPTIME in the size of the available transition systems.

Beside these basic results, we show that synthesizing composition using sim-

ulation has a very interesting property: the maximal simulation contains enough

information to allow for extracting every possible composition, through a suitable

choice function. This property opens the possibility of devising composition in a

“just-in-time” fashion: we compute the maximal simulation a priori, then equipped

with such a simulation we start executing the composition, choosing the next step

in the composition according to criteria that can depend from information that is

available only at run-time (actual availability of services, network communication

problems or cost, etc.). Indeed it suffices that the next step chosen for execution

leads to service states that remain within the simulation relation. All in all, we

believe that the synthesis technique that we propose here provides the formal basis

for building compositions that are reactive, i.e., that are able to react to events that

may occur at run-time.

The rest of the paper is organized as follows. First, in Section 2 and 3 we recall

the notions of services and composition originally presented in [4, 5]. In Section 4

we show how simulation can be used to check for the existence of composition

in an optimal way from the computational complexity point of view. Then, in

Section 5, we investigate the possibility of using simulation for actually synthesizing

compositions, and we show how it can be used as a sort of precomputation that

allows for generating composition in a “just-in-time” fashion at run-time. Section 6,

concludes the paper with some brief final remarks on the significance of the results

both in the context of service compositions and in the context of simulation. In

particular, wrt simulation, the results presented here close a long standing open

problem.

2. Services as Transition Systems

In this section, we present the basic framework of our approach, starting from

the description of services as finite transition systems (TSs). Besides this, further

notions, which indeed characterize our approach, are introduced in order to formal-

ize the intuitions exploited in the synthesis technique. The following paragraphs

are aimed at providing, for each notion, a detailed description of such formalization

along with the ideas behind it.

Services Intuitively, a service is a software artifact characterized by its behavior,

that is, the potential evolutions resulting from the interaction with some external

system such as, for instance, a client service. Basically, a service is a program

intended to interact with a client. Being a service, interactions are expected to be

conformant with its behavior, that is, each state defines both the allowed actions and

the consequent transitions. More precisely, at each step, (i) the program presents

the client a choice of available actions, according to its current state, (ii) the client
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instructs the program to execute one of them, (iii) the program executes it, moves

to successor state and goes back to (i). Client-service interactions can be stopped

whenever the service is in a “final” state.

Since our technique aims at combining services in order to produce a desired

behavior, a formal description of a service behavior is needed. In this paper, a

service (behavior) is represented by a finite deterministic transition system TS =

〈A, S, s0, δ, F 〉, where:

• A is the finite alphabet of actions

• S is the finite set of states

• s0 is the initial state

• δ is the transition function (where δ(s, a) = s′ is represented by: s →a s′)

• F is the set of final states.

Roughly speaking, a service is modeled as a state machine able to execute, according

to the state it is in, actions taken from a shared alphabet A.

Available services These are the services that correspond to existing programs,

and are the only services directly available to the client. We remark that available

services cannot be modified: they are defined once for all and evolve according to

their behavior. The only way their evolution can be driven is by executing proper

legal sequences of actions. In general, we deal with many (e.g., a community, see

below) available services Si (i = 1, . . . , n), each of them, of course, modeled by a

transition system TSi = 〈Ai, Si, s
0
i , δ, Fi〉.

Community A finite set of available services C = {S1, . . . ,Sn} forms a commu-

nity. The available services of a community share the same set of actions A –which

is, possibly, the result of joining the action alphabets of all available services. Note

that available services might be not able to perform all actions in A.

For convenience, we associate also to a community a TS, which formalizes the

global behavior resulting from combining in all possible ways the behaviors of the

available services in the community. Formally, the community transition system

TSC of a community C is the asynchronous product of its available services. More in

details, let TS1, . . . , TSn be the TSs associated to the available services of C, where

TSi = 〈A, Si, s
0
i , δi, Fi) (i = 1, . . . , n〉, the community transition system TSC =

〈A, SC , s0
C
, δC , FC〉 is defined as follows:

• SC = S1 × . . . × Sn

• s0
C

= 〈s0
1, . . . , s

0
n〉

• FC = F1 × . . . × Fn

• δC ⊆ SC × A × SC , where (s1 × . . . × sn) →a (s′1 × . . . × s′n) iff:
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Figure 1: Example 1: Available services for a multi-lingual community

– ∃i s.t. si →a s′i

– ∀j 6= i s′j = sj

In general, despite the determinism of available services, TSC may be non determin-

istic. Moreover, note that TSC can execute a transition if and only if there exists

one service among TS1, . . . , TSn that can do it and, hence, moves to next state

according to the transition performed by such service.

Target service Our goal is to synthesize, starting from a given community, a

new service that realizes a desired behavior. Such a service is called target service

and, again, is represented by a transition system TSt = 〈At, St, s
0
t , δt, Ft〉.

Notably, the target service is not one of the available services of the community,

in general. Hence, the target service has to be realized by exploiting fragments

of the behaviors (computations) of the available services, since these are the only

services that correspond to existing programs in the system.

The following Example makes actual the notions just introduced.

