Giuseppe De Giacomo & Maurizio Lenzerini

Converse, Local Determinism, and Graded Nondeterminism in
Propositional Dynamic Logics

Rapporto Tecnico n. 11-94
Dipartimento di Informatica e Sistemistica,
Universita di Roma “La Sapienza”,
via Salaria 113, I-00198 Roma, Italy

{degiacom,lenzerini}@assi.dis.uniromal.it

Converse, Local Determinism, and Graded Nondeterminism in
Propositional Dynamic Logics

Sommario

Lavoro recente sulla rappresentazione della conoscenza ha portato nuovo interesse nelle Logiche Dinamiche
Proposizionali (PDL) evidenziando una stretta corrispondenza tra tali logiche e logiche per rappresentare
conoscenza strutturata (Description Logics, Linguaggi Terminologici). Tuttavia, questo lavoro ha anche
messo in evidenza la mancanza nelle PDL note di certi costrutti necessari per sfruttare pienamente la
corrispondenza. Questi sono costrutti per vincolare localmente (rispetto ai singoli stati) I’esecuzione di un
programma atomico o del suo inverso (I’esecuzione del programma atomico all’indietro) ad essere determin-
istica o ad avere solo un certo ammontare di nondeterminismo. In realta noi pensiamo che le PDL possono
avvantaggiarsi di questo tipo di costrutti per modellare molte proprieta interessanti di computazioni reali.
In questo articolo, estendiamo Converse PDL, prima aggiungendo un costrutto per il determinismo locale
di programmi semplici (programmi atomici e inversi di programmi atomici), e poi aggiungendo costrutti
per il cosiddetto ” Graded Nondeterminism” di programmi semplici. Questi ultimi sono costrutti che vin-
colano localmente il nondeterminismo di programmi semplici, limitando il minimo e 1l massimo numero di
stati soddisfacenti una data proprieta che sono raggiungibili eseguendo un programma semplice partendo
da un certo stato. Il risultato principale di questo articolo & che entrambe le logiche sono strettamente
pitt espressive di ”Converse Deterministic PDL” (Converse PDL dove i programmi sono interpretati come

funzioni parziali) e sono entrambe ancora decidibili in tempo deterministico esponenziale.

Abstract

Recent work on Knowledge Representation has brought new interest to Propositional Dynamic Logics
(PDL’s) by pointing out a tight correspondence between these logics and logics for representing structured
knowledge (Description Logics, Terminological Languages). Nevertheless, this work has also made apparent
the lack in the known PDL’s of certain constructs needed to fully exploit the correspondence. These
are constructs to locally (wrt single states) constrain the running of an atomic program or its converse
(the running of the atomic program backward) to be deterministic, or to have a specified amount of
nondeterminism only. In fact, we believe that PDL’s can take advantage of this kind of constructs to
model many interesting properties of actual computations. In this paper, we extend Converse PDL, first
by including a construct for local determinism of simple programs (either an atomic program or the
converse of an atomic program), and then by including constructs for graded nondeterminism of simple
programs. The latter locally constrain the nondeterminism of simple programs by limiting the minimum
and the maximum number of states satisfying a specified property that are reachable by the running of
a simple program from a certain state. The main result of the paper is that both the resulting logics are
strictly more expressive than Converse Deterministic PDL (Converse PDL where all atomic programs are

interpreted as partial functions), but still decidable in deterministic exponential time.

1 Introduction

Propositional Dynamic Logic (PDL) was introduced in [6] as a formalism to describe the prop-
erties of states reached by programs during their execution, and to model the evolution of the
computation process (see [8, 7, 10] for surveys on PDL’s, see also [14] for a somewhat different
account). The language of PDL includes all formulae of propositional logic over a certain alpha-
bet, plus the construct < r > ¢, where ¢ is a formula and r is a program, whose meaning is that
it is possible to execute r and terminate in a state where ¢ is true. The program r can be either
an atomic program, or a complex expression denoting sequential composition, non deterministic
choice, iteration, or test.

Several variants of PDL have been proposed in order to enhance the expressive power of the
logic. In this paper we concentrate our attention on an extension of PDL, called Converse PDL,
obtained from the basic logic by adding the converse program operator, where the converse of a
program P is the program whose running is obtained by running P backwards. Converse PDL
is studied in [16], in the case where all atomic programs are assumed to be deterministic - i.e.,
representing partial functions over a set of states. This special case of the logic is denominated
Converse Deterministic PDL. Note that assuming the atomic programs to be deterministic is
not a limitation, but rather an improvement of the logic, because nondeterministic programs can
be simulated by composing deterministic programs. In [16] a decision procedure for Converse
Deterministic PDL is presented running in deterministic exponential time.

In this paper, we propose two extensions of Converse Deterministic PDL which allows for
more sophisticated notions of determinism, and investigate their decidability and computational
complexity. In particular, we consider the extensions of Converse PDL including the following

constructs:

o A construct that allows us to impose the so-called local determinism of simple programs
(either an atomic program or the converse of an atomic program) - i.e., the running of a

simple program is deterministic from a certain state.

e Constructs that allow us to represent the so-called (local) graded nondeterminism of simple
programs - i.e., to limit the minimum and the maximum number of states satisfying a
specified formula that are reachable by the running of a simple program from a certain

state.

Observe that by using constructs for local determinism (graded nondeterminism), one can
easily impose global determinism (graded nondeterminism) as well. Note also that the construct
for graded nondeterminism actually subsumes the one for local determinism: indeed, local de-
terminism can be obtained by imposing the maximum number of states that are reachable by
the running of a simple program from a given state, to be 1. Finally it is worth mentioning that
our constructs for graded nondeterminism turn out to be strongly related to graded modalities in
modal logic, which have been studied in [5, 4, 15].

The constructs introduced above can be used to model many interesting properties of actual

computations. For example, suppose we want to check/impose some facts about a state s

preceding the current state s, in a given computation. This may seem possible by “executing
backward” the program, associated to computation from s’ to s, and test the wanted properties
on the resulting state. But “executing backward” this program could also lead to states which
are not states of the original computation. In fact, the notion of “actual past” is not captured in
Converse PDL. Though, if we can impose that each atomic program is backward deterministic
(converse of each atomic programs is deterministic), then the notion of “actual past” become
easily modelable. Similarly we may want to constrain the possible states that are reachable from
the current state by executing an atomic instruction (running an atomic program) to be no more
(no less) than, say, three. This can be easily achieved, having at hand constructs for graded
nondeterminism.

Furthermore, the availability of the proposed constructs is crucial to make PDL’s exploitable
as the basic reasoning paradigm of certain kind of Knowledge Representation Systems. Let us
explain this point in some details. Several recent papers (starting from [13]) point out that there
is a strong correspondence between Propositional Dynamic Logic and its variants, and a family
of Logic-based Knowledge Representation Languages, called Terminological Languages (Descrip-
tion Logics). These languages allow the representation of a real world in terms of objects, classes
(unary predicates whose instances are objects) and relations (binary predicates whose instances
are pairs of objects), and are characterized by several constructs for establishing the properties
of classes and relations. The correspondence is based on a mapping between the models of a
knowledge base expressed in a Terminological Language, and the models of a particular PDL for-
mula, where classes correspond to propositional letters, relations correspond to atomic programs,
instances of classes correspond to states, and instances of relations correspond to state transi-
tions. Among the various constructs that have been considered in Terminological Languages,
the one for denoting the inverse of a relation, and those for expressing functional and number
restrictions on the connection between instances of classes and relations have special importance
for achieving the desired expressive power. However, despite the relevance of these constructs,
no general technique is known for reasoning about knowledge expressed using them. Now, it is
easy to see that the inverse of relations corresponds to the converse of a program, the functional
restriction on relations corresponds to our notion of local determinism, and number restrictions
correspond to graded nondeterminism. It follows that the reasoning techniques developed for
the extensions of Converse PDL proposed in this paper, directly provide suitable methods for
reasoning in very expressive Terminological Languages. Indeed this was the original motivation
that has led us to look into this logics ([2]).

The main result of this paper is that, both by adding local determinism and by adding graded
nondeterminism to Converse PDL, we obtain very powerful propositional dynamic logics (they
both strictly subsume Converse Deterministic PDL), that are still decidable in deterministic
exponential time (as the basic PDL). The method we adopt for proving the result is to show that
from any formula expressed in the enhanced logics we can obtain in polynomial time a Converse
PDL formula that is satisfiable if and only if the original formula is so, thus proving that the

well known decision procedures for Converse PDL (e.g. [11, 12,9, 16]) can be used as “reasoning

engine” for the enhanced logics.

The rest of the paper is organized as follows. In Section 2, we recall the basic notions regarding
Converse PDL. In Section 3, we present the results concerning the extension of Converse PDL
with local determinism, whereas in Section 4, we deal with the extension of Converse PDL with

graded nondeterminism, finally some concluding remarks end the paper.

2 Preliminaries

We base our work on the well-known Converse PDL, called £ in the following, whose basic
characteristics are recalled in this section.

The formation rules of £ are specified by the following abstract syntax

¢ — A|OiAG | Vo] nd| <r>9][r]e

r — PlrmUry|ryre | rt ol | r”

where A denotes a propositional letter, ¢ (possibly with subscript) denotes a formula, P denotes
an atomic program and r (possibly with subscript) denotes a program. For notational conve-
nience, we define the additional symbols, = as usual, T as AV =4, and L as =T. We use the
term simple program to refer to either an atomic program or the converse of an atomic program,
and we denote it by a (possibly with subscript).

The semantics of £ is based on the notion of structure, which is defined as a triple M =
(S,{Rp},1I), where S denotes a set of states, { Rp} is a family of binary relations over &, such
that each atomic program P is given a meaning through Rp, and Il is a mapping from S to
propositional letters such that II(s) determines the letters that are true in the state s. Given
M, the family {Rp} can be extended in the obvious way so as to include, for every program r,
the corresponding relation R, (for example, R, .., is the composition of R,, and R,,). For this
reason, we often denote a structure by (S,{R,},1l), where {R,} includes a binary relations for
every program (atomic or non-atomic). A structure M is called a model of a formula ¢ if there
exists a state s in M such that M,s |= ¢. A formula ¢ is satisfiable if there exists a model of ¢,
unsatisfiable otherwise.