Example 1 [A multi-lingual community] Consider the services community de-

picted in Fig. 1, where available services provide several translation functionalities.

In details, available services 1(a) and 1(b) provide, respectively, French-to-Italian

and German-to-Italian translation services. For instance, think of them as web ser-

vices providing a page where the user first can fill a form with some text and then

can ask for its Italian translation. According to their TSs, translations can be asked

for only after the form is filled out.

Similarly, the available service 1(c) provides French-to-Italian translation func-

tionalities, besides allowing for some further operations –such as, e.g., finding

synonyms– when German text is introduced (indeed, such operations are compacted

into a single state, S1, since not relevant for our purposes). Differently from previous

services, Italian translation can be performed even if no text is explicitly introduced,
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Figure 2: Example 1: community transition system
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Figure 3: Example 1: target service

6



as shown by the looping edge on state S0, labeled by action output italian –we can

imagine, e.g., that a buffer, initially filled out with some default text, is used to

record the last translated input.

We will refer to TSs associated to services 1(a), 1(b) and 1(c) by means of

subscripts a, b and c, respectively. For instance, TS associated to service 1(a) is

referred to as TSa = 〈Aa, Sa, s0
a, δa, Fa〉. The community TS is represented by

TSC = 〈AC , SC , s0
C
, δC , FC〉

Finally, in Fig. 2 the community transition system is shown which describes the

behavior of the community seen as a whole system, where actions are performed

by exactly one available service at a time. State labels are triples 〈sa, sb, sc〉 ∈

Sa × Sb × Sc representing the state of each service after actions execution. Note

that the community TS is non-deterministic.

Given such community, we are interested in synthesizing or, better said, compos-

ing, the target service depicted in Fig. 3, which allows for translating either French

or German input text to Italian. 2

3. Service Composition

Intuitively, the service composition problem can be stated as follows:

Given a target service and a community, synthesize a composition, i.e.,

a suitable function that delegates actions, requested by the client to the

target service, to the available services in the community (which are the

only services actually corresponding to existing programs).

As already discussed, both available and target services are represented by transition

systems over a common actions alphabet A. Recall that (i) before any interaction

takes place, each available service is in its initial state and (ii) a service can be

left only if it is in a final state. Basically, composing a target service amounts

to mimicking the desired (target) behavior by properly instructing, for each action

chosen by the client (coherently with the target service) a particular available service

to perform the requested action. Of course, each time a service is to be selected for

executing some action, the choice is constrained by the current state, as the result

of the actions done so far, of each available service (recall that a service evolves

each time it interacts with some client). In addition, it obviously depends also from

future actions that coherently with the target behavior, can be later requested by

a client.

In order to make such intuition precise we first introduce the notion of execution

tree.

Execution trees TSs provide a compact description of service abilities, but take

into account no issue concerning actual evolution. If, on one hand, TSs describe

which actions a service can execute and how its state changes, on the other hand,

they do not keep track of how states are reached. As a matter of fact, in general,

a given state may result from the execution of different action sequences, and the
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Figure 4: Example 1: execution tree of service c)

state itself holds no information about which of them has been actually executed.

Since this aspect is crucial for our purposes, a formal definition is required.

The actual evolution of a service can be described by an execution tree. In-

tuitively, it is a structure obtained by “unfolding” the TS associated to the ser-

vice itself. More formally, given a service S and its respective transition system

TS = 〈A, S, s0, δ, F 〉, an execution tree for S is a pair 〈T , f inal〉, where T is a tree

over A (i.e., a prefixed closed set of string over A) and final is a boolean function

over nodes of T . Both T and final are inductively defined by making use of an

auxiliary function mTS : T → S, as follows:

• ε ∈ T , and mTS(ε) = s0, i.e., mTS associates the root ε of T to the initial

state s0 of TS;

• let x ∈ T , and mTS(x) = s where s ∈ S: if s →a s′ then x·a ∈ T , i.e., x has

an a successor, and mTS(x·a) = s′;

• final(x) = true iff mTS(x) ∈ F .

Observe that each node of T is a sequence of actions x = a1· · · · ·ak allowed in TS,

starting from the initial state. Each of such sequences is called history for TS. In

other words, each node x = a1· · · · ·ak of execution tree T represents a history for

TS. Given a history a1· · · · ·ak, we do know the state of TS after its execution,

starting from the initial state, namely mTS(a1· · · · ·ak). Also, notice that, given a

node x = a1· · · · ·ak of T , the successor nodes of x, namely x·a1
k+1, . . . , x·a

ℓ
k+1, tell

us which actions, namely a1
k+1, . . . , a

ℓ
k+1, are allowed in the current state of TS, that

is, the state reached from the initial state through history a1· · · · ·ak. Furthermore,

function final(.) tells us whether through the history x, TS has reached a final

state, i.e., whether final(x) = true.

Example 2 Fig. 4 depicts the execution tree generated by system 1(c). Note that,

coherently with its respective transition system: (i) every state is final, (ii) action

input german always leads to a sink node where no further action can be performed
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and (iii) whenever execution is in a state where either input french or output italian

can be performed, any arbitrary sequence of such actions is allowed. Construction

of execution trees for systems 1(a) and 1(b) is straightforward. 2

Composition With the notion of execution tree of a TS in place, we can formally

define service composition. The crux notion is that of composition labeling that

formalizes the idea of assigning actions to services.

Definition 1 (Composition labeling) Let C = {S1, . . . ,Sn} be a community of

available services, St be the target service and T S
i = 〈Ti, f inali〉 be the execution

tree for Si (i = 1, . . . , n, t). A composition labeling of T S
t wrt T S

1 , . . . , T S
n is a

function clab : T S
t → T S

1 × · · · × T S
n that satisfies the following conditions:

1. clab(ε) = 〈ε, . . . , ε〉;

2. for every node x ∈ Tt, let clab(x) = 〈x1, . . . , xn〉; then, for all a ∈ A such

that x·a ∈ Tt, clab(x·a) = 〈y1, . . . , yn〉, where yi = xi·a for exactly one

i ∈ [1, . . . , n] (if service Si performs interaction a) and yj = xj otherwise.

3. for every node x ∈ Tt, if finalt(x) = true and clab(x) = 〈x1, . . . , xn〉, then

finali(xi) = true for i = 1, . . . , n.

Intuitively, clab labels each node of the target service execution tree T S
t with

a tuple 〈x1, . . . , xn〉, where the generic component xi (i = 1, . . . , n) denotes the

current node of the execution tree T S
i , i.e., the history of actions executed so far,

starting from the initial state, by i-th available service. Requirement (1) states

that all services start from the beginning of their computation, i.e., their initial

state; requirement (2) constrains each action of the target service to be executed

by exactly one available service (in its current state, which results from its history

so far), while the other services remain still; and finally, requirement (3) allows for

leaving the target service only if all available services are in a final configuration.

Summing up, clab relates, in a step-by-step fashion, the evolution of the target

service to the evolution of available services, by suitably delegating in a step-by-step

fashion actions requested to the target services to one of the available service.

Given a composition labeling clab, one can orchestrate the n available services

to mimic the target service St by stepping each available service according to what

specified by clab itself. Thus, service composition can be formally defined as

follows:

Definition 2 (Service composition) A composition of the services in the com-

munity C = {S1, . . . ,Sn} realizing the target service St is a function comp : T S
t →

{1, . . . , n} ∪ ⊥ such that

• comp(ε) = ⊥

• comp(x·a) = i, where clab(x) = 〈y1, . . . , yi, . . . , yn〉 and clab(x·a) =

〈y1, . . . , yi·a, . . . , yn〉, i.e., clab(x) and clab(x·a) are identical except for the

i-th component that from yi in clab(x) becomes yi·a in clab(x·a).
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Observe that, by definition, given a composition labeling clab we get the corre-

sponding composition comp. The vice-versa is also true, given a composition comp,

it is immediate to get the corresponding composition labeling clab as follows:

• clab(ε) = 〈ε, . . . , ε〉;

• for every node x ∈ Tt, let clab(x) = 〈x1, . . . , xn〉; then for all a ∈ A such

that x·a ∈ Tt clab(x·a) = 〈y1, . . . , yn〉, where yi = xi·a if comp(x·a) = i, and

yj = xj otherwise.

Computational complexity characterization Composition, as defined above,

has already been studied in [4, 5]. In particular,the computational complexity

characterization of the problem is known. The upper bound was establish in [4]:

Theorem 1 ([4]) Checking the existence of a composition of the services in a com-

munity C = 〈S1, . . . ,Sn〉 that realizes a target service St can be done in EXPTIME.

A matching lower bound was recently proved by Muscholl and Walukiewicz:

Theorem 2 ([23]) Checking the existence of a composition of the services in a

community C = 〈S1, . . . ,Sn〉 that realizes a target service St is EXPTIME-hard.

In other words the checking the existence of a composition is an EXPTIME-complete

problem.

Notably, in [4, 5] an actual synthesis technique for computing the composition

is presented. Such a technique is based on a polynomial reduction to satisfiability

in Propositional Dynamic Logic [15]. Here, however, we do not relay on such a

technique. Instead, we develop a new composition synthesis technique based on the

notion of simulation.

4. Composition and Simulation

Now, we illustrate the basic result of this paper: we show that checking for

existence of a services composition can be done by checking for the existence of

a simulation relation between the target and the community TSs. We start by

defining the notion of simulation relation [22] in our context.

Definition 3 (Simulation relation) Given two transition systems TSt and TSC,

a simulation relation of TSt by TSC is a relation R ⊆ St × SC, such that:

R(st, sC) implies:

1. if st ∈ Ft then sC ∈ FC;

2. for all transitions st →a s′t in TSt there exists a transition sC →a

s′
C

in TSC and R(s′t, s
′

C
).