The Fisher-Ladner closure of a L-formula ®, denoted C'L(®), is the smallest set such that
¢ € CL(®) and such that (we assume, without loss of generality, V,[-] to be expressed by means

of =, A, < - >, and the converse operator to be applied to atomic programs only):

P1 N g € CL(D) implies ¢, ¢2 € CL(®),
-¢ € CL(D) implies ¢ € CL(®),
<r>¢eCL(P) implies ¢ € CL(®),

<ryre> ¢ € CL(P) implies <7 ><71y> ¢ € CL(D),
<riUrg>¢ e CL(®) implies <1 >¢,<ry>¢pe CL(D),
<rt>¢eCL(®) implies <7 ><71*>¢ e CL(®),

< ¢ >¢eCL(P) implies ¢/ € CL(®).

A path in a structure M is a sequence (sq, ..., s,) of states of M, such that for each (s;,_1,s;),
where ¢ = 1,..., ¢, there exists a simple program a« = P | P~ in ® such that (s;_1,s;) € R4. The
length of (sg,...,s,) is q.

We inductively define the set of paths Paths(r) of a program r in a structure M, as follows
(again we assume, without loss of generality, that in r all occurrences of the converse operator

are moved all way in):

Paths(a) = Ry (a=P|P7),

Paths(ry Ury) = Paths(ry)U Paths(ry),

Paths(risry) = {(S0,..s8us-r8¢) | (S0,...,84) € Paths(ry)
and (sy,...,84) € Paths(ra)},

Paths(™) = {(s)] s € S}U (Upno Paths(r')),

Paths(6'?) = {(s)| M,s &'}

We say that a path (sg) in M satisfies a formula ¢ which is not of the form < r > ¢ if
M, so |= ¢. We say that a path (so,...,s,) in M satisfies a formula ¢ of the form < 7y > --- <
r; > ¢', where ¢’ is not of the form < r' > ¢", if (sq,...,s,) C Paths(ry;---;1) and M, s, |= ¢,

Finally, if a denotes the atomic program P (resp. the converse of an atomic program P~),

then we write a~ to denote P~ (resp. P).

3 Local determinism

The first extension of £, called £y, is obtained from £ by adding the construct (< 1 a), where a
is a simple program (a = P | P~). The new construct is interpreted as follows: given a structure

M = (8,{R,},1l) and a state s € S,
M,s|=(<1a) iff there exists at most one t such that (s,t) € R,.

Observe that the (< 1 a) construct allows the notion of local determinism for both atomic
programs and the converse of atomic programs to be represented in the logic. With this construct,
we can denote states from which the running of an atomic program, or the converse of an atomic
program, is deterministic - i.e., it leads to at most one state. It is easy to see that this possibility
allows one to impose the so-called global determinism too - i.e., that a given atomic program, or
the converse of an atomic program, is (globally) deterministic. Therefore, £;4 subsumes the logic
studied in [16], called Converse Deterministic PDL, where atomic programs, not their converse,
are (globally) deterministic.

The decidability and the complexity of satisfiability in £;; are to be established yet. We
establish them below by showing an encoding of L;4-formulae in £. More precisely we show that,
for any L4-formula @, there is a £-formula, denoted v(®), whose size is polynomial with respect
to the size of @, and such that @ is satisfiable iff y(®) is satisfiable. Since satisfiability in £ is
EXPTIME-complete, this ensures us that satisfiability in £;4 is EXPTIME-complete too. In what

follows, we assume, without loss of generality, that ¢ is in negation normal form (i.e., negation

is pushed inside as much as possible). We define the L-counterpart v(®) of a Li4-formula ¢ as
the conjunction of two formulae, v(®) = y1(®) A y2(®), where:

e 71(®) is obtained from the original formula ¢ by replacing each (< 1 a) with a new proposi-
tional letter A< ¢ o), and each ~(< 1 @) with (< a > H< 1 o)) AN(<a>-H<y 4)), where

H< 1 4) is again a new propositional letter.

e 12(®)=[(PLU---UP,UP ---UP) |va A+ Av5, where Pp,..., P, are all atomic roles

appearing in ®, and with one conjunct 44 of the form

(A1 A <a>9¢) = [a]d)

for every A< 1) occurring in y1(®) and every ¢ € C'L(71(®)).

Intuitively 75(®) constrains the models M of 7(®) so that: for every state s of M, if A<y 4
holds in s, and there is an a-transition from s to ¢#; and an ae-transition from s to 9, then #; and
ty are equivalent wrt the formulae in C'L(71(®)). We show that this allow us to actually collapse
t; and i into a single state.

To prove that a Lyg-formula is satisfiable iff its L-counterpart is, we proceed as follows. Given
a model M = (§,{R,},1I) of y(®), we build a tree-like structure M* = (8%, {R.},1I*) such
that M* root |= v(®) (root € S* is the root of the tree-structure), and the local determinism
requirements are satisfied. From such M, a model M% of ® can easily be derived. In order to
construct M* we make use of the following notion: For each state s in M, we call by E.S(s) the

smallest set of states in M such that
o s€ S5(s), and
o if s € ES5(s), then for every s’ such that (s/,s") € Ra%A(gl oy T ES(s") C ES(s).

The set F.5(s) is the set of states of M that are to be collapsed into a single state of M*. Note
that, by v2(®), all the states in £.5(s) satisfy the same formulae in C'L(y1(®)). The construction
of M! is done in three stages.

Stage 1. Let < ay > ¥1,...,< ap > 1y, be all the formulas of the form < a > ¢’ included
in CL(®).! We consider an infinite h-ary tree 7 whose root is root and such that every node
x has h children child;(x), one for each formula < a; > ;. We write father(z) to denote the
father of a node x in 7. We define two partial mappings m and I: m maps nodes of 7 to
states of M, and [is used to label the arcs of 7 by either atomic programs, converse of atomic
programs, or a special symbol ‘undefined’. For the definition of m and [, we proceed level by
level. Let s € & be any state such that M,s |= v(®). We put m(root) = s, and for all arcs
(root, child;(root)) corresponding to a formula < a; > ; such that M,s E< a; > ; we put
[((root, childi(root))) = a;. Suppose we have defined m and [up to level k, let 2 be a node at
level k 4+ 1, and let I((father(z),2)) = aj. Then M, m(father(z)) E< aj > 1b;, and therefore,
there exists a path (s,,1,...,5,), with s, = m(father(z)) satisfying < a; > ;. Among the

'Notice that the formulas ¢; may be of the form < r > ¢, and that ¢; € CL(®).

states in £.S(sy) we choose a state ¢ such that there exists a minimal path (i.e., a path with
minimal length) from ¢ satisfying ;. We put m(z) = ¢ and for every < a; > 1; € C'L(®) such
that M,t =< a; > ¢; we put [((z,child(z))) = a;.

Stage 2. We change the labeling [, proceeding again level by level. If M,m(root) =
A(< 1 a), then for each arc (root,child;(root)) labeled a, except for one randomly chosen, we
put I((root, child,(root)) = ‘undefined’. Assume we have modified [up to level k, and let z be a
node at level & + 1. Suppose M, m(z) |5 A(< 1 4)- Then if I((father(z),z)) = a~, for each arc
(z,child;(x)) labeled a, we put {((z,childi(z)) = ‘undefined’, otherwise (i.e. I((father(z),z)) #
a”) we put [((z,childi(z)) = ‘undefined’ for every arc (z,child;(z)) labeled a, except for one
randomly chosen.

Stage 3. For each P, let R = {(z,y) € 7 | l((z,y)) = Porl((y,z)) = P~}. We define
the structure M* = (8!, {R.}, 1) as follows: S' = {& € T | (root,z) € (Up(Rp URE))*},
RL = Rp N (St x 5, and T (2) = M(m(z)) (Vz.z € 8'). From {R%} we get all {R.} as usual.

The basic property of M! is stated in the following lemma.

Lemma 1 Let & be a Lig-formula, and let M be a model of v(®). Then, for every formula
é € CL(y1(®)) and every x € S, M',z |= ¢ iff M,m(z) |z ¢.

Proof We prove the lemma by induction on the formation of ¢. We assume, without loss of

generality, V,[-] to be expressed by means of -, A, < - >.
L. ¢=A. M,m(z) E Aiff A€ l(m(z))iff A€ I'(z) (by construction of M*)iff M* 2 | A.

2. 0= o1 ANdg | 1. Mom(z) |E &1 A do iff Mom(z) = ¢1 A M,ym(z) | ¢ iff MY,z |=
& A M',z |= ¢y (by induction on the structure of the formula) iff M* z | &1 A ¢s.
Similarly, M, m(z) | =¢1 ifft M, m(z) [~ ¢ iff M,z [£ ¢ (by induction on the structure
of the formula) iff M,z |= —¢;.

3. < risre > 91, < rpUrg > d1, <1 > 91, < 937 > @1, and converse of non-atomic programs.

Recall that the following equivalences hold:

< TryTe > O ift <rp><rg>¢
<riUry > iff <1 > PV <19 > Py
<r* > ¢ iff v <r><rt> @
< 7 > ¢ ifft @1 A P
Moreover we may assume the converse operator applied only to atomic programs since we
have:
(ri;r2)™ = iy
(riUrg)” = ryUry
(r1)” = (ri)
(927)” = (¢27).

Hence all these cases are reducible to 1,2.4.

a

4. The only case that remains to be considered is ¢ =< a; > ¢;, i =1,...,h,a; = P| P™.

o = Assume M,m(z) =< a; > ;. Then there exists a path, (sg,s1,...,8,) with

so = m(x), satisfying < a; > v; such that m(child;(z)) € £S5 (s1) (by construction of
M?"). We prove M',z |=< a; > 1;, by induction on the length of this path. Notice
that the following facts hold: (sg,s1) € Ra;; (s1,...54) is a path satisfying ¢);; and
(2, child(z)) € R

Base case: ¢ = 1, i.e. either ; is not of the form < r > ¢', or ¢; is of the form
<ry>...<r;>¢@, where all r; are made up just of tests, and ¢’ is not of the form
<r>¢". Then M,s |= v; and m(child,(z)) € ES(s1) imply M?, child;(z) |= ¢; (by
induction on the structure of the formula), and so M*,z =< a; > ;.