The definition says that state st of TSt is in a simulation relation R with sC of

TSC if: (i) if st is final then also sC is final; (ii) for every action a and state s′t, if

st can make a transition to s′t with action a, then also sC can make a transition to

some s′
C

with action a, in such a way that s′t is still in the same simulation relation R

with s′C . Observe the coinductive nature of such a definition: indeed the definition

is cyclic but with no base case.
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Definition 4 Let TSt be the transition system representing the target service, and

TSC be the community transition system. A state st ∈ St is simulated by a states

sC ∈ SC (or sC simulates st), denoted st � sC, iff there exists a simulation R of TSt

by TSC s.t R(st, sC).

Observe that the relation � is itself a simulation relation and in fact � is the

largest simulation relation, indeed by the definition above all simulation relations

are contained in �.

Definition 5 TSt is simulated by TSC (or TSC simulates TSt) iff s0
t � s0

C
.

Example 3 [Example 1, continued] Consider the target (Fig. 3) and the community

(Fig. 2) services of Example 1. In Figure 5 a simulation of the latter service by the

former one is given, where dashed lines associate each state of the target TS to

those of the community TS it is simulated by. Therefore, e.g., state 〈S1,S0,S0〉 of

TSC simulates state S1 of TSt as well as state S0 is simulated by both 〈S0,S0,S0〉

and 〈S0,S0,S1〉. Note that, in general, there may exist several simulations. The

one shown in Figure 5 represents, in facts, the largest one, i.e., the relation �. 2

Theorem 3 below, shows how checking the existence of a service composition

can be reduced to checking that the target transition system is simulated by the

community transition system. To prove it we introduce two lemmas.

Lemma 1 Let C = {S1, . . . ,Sn} be a community, St a target service, and

clab a composition labeling of T S
t wrt T S

1 , . . . , T S
n . Then the relation R ⊆

St × SC defined as R = {〈st, sc〉 | ∃x, x1, . . . , xn : mTSt
(x) = st,clab(x) =

〈x1, . . . , xn〉, 〈mTS1
(x1), . . . , mTSn

(xn)〉 = sc} is a simulation relation of TSt by

TSC such that R(s0
t , s

0
C
).

Proof. The following arguments prove that R is a simulation:

• Since clab(ε) = 〈ε, . . . , ε〉 by definition of clab, then R(s0
t , s

0
C
) holds by

definition of R.

• Consider a final node x ∈ Tt associated to a final state st ∈ Ft ⊆ St by

mTSt
(x) = st. Recall that st is final iff x does. By definition of R, x is associ-

ated, by clab, to a tuple 〈x1, . . . , xn〉 such that 〈mTS1
(x1), . . . , mTSn

(xn)〉 =

sC . By definition of clab, being x final, also x1, . . . , xn do. By definition of

mTSi
each si is final, therefore sC is final.

• Let mTSt
(x) = st, x′ = x·a, st →a s′t and mTSt

(x′) = s′t. By definition of R,

clab(x) = 〈x1, . . . , xn〉 and 〈mTS1
(x1), . . . , mTSn

(xn)〉 = sC . By definition of

clab, clab(x·a) = 〈x′
1, . . . , x

′
n〉, where for one i ∈ [1, . . . , n], we get x′

i = xi·a,

and for all other j ∈ [1, . . . , n] with j 6= i, we get x′
j = xj . Finally, by definition

of mTSi
, mTSi

(x′
i) = s′i iff si →a s′i. Hence, sC →a s′

C
and, consequently,

R(s′t, s
′

C
) holds. 2

The lemma above constructively states that, given a target service St and a

community C, for every composition labeling of the execution tree associated to St

by the execution trees of community services, it is always possible to build a relation

R which is a simulation of TSt by TSC.
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Lemma 2 Let C = {S1, . . . ,Sn} be a community, St a target service, and R a sim-

ulation relation of TSt by TSC such that R(s0
t , s

0
C
). Then, there exists a composition

labeling clab a composition labeling of T S
t wrt T S

1 , . . . , T S
n .

Proof. Let R be a simulation of TSt by TSC such that R(s0
t , s

0
C
) where s0

C
=

〈s0
1, . . . , s

0
n〉. From R we can build a labeling function clab : T S

t → T S
1 × · · · × T S

n ,

by induction on the level of nodes in Tt, which shows that a composition does exist.

Recall that (i) R associates each state of TSt to a tuple of states from TS1×. . .×TSn

(that is, the set of community TS states) and (ii) a mapping mTSi
associates each

node of Ti to a corresponding state of TSi (i = 1, . . . , n, t). We proceed as follows:

• Base case.

mTSt
(ε) = s0

t , i.e. the root of Tt is labeled with the initial state of

TSt, and analogously for each TSi. Since R is a simulation, we have that

R(s0
t , 〈s

0
1, . . . , s

0
n〉). Therefore, we define clab(ε) = 〈ε, . . . , ε〉.

• Inductive hypothesis:

Let mTSt
(x) = st and let R(st, 〈s1, . . . , sn〉). Let clab(x) = 〈x1, . . . , xn〉,

where mTSi
(xi) = si.

• Induction step.