Inductive case: ¢ > 1, ie. ¢, =< r > ¢.? Then from m(child;(z)) there exists
a minimal path (5’1,...,52,) satisfying v;, which is shorter or of the same length
as (S1,...,8). Now, @y =< r > ¢' implies that there exists a formula of the
form < ¢175027 - 50mTia; > ¥y € CL(71(®)) such that < ¢175097; -0 >
P, =>< r > ¢ (see 3) and (5’1,...,5;,) satisfies < a; > ;. By induction on ¢
it holds that M?, child(z) =< a; > t;, while by induction on the structure of
the formulae, M?, childi(z) = ¢1 A ¢a A -++ A . Therefore, MY, child;(z) E<
&1 P2l dm Ty aj > by, which implies MY, child(z) |= 14, and thus M' 2 E< a; >
Vi

< Assume that M, 2 E< a; > ¢; and let (2o, 21,...,2,), with 29 = 2 and 2y =
child;(z), be a path satisfying < a; > ;. Then M’ 2y |= ¢; and by construction of
M* there exists a state s such that s € FS(m(z1)) and (m(z),s) € R,,. Again we
prove that M, m(z) E< a; > 1; by induction on q.

Base case: ¢ = 1, i.e. either ; is not of the form < r > ¢', or ¢; is of the form
<ry > ... <r; > ¢, where all r;, are made up just of tests, and ¢’ is not of the
form < r > ¢”. Then by induction on the structure of the formula, M, s |= ¢; and so
M,m(z) =< a; > ;.

Inductive case: ¢ > 1, i.e. ¥ =<r > ¢'. Then M* zy E ¢; and (a1,...,2,), which

satisfies 1);, is obviously shorter than (zg,21,...,2,). Now, 1, =< r > ¢’ implies that
there exists a formula of the form < ¢17; 0275107 a5 > ¥; € CL(71(®)) such that
< 1Yol b lia; > b =< > ¢ (see 3), and (zq,...,2,) satisfies < a; > ;.

By induction on ¢ it holds that M,m(z1) =< a; > ;, while by induction on the
structure of the formulae, M, m(z1) E ¢1 A p2 A -+ A ¢p,. Therefore, M, m(z1) E<
0175027 -1 0 Ty a5 > 1y, which implies M, m(z4) = ;. Hence, since s € ES(m(x1)),
we have M, s |= 1;, and so M, m(z) =< a; > ;.

2Note that ¢’ may be of the form < r’ > ¢ itself.
®Note that ¢1,...¢m € CL(y1(®)).

Note that M* is a model of (®), since by Lemma 1 M*, root |= 41(®), and on the other hand
M? trivially satisfies y9(®), because whenever M* z |= A(< 14), there exists just one child;(z)
such that (z,child;(z)) € RE.

Once we have obtained M* from a model M of ¥(®), we define ML = (S8*, {RL}, 1), where
for each z € S, Mix(z) = M (z) — {ActapHi<1a) | A<1apHi<1a) € II*(z)}. The new
structure ML has the following property.

Lemma 2 Let ® be a Lg-formula, and let M', ML be obtained from a model M of v(®) as
specified above. Then M*, root |= v1(®) implies ML, root |= ®.

Proof Notice that, if M, s A(< 1 4) then, by construction of MY, there exists at most one w
such that (s,w) € R, implying that ML, s |E (< 1 a). On the other hand, if M*, s |= (< a >
Hi< 1)) AN(<a>-Hi<q), then there are at least two states ty,t; such that (s, ;) € R} and
(s,t3) € RL, implying that ML, s |= (< 1 a) The proof is easily completed by induction on the

structure of ®. O
The main theorem of this section can now be stated as follows.
Theorem 3 A Li4-formula ® is satisfiable iff its L-counterpart v(®) is satisfiable.

Proof = Notice that every model M = (S,{R,},II) of ® can be extended to a structure M’ =
(S, {R.},1I'), where, for each s € § such that M,s = (< 1 a), we put II'(s) = II(s) U{A< 1 o)},
and, for each s € § such that M,s E =(< 1 a), we choose one ¢ such that (s,t) € R, and
we put II'(1) = TI(t) U {H(< 1 4)}. M’ satisfies 71(®) and moreover it (trivially) satisfies 75(®).
Therefore M, s |= ® implies M, s |= v(P).

< Suppose that there exists a model M of v(®). Then, by applying the above described
construction we can build a new structure M? satisfying the local determinism requirements such
that, by the Lemma 1, M?, root |= 71(®), and thus by Lemma 2, ML, root | ®. O

Corollary 4 Satisfiability in Liq is an EXPTIME-complete problem.

Proof The satisfiability problem for £ is EXPTIME-complete, and the size of the £-counterpart
7(®) of a Li4-formula @ is polynomially related to the size of ®. O

The fact that £;4-formulae can be encoded in L, calls for some comments. Notice that L-
formulae have always a finite model M (finite model property) while £j4-formalae don’t - e.g.
the £y formula A A [(P7)*]((< 1 P7)A < P~ > = A does not have any finite model*. Indeed,
M*, and thus ML, build from a finite model M are not finite in general.

It is also interesting to observe that, since L;; subsumes Converse Deterministic PDL, also

formulae of that logic can be encoded in £. This fact gives us procedures to decide satisfiability

This formula is a variant of the Converse Deterministic PDL formula AA[(P™)] < P~ > —A (see for example

[16)).

of Converse Deterministic PDL formulae that do not rely on techniques based on automata on
infinite structures as those in [16].

Finally, the construction above can be easily modified /restricted to encode Deterministic PDL
formulae in PDL. In fact, the construction used in [1] to study satisfiability of Deterministic PDL,
is similar in the spirit, though not in the development, to such a restricted version of the our

construction.

4 Graded nondeterminism

The second extension of £, called L,,, is obtained from £ by adding constructs for graded
nondeterminism of the form (< n a.¢), (> n a.¢) where n > 1 and, as usual, a is a simple
program (a = P | P7). The semantics of these constructs is as follows: given a structure M and

a state s € S,
M,s = (<na¢) iff there are at most n states t such that (s,t) € R, and M,t = ¢

M,s = (>n a.¢) iff there are at least n states ¢ such that (s,t) € R, and M, |= ¢.

Note that (> n a.¢) is equivalent to (< n —1 a.¢).

Intuitively, if s is a state in which (< n a.¢) holds, then there may be at most n a-successors
of s in which ¢ holds. In particular (< 1 a.T) can be used for representing local determinism as
defined in the previous section.

Below we show that £,,-formulae can be encoded in £;4. Though, to gain some intuition on
this result for £,,, we first discuss the issues involved, in the context of the basic PDL.

On this simpler logic, we can work with deterministic structures - i.e., all atomic programs
are (globally) deterministic - instead of non-deterministic ones. In fact it is well-known (see [10])
that if we replace each atomic program P in a formula ® by Fp;(Fp)* where Fp and Fp are
new atomic programs that are (globally) deterministic, then, calling the resulting formula ®’, we
have that ® is satisfiable iff ®' is s0.° We briefly sketch the reasoning behind the proof of this
statement. Let M be a model of ®. We may “unfold” M so to get a new model M7 having
a the form of a tree. Now there is a one-to-one transformation form tree models M7 of ® to a
binary-tree models MP of ®'. Indeed, given a state z of M7 having as P-successor zq,. .., 2, we
put (z,21) € Rfép, and (z;,z41) € Rg},g, for i = 1,...,0 — 1. In this way we have (z,z) € RE
iff (z,2;) € Rfﬁp;(F}))*. We remark that the fact that M7 is a tree is required because in the
deterministic structure M P we need to be able to recover the “original” P-predecessor z of a
state z; (that is we need (Fp;(Fp)*)” to be deterministic), otherwise the mapping from the
nondeterministic structure M7 and the deterministic structure M® is not one-to-one anymore.

In deterministic structures it is easy to express graded nondeterminism by means of constraints

on the chain of Fp;(Fp)*-successors of a state. For example,

®Note that while it is necessary to introduce one Fp for each P, we could introduce just one Fy for all P;,

instead of all F' fpl. Here we have preferred to be slightly redundant, for sake of clarity.

o (<3 P.¢) can be expressed by [Fp; (Fp)*; 07 (Fp) ;0 (Fp)*; 07 (Fp)*]-¢ that is equiv-
alent to [Fp;(Fp)* (¢ = [(Fp)l(¢ = [(Fp)](¢ = [(Fp)*]-¢))), that can be read as
“everywhere along the chain Fp;(F'p)* there are at most three states in which ¢ holds”,

that corresponds exactly the intended meaning.

o (>3 P.¢) can be expressed by < Fp;(Fp)* ;07 (Fp)* ;07 (Fp)* > ¢ that is equivalent to
< Fpy(Fp)* > (oA < (Fp)* > (N < (Fp)* > ¢)), that can be read as “somewhere along
the chain Fp;(Fp)* there are at least three states in which ¢ holds”, that again corresponds

exactly the intended meaning.

Getting back to L, the presence of converse programs makes its structures no longer re-
ducible to tree structures as above®, making the technique sketched above inapplicable. Nonethe-
less we are able to obtain essentially the same results, by developing a more involved reduction.

Indeed, we are going to prove that for any £,, formula ® there exists a £;4 formula ®’, whose
size is polynomial wrt the size of ®, that is satisfiable iff ®" is so. Since we have proved in the
last section that satisfiability in L4 is EXPTIME-complete, this ensures us that satisfiability in
Ly is EXPTIME-complete too. The reduction is performed in two phases.

Phase 1
Let @ be a L, formula, we define y1(®) as follows:

1. In ®, we replace, every atomic program F;, ¢ = 1...m, by the complex program f; ; Ap,7; fa,
where fi, fy are new atomic programs (the only one present after the transformation) and

Ap, is a new atomic proposition. Let us call the resulting formula po(®).

2. We put in conjunction with po(®), the formula ©1 = [(f1 U U fi U)](< 1 fi) A
(< 1 f2)).
This imposes the global determinism of both f; and f; - i.e., in each model M = (S, {Ry,. Ry, }, 1),
Ry, and Ry, are partial functions.