Let x′ = x·a be a successor node of x. If such a node exists, there ex-

ists also a transition st →a s′t such that mTSt
(x′) = s′t. Therefore, since

R(st, 〈s1, . . . , sn〉) holds by inductive hypothesis, then a tuplea 〈s′1, . . . , s
′
n〉

exists such that R(s′t, 〈s
′
1, . . . , s

′
n〉). Such a tuple, by definition of TSC, must

be such that for one i ∈ [1, . . . , n], we have si →a s′i and for all other

j ∈ [1, . . . , n] with j 6= i, we have that s′j = sj . Hence, we can define

clab(x′) = 〈x′
1, . . . , x

′
n〉, where mTSt

(x′
i) = s′i and:

– if s′i = si then x′
i = xi

– if si →a s′i then x′
i = xi·a

Finally, recall that each Tt’s final node is associated, through mTSt
, to exactly

one TSt’s final state. Let x be one of such nodes and let mTSt
(x) = st. Since R

is a simulation, it relates st to some tuple(s) 〈s1, . . . , sn〉, where each component

is a final state for the TS it refers to. Hence being clab(x) = 〈x1, . . . , xn〉, with

mTSi
(xi) = si, we get that, x1, . . . , xn are final. Concluding we get that, clab

defined as above is indeed a composition labeling. 2

This lemma says that given a simulation R of TSt by TSC, the whole set of

composition labelings which realize the target service can be always defined. Note

that such set is not a singleton since, in general, R associates a TSt’s state to

many (possibly one) TSC’s states. Observe that also the proof of this lemma is

constructive.

As a direct consequence of Lemmas 1 and 2, we get our theorem.

aIn general, R associates several n-tuples to s′
t

since TSC may be non deterministic.
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Theorem 3 A composition of the services in the community C = {S1, . . . ,Sn}

realizes the target service St if and only if TSt is simulated by TSC.

Proof. By definition of composition, it suffices to prove that there exists a

composition labeling of T S
t wrt T S

1 , . . . , T S
n if and only if TSt is simulated by TSC,

which is a consequence of Lemma 1 for “⇒” direction and Lemma 2 for “⇐”

direction. 2

Theorem 3 gives us an straightforward method to check for the existence of

composition, namely:

• compute the maximal simulation relation � of TSt by TSC;

• check that 〈s0
t , s

0
C
〉 is in such a relation.

Observe that such a method is quite different from the one in [4] which was based

on a polynomial reduction to satisfiability in Propositional Dynamic Logic [15].

From the computational point of view, we recall that checking the existence of

a simulation relation between two (states of two) transition systems can be done

in polynomial time in the size of the transition systems –moreover well developed

techniques exists for computing simulation, such as those in [16, 27, 10]. Since in

our case the number of states of TSC is exponential in the size (i.e., the number of

states) of TS1, . . . , TSn, we get that we can check for the existence of a composition

using simulation in exponential time. Considering that the problem is EXPTIME-

complete, we get that indeed checking existence of compositions via simulation is

indeed optimal wrt worst-case complexity.

5. Synthesizing Composition via Simulation

Theorem 3 closely relates the notion of simulation relation to the one of service

composition showing, ultimately, that finding a service composition corresponds to

finding a simulation relation between two particular –the target and the community–

transition systems and vice-versa. However, no procedure is given for actually syn-

thesizing an orchestrator that implements such a composition by properly assigning

action executions to available services.

In this section, we show that if a service composition exists, it can be used to

synthesize an orchestrator. To this end, we refer to an abstract structure called

orchestrator generator, or simply OG. Intuitively, the OG is a program that re-

turns, for each state reached by the community in realizing a target history, the

set of available services capable of performing the (target-conformant) action the

client next requests. As shown below, OG is directly obtained from the maximal

simulation relation between the target and the community TSs.

Definition 6 (Orchestrator Generator, OG) Let St be a target service and

C = {S1, . . . , Sn} be a community of available services such that TSt is sim-

ulated by TSC. The orchestrator generator (OG) for TSt and TSC is a tuple

OG = 〈A, [1, . . . , n], Sr, s
0
r, ωr, δr, Fr〉, where:

1. A is the finite set of community actions;

14



2. [1, . . . , n] is the set of available services indices;

3. Sr = St × S1 × . . . × Sn is the set of OG states;

4. s0
r = 〈s0

t , s
0
1, . . . , s

0
n〉 is the OG’s initial state;

5. Fr = {(st, s1, . . . , sn) | st ∈ Ft} is the set of OG’s final states;

6. ωr : Sr × A 7→ 2[1,...,n] is the service selection function:

let sr = 〈st, s1, . . . , sn〉 ∈ Sr, ωr(sr, a) is defined iff

• st � 〈s1, . . . , sn〉 and

• there exists s′t s.t st →a s′t;

in such case, ωr(sr, a) = {k | ∃ s′k. sk →a s′k ∧ s′t � 〈s1, . . . , s
′

k, . . . , sn〉};

7. δr : Sr × A × [1, . . . , n] → Sr is the transition function.

δr(sr, a, k) is defined iff k ∈ ωr(sr, a), as follows:

δr(sr, a, k) = s′r, where s′r = 〈s′t, s1, . . . , s
′

k, . . . , sn〉, st →a s′t and, sk →a s′k.