Note that formulae of the form (- n P.¢)/(- n P~ .¢) become of the form (- n f{ ; Ap?; f2.¢)/
(- n f5; Ap?; f1.¢), thus specifying graded nondeterminism of complex programs. Though, ob-

serve that by ©4, the programs f;/f; are deterministic. In fact the following equivalences hold:

(<n fi5 ApY fo0) = (<n fi(<ApY fa>9)),
(>n fi ;s ApY fo0) = (20 fi(<ApY fa>9)),
(S (fiAp% f2)70) = (Sn fy (<ApTfi> 9)),
(zn (fi;AP1 f2)70) = (2n f; (<APLL>9)).

Lemma 5 ¢ is satisfiable iff p1(®) is satisfiable.

Proof = Let M = {S,{Rp}, I} beamodel of ®. We can define amodel of M" = {&', {R; , R, },1I'}
of p1(®) as follows:

Indeed the presence of converse programs makes the structures reducible to “two-ways” tree structures, as

opposite to “one-way” tree structures as needed here.

10

o §'=8U{zy | (z,y) € Rp, for some P;},

o Ry =A{(e0) [(2.9) € Re}, RY, = {200 9) | (2.y) € Ri},

. H’(x):{ I{Iff) tfs
Pt t=zy and (2,y) € Rp,.

The construction above implies (z,y) € Rp, iff (z,y) € R}_.A v
1 AP -2
Since R’ , R, are partial functions, it follows that © is satisfied all over M'. Finally, it is
easy to verify by induction on ® that M, s = ® iff M’ s |= po(®).
< Let M" = {S§' {R},R,},1I'} be a model of yy(®). We can define a model M =

{8,{Rp}, 11} of ® as follows. First we define Rp, = R}‘~AP %t Then, let s € &’ be a state
1 AP

such that M, s |= yy(®), we define S = {t | (s,1) € (U;(Rp, URE))*}, Rp, = Rp, N (S X 8),
II(t) = I'(t) — {Ap, for any P;} for all t € S. Observe however that because of the constructs for
graded nondeterminism, we need to make sure that for each (z,y) € R}I;Api?;fz) there is exactly
one zy such that (z;y,2) € RY and (zzy,y) € R,. That is the following constraint must hold:

(APi € H/(Zl) A AP,‘ S H/(Zg)) =
=((21,2) € R, A(2z,2) € Ry A(21,9) € R, A(22,9) € RY).

We claim that without loss of generality we can assume the constraint above to be satisfied by
M'. Indeed, suppose that this was not the case - i.e., suppose that there exist zq, z9 such that
Ap, € W(z1)ANAp, € T1'(29) and (21,2) € R A(22,2) € Ry A(21,9) € R, A(22,y) € RY,. Then,
consider the model M” made up by the model M’ and an exact copy of M’. Let z{, 2,2,y be
the states corresponding to z1, 22, x, y, respectively, in the copy. By definition of M”, the states
y and y' satisfy exactly the same formulae. So we can modify M"” by removing (z2,y) and (25, y’)
from R’ replacing them with (zg,y') and (23,y). The thus modified structure is still model of
11(®).7 Proceeding in this way for all the states violating the above constraint, we get a model
that satisfies it.

Finally, assuming that M’ does satisfy the above constraint, it is easy to verify that by
induction of po(®) that M', s |= uo(®) iff M, s = ®. O

Phase 2
We define pio(®) as follows:
1. In po(®), we recursively replace
e every occurrence of program f; ; Ap; fo by
(Fias Ap Y (F 1 AR) (Fips AR5 (Fi g3 ART)T) 7,

except for those in a construct for graded nondeterminism, where F; ;, Fz'/,j (i=1,...,m

and j = 1,2) are new atomic programs;

"Obviously the same thing can be done starting from 2 and =’.

11

o every (<n 73 Ap%: fo0) b
[(Fias AR5 (s Ap)5 (077 (B 15 AR7)™)" =
and every (> n f73 Ap; f2.6) b
< (Fi; AR (FL s ART)5 (917 (FL s AT)" >
where ¢/ =< ((Fio; AR5 (F 55 Ap?)")™ > ¢5°
o every (< n (fi ;AR f2)7.¢) by
[(Fias AR5 (Fi 3 Ap2)" (877 (B g3 AR 7)))0,
and every (> n (f; Ap; f2)7.¢) by
< (Fiai AR (Fi i AR)5 (677 (Fi i AR 7)) > ¢,
where ¢ =< ((Fiy; Aps (Fly; AR2))™ > 6.
Let us denote the resulting formula by u{(®).

2. We put in conjunction with ug(®), the formula Oy = [(Ui=1 ;n Ujz1 2((Fij U F}; U F5 U
FZ/;))*]OM ANbig A . oAby A0y, o, where each 6; ; is of the form:

(S1ENASTFEYASLE)ASLFT) A=< Fy > TA< FL > T).

This formula constraints the models of (@) so that Ry, | RF Ry, Ry are (partial)
functions, and each state cannot be linked to other states by both RF,, and RF/ Together
these facts imply that Rp, .4, 2, FiiAp,7)%) is a (partial) function.

Lemma 6 py(®) is satisfiable iff pa(®) is satisfiable.