Intuitively, OG is a finite state machine that, at each point, given a (target-

conformant) action a, outputs (function ωr) the set of services which can perform

a next according to the maximal simulation relation �. For each choice of one of

such services it progresses to the next state (function δr).

Once we have OG, we get orchestrators by choosing, at each point, one of the

outputs of ωr. Formally, we define a (generated) orchestrator as follows:

Definition 7 (Generated Orchestrator) Given an orchestrator generator OG

for TSt and TSC, defined as above, a generated orchestrator is a function orch :

Tt → [1, . . . , n] ∪ ⊥, inductively defined as follows:

• orch(ε) = ⊥;

• if x·a ∈ Tt, then orch(x·a) = i ∈ ωr(σ
orch

r (x), a), where:

σorch

r : Tt → Sr is the mapping function between nodes of Tt and corresponding

states of Sr, defined as follows:

– σorch

r (ε) = s0
r;

– if x·a ∈ Tt then σorch

r (x·a) = δr(σ
orch

r (x), a,orch(x·a))

A generated orchestrator is, basically, a function which selects, at each point, an

available service for executing the action requested by a (target-conformant) client

at that point. In order to guarantee the selected service to be actually capable

of executing the assigned action, orchestrator assignments must belong to the set

defined by ωr, at each step. Note that such set depends on σorch

r which, in turns,

depends on orch itself. σorch

r maps each node of target service execution tree, that

is a target history, into the state reached by the community TS when such history is

actually executed. Since, also, orch depends on σorch

r , both functions are defined
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by mutual induction, through ωr. Note how induction is well-founded, since i-th

step value of orch depends, through ωr on (i − 1)-th step value of σorch

r .

A generated orchestrator defines a labeling of Tt by tuples of nodes from

T1 × . . . × Tn, representing the correspondence between a particular history of the

target behavior and those of community services. Such correspondence, of course,

is strictly related to the history of service assignments, that is, ultimately, to orch.

Formally, an orchestrator labeling is defined as follows:

Definition 8 (Orchestrator Labeling) Given an orchestrator generator OG for

TSt and TSC and a respective generated orchestrator orch, defined as above, an

orchestrator labeling olab of T S
t by T S

1 , . . . , T S
n is defined wrt orch as a function

olab : Tt → T1 × . . . Tn which satisfies the following conditions:

• olab(ε) = 〈ε, . . . , ε〉;

• for every node x ∈ Tt, let olab(x) = 〈x1, . . . , xn〉; then for all a ∈ A such

that x·a ∈ Tt, olab(x·a) = 〈y1, . . . , yn〉 where yi = xi·a if orch(x·a) = i and

yj = xj otherwise.

Example 4 [Example 3, continued] As an instance of Orchestrator Genera-

tor (OG), consider Figure 6, where a graphical representation of the OG =

〈A, [1, . . . , n], Sr, s
0
r, ωr, δr, Fr〉 obtained by the simulation relation of Figure 5 is

shown. According to Definition 6, nodes are labeled by four components represent-

ing, respectively, states of target, a), b) and c) services. Note that it includes two

disconnected components. Obviously, only the one containing the initial state is

relevant, as the other one(s) cannot be reached, all services being initially assumed

in their initial state. Edges are labeled by pairs I/O, where I ∈ A × [1, . . . , n] and

O ∈ 2[1,...,n], with the following semantics: an edge e connects node s to node s′

with label 〈a, i〉/O iff ωr(s, a) = O, i ∈ O and δr(s, a, i) = s′. Starting from this

OG, several orchestrators can be obtained, depending on the service selected at each

step for performing each interaction. Intuitively, generating an orchestrator corre-

sponds to unfolding an OG and labeling the resulting edges by choosing one among

the services proposed by the selection function ωr. For instance, in Figure 7(a) two

different orchestrators are reported. Edges are labeled with pairs a/i, where a ∈ A

and i ∈ [1, . . . , n] represent, respectively, the client requested action and the orch’s

available service choice. 2

Now, we show that all generated orchestrators lead to a composition of available

services that realizes the client request. Even more importantly, the vice-versa holds:

every composition can be obtained by suitably choosing, at each step, one element

from those in OG’s selection function ωr. In other words, the maximal simulation

virtually contains all compositions. orchestration and composition labelings.

Theorem 4 If olab is an orchestrator labeling of T S
t by T S

1 , . . . , T S
n , then olab

is a composition labeling of T S
t by T S

1 , . . . , T S
n .

Proof. We need to show that any orchestrator labeling olab fulfills require-

ments of Definition 1. Let olab be an orchestrator labeling of T S
t by T S

1 , . . . , T S
n .

1. By definition of orchestrator labeling, olab(ε) = 〈ε, . . . , ε〉;
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2. By definition of orchestrator labeling, for every node x ∈ Tt, if olab(x) =

〈x1, . . . , xn〉, then for all a ∈ A such that x·a ∈ Tt, olab(x·a) = 〈y1, . . . , yn〉,

where yi = xi·a if orch(x·a) = i and yj = xj otherwise. Since olab is

defined wrt an orchestrator orch (Definition 8), then orch(i) is defined and

identifies the only service capable of performing action a.

Moreover, let olab(x·a) = 〈y1, . . . , yn〉, if mTSt
(x·a) = st and mTSi

(yi) = si

(i = 1, . . . , n) then, from orch and olab definitions, it follows that st �

〈s1, . . . , sn〉.

3. We need to prove that if x ∈ Tt is final and olab(x) = 〈x1, . . . , xn〉 then all

xi (i = 1, . . . , n) are final, as well.

By definition of mTSi
, a node xi ∈ Ti is final iff mTSi

(xi) is final for TSi

(i = 1, . . . , n, t). Of course, if x ∈ T is final then st also does. Hence, since

st � 〈s1, . . . , sn〉, where mTSt
(x) = st and mTSi

(yi) = si (i = 1, . . . , n), si is

final for its respective TSi (i = 1, . . . , n) and, consequently, xi is final for its

respective execution tree Ti. 2

Theorem 5 If clab is a composition labeling of T S
t by T S

1 , . . . , T S
n , then clab is

an orchestrator labeling defined wrt an orchestrator orch generated by the OG for

TSt and TSC.

Proof. First, observe that, due to Lemma 1, TSC can simulate TSt and,

therefore, the orchestrator generator OG = 〈A, [1, . . . , n], Sr, s
0
r, ωr, δr, Fr〉 for TSt

and TSC exists. Now, consider the function orch : Tt → [1, . . . , n] ∪ ⊥, defined as

follows:

1. orch(ε) = ⊥;

2. orch(x) = k iff there exists a node x ∈ Tt and an action a ∈ A

such that i) x·a ∈ Tt, ii) clab(x) = 〈x1, . . . , xn〉 and iii) clab(x·a) =

〈x1, . . . , xk·a, . . . , xn〉 for exactly one k ∈ [1, . . . , n].

Referring to Definition 7, we can show orch is an orchestrator generated by the

OG for TSt and TSC:

• by definition, orch(ε) = ⊥;

• by defining σorch

r (ε) = s0
r and, for all x·a ∈ Tt, σorch

r (x·a) =

δr(σ
orch

r (x), a,orch(x·a)), we obtain that orch(x·a) ∈ ω(σorch

r (x), a) for all

x·a ∈ Tt. In facts, if we assume that there exists some x̄·ā ∈ Tt such that

orch(x̄·ā) /∈ ωr(σ
orch

r (x̄), ā), then clab would not be a composition labeling,

since there would exist no k ∈ [1, . . . , n] such that clab(x̄) = 〈x̄1, . . . , x̄n〉 and

clab(x̄·ā) = 〈x̄1, . . . , x̄k, . . . , x̄n〉.

Finally, we need to show that clab is defined with respect to orch, according to

Definition 8, but this straightforward follows from requirement 2 of orch’s con-

struction. 2

As already pointed out, given an orchestrator generator OG, Theorems 4 and 5

yield that by non-deterministically choosing, at each step, a service among those

18



proposed by the selection function ωr, we obtain all and only the orchestrators OG

generates.

Interestingly, an orchestrator is not required to be built before a client starts

interacting with the community, but it can be generated just-in-time, as client issues

action requests, as shown next.

Definition 9 (Just-in-time orchestrator) Given an orchestrator generator OG

for TSt and TSC, defined as in Definition 6, a just-in-time (generated) orchestrator

is a function jit orch : Tt → [1, . . . , n] ∪⊥, inductively defined as follows:

• jit orch(ε) = ⊥;

• if x·a ∈ Tt, then jit orch(x·a) = choose(ωr(σ
jit orch

r (x), a)), where

σjit orch

r : Tt → Sr is the mapping function between nodes of Tt and corre-

sponding states of Sr defined as in Definition 7 and choose stands for a choice

function that chooses one element among those returned by ωr(σ
jit orch

r (x), a).

Obviously, with appropriate choice functions for choose, one can get all possible

generated orchestrators. But, the point of the definition above is that one can delay

the choice performed by choose till run-time, where one can take into account

information on the actual state, cost, etc., of the execution of actions by the various

services. This gives a great flexibility to the orchestrator, which, in a sense, can

“switch” composition on the go as needed. As a result, this work can be seen

as providing formal bases for research work aimed at developing ambient-aware

compositions that are fully reactive to events occurring during execution.

6. Conclusion

In this paper we have explored the possibility of basing service composition

on the notion of simulation. We have seen that by using simulation, we are able

to virtually compute all possible compositions at once, and that this opens the

possibility of devising composition in a just-in-time fashion.

The tight connection between service composition and simulation discussed here,

allows us to transfer well developed techniques for computing simulation, such as

those in [16, 27, 10] to service composition.

Interestingly, also known result from service composition can be transferred to

simulation. In particular, the EXPTIME-completeness of service composition stud-

ied here, allows us the say that checking simulation from a single deterministic

transition system to the asynchronous product of to n deterministic transition sys-

tems is an EXPTIME-complete problem. Notably, this closes a long standing open

problem in the simulation literature. Indeed, while in [26] the computational com-

plexity characterization of checking simulation from the asynchronous product of

n concurrent deterministic transition systems to a single deterministic transition

system was given, the computational complexity characterization of checking sim-

ulation in the converse direction has remained open since. We close it here, by

transferring EXPTIME-completeness result of service composition to simulation.
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thesis, Università degli Studi di Roma - La Sapienza, 2005.

4. D. Berardi, D. Calvanese, G. De Giacomo, M. Lenzerini, and M. Mecella. Automatic
Composition of e-Services that Export their Behavior. In Proc. of ICSOC 2003,
pages 43–58, 2003.

5. D. Berardi, D. Calvanese, G. De Giacomo, M. Lenzerini, and M. Mecella. Automatic
service composition based on behavioral descriptions. International Journal of
Cooperative Information Systems, 14(4):333 – 376, 2005.

6. D. Berardi, G. De Giacomo, and M. Mecella. Basis for automatic service composi-
tion. Tutorial at WWW 2005, 2005.

7. T. Bultan, X. Fu, R. Hull, and J. Su. Conversation Specification: A New Approach
to Design and Analysis of E-Service Composition. In Proc. of WWW 2003, 2003.

8. G. De Giacomo. Composition synthesis of web services composition synthesis of
web services. Talk at Daghstuhl Seminar on Synthesis and Planning, 2005.

9. G. De Giacomo and M. Mecella. Service composition. Tutorial at ICSOC 2004,
2004.

10. R. Gentilini, C. Piazza, and A. Policriti. From bisimulation to simulation: Coarsest
partition problems. J. Autom. Reasoning, 31(1):73–103, 2003.

11. C. E. Gerede, R. Hull, O. H. Ibarra, and J. Su. Automated composition of e-services:
lookaheads. In Proc. of ICSOC 2004, pages 252–262, 2004.

12. M. Ghallab, D. Nau, and P. Traverso. Automated Planning: Theory and Practice.
Morgan Kauffman, 2004.

13. G. Grahne and V. Kiricenko. Process mediation in an extended roman model.
In Proceedings of the First International Workshop on Mediation in Semantic Web
Services (MEDIATE 2005), pages 17 – 33, 2005.

14. A. Y. Halevy. Answering Queries Using Views: A Survey. VLDB Journal,
10(4):270–294, 2001.

15. D. Harel, D. Kozen, and J. Tiuryn. Dynamic Logic. The MIT Press, 2000.

16. M. R. Henzinger, T. A. Henzinger, and P. W. Kopke. Computing simulations on
finite and infinite graphs. In Proc. of FOCS 1995, pages 453–462, 1995.

17. R. Hull, M. Benedikt, V. Christophides, and J. Su. E-Services: a Look Behind the
Curtain. In Proc. of PODS 2003, pages 1–14, 2003.

18. M. Lenzerini. Data Integration: A Theoretical Perspective. In Proc. of PODS 2002,
pages 233–246, 2002.

19. S. A. McIlraith and T. C. Son. Adapting Golog for Composition of Semantic Web
Services. In Proc. of KR 2002, pages 482–496, 2002.

20. B. Medjahed, A. Bouguettaya, and A. K. Elmagarmid. Composing Web Services
on the Semantic Web. VLDB Journal, 12(4):333–351, 2003.

21. M. Michalowski, J. L. Ambite, C. A. Knoblock, S. Minton, S. Thakkar, and
R. Tuchinda. Retrieving and Semantically Integrating Heterogeneous Data from

20



the Web. IEEE Intelligent Systems, 19(3):72–79, 2004.

22. R. Milner. An algebraic definition of simulation between programs. In Proc. of
IJCAI 1971, pages 481–489, 1971.

23. A. Muscholl and I. Walukiewicz. A Lower Bound on Web Services Composition. In
Proc. of the 10th Int. Conf. on Foundations of Software Science and Computation
Structures (FoSSaCS 2007), volume 4423 of LNCS. Springer, 2007.

24. M. Pistore, P. Traverso, P. Bertoli, and A. Marconi. Automated Synthesis of
Composite BPEL4WS Web Services. In Proc. of ICWS 2005, 2005.

25. A. Pnueli and R. Rosner. On the Synthesis of a Reactive Module. In Proc. of
POPL 1989, pages 179–190, 1989.

26. S. K. Shukla, H. B. H. III, D. J. Rosenkrantz, and R. E. Stearns. On the complexity
of relational problems for finite state processes. In Proc. of ICALP 1996, pages
466–477, 1996.

27. L. Tan and R. Cleaveland. Simulation revisited. In Proc. of TACAS 2001, pages
480–495, 2001.

28. W. Thomas. Infinite Games and Verification. In Proc. of CAV 2002, 2002.

29. J. D. Ullman. Information Integration using Logical Views. Theoretical Computer
Science, 239(2):189–210, 2000.

30. M. Y. Vardi. An Automata-Theoretic Approach to Fair Realizability and Synthesis.
In Proc. of CAV 1995, 1995.

31. J. Yang and M. P. Papazoglou. Service Components for Managing the Life-Cycle
of Service Compositions. Information Systems, 29(2):97–125, 2004.

21