Proof = Let M = {S,{Ry,Ry,},1I} be a model of py(®). Then we can build a model
M = {S" {R%},1I'} of pa(®) as follows. First, we define {R)}. Let 2 € S be any state such
that M,2 =< fi;Ap?; fa > T, and let z1,..., 2 be all the states such that (z,z) € Rfl_ and
M,z =< Ap 7 fy > T. We put (z,2) € ﬁ%m and for all k =1,...,1— 1 we put (2, 2k+1) €
ﬁ/F‘iI,ll We proceed similarly for € S such that M,z =< fy;Ap.?; f1 > T. Then, let s € S be
such that M, s |= p1(®), we define " = {t | (s,1) € (Uiz1m Uj=172(ﬁ;’m Uﬁ%ﬁ] Uﬁ;m Uﬁ;{d))*}’
Rp = Rpn(S' %8, and I'(t) = II(t) for all € §’. Note that since Ry, is a partial function,

R?Fl AR T(F! AR 7)) is a partial function as well. By this construction we have that

(@ 9) € Rpmnp gy M (209) € Rl oy (5745,)0 5(Fr oA p, 5L ysA 7))~

7,27

Moreover, O is satisfied all over M’.

8(¢'7; (F! ;3 Ap,7)*)" stands for n repetitions of ¢'?; (F/ ;; Ap,7)*).

2,99 2,90

12

Finally, considering that R(F AR T(E A p 7)) is a partial function, and that [(F} ;; Ap7;
s SN E

(Lt AR50 (FL AR Yo (< (LA (L Ap2Ys (01 (FL AR 7Y™ > 0) spec
fies that there are at most (at least) n states satisfying ¢, along the chain (£} ;; Ap,?; (F] ;3 Ap7)7,
it is easy to verify by induction on puo(®) that M, s |= uo(®) iff M', s = pus(P).

< Let M' = {S",{R}:},II'} be amodel of py(®). We can define amodel M = {S,{R¢, Ry}, 11}

of p1(®) as follows. First we define Ry, = RQF”,AP (R iAp 7)) (j =1,2). Then let s € S be

such that M, s |= pa(®), we define § = {t | (s,1) € (Rj, UR[,UR; UR;)"}, Ry, = Ry, N(SXS),
and II(¢) = 1I'(¢) for all t € 5.

Note that, by 05, R(F A p, Ti(F! A, 7))~ is a partial function, and hence Ry, is a partial
function as well, thus ©1 is satlsﬁed all over M.

Finally, c0n51der1ng again the meaning of [(F} ;; Ap, 75 (1] ;5 Ap, 1) (875 (1] ;s Ap))"]9 (<
(Fijs AR (FL 5 ApT)5 (07 (FL 3 Ap2)*)" ™1 > ¢), it is easy to Verlfy by induction on uH(®) that

Mios b @) A ¢ (). O
Observing that po(®) is a formula of £;4, we get the main result of this section.
Theorem 7 A formula ® of L, is satisfiable iff the formula pa(®) of Liq is satisfiable.

Considering that p3(®) is at most polynomially longer than ¢ we can state what is the complexity

of reasoning in L.

Corollary 8 Satisfiability in L,y s an EXPTIME-complete problem.

5 Conclusions

We have discussed two extensions of Converse PDL, which include constructs for local determin-
ism and graded nondeterminism respectively, showing that satisfiability in the resulting logics is
polynomially reducible to satisfiability in Converse PDL.

Among the various features of the logics presented in this paper, it is worth mentioning
that they allow us to model states that are in relationship with n other states through n-ary
relations (vs. binary relations as usual) - e.g., (s1,...,5,) € Rp can be expressed by (sg,s1) €
Rieiyeoy(SR,8,) € Ry, where sp is a new state and each r; is an atomic program which is
deterministic wrt the state sp - and assign to such relations functionality /cardinality constraints
- e.g., there are at most, say, three tuples whose first component is the same (see[3]). Although
the full impact of these possibility on reasoning about programs needs still to be investigated, we
believe that being able to specify n-ary relations is important at least for the use of these logics

in Knowledge Representation.

Acknowledgments

This work was partly funded be the ESPRIT BRA Compulog II, and the italian CNR under
Progetto Finalizzato Sistemi Informatici e Calcolo Parallelo, LDR Ibridi.

13

References

[1]

[2]

[3]

[4]
[5]

[6]

[10]

[11]

[12]

M. Ben-Ari, Halpern J. Y., and Pnueli A. Deterministic propositional dynamic logic: Finite
models, complexity, and completeness. Journal of Computer and System Sciences, 25:402—
417, 1982.

G. De Giacomo and M. Lenzerini. Boosting the correspondence between description logics
and propositional dynamic logics. Proceedings of the 12th National Conference on Artificial
Intelligence (AAAI-94). To appear, 1994.

G. De Giacomo and M. Lenzerini. Description logics with inverse roles, functional restric-
tions, and n-ary relations. In Proceedings of the 4th Furopean Workshop on Logics in Al
(JELIA-94). To appear, 1994.

M. Fattorosi-Barnaba and F. De Caro. Graded modalities. Studia Logica, 44:197-221, 1985.

K. Fine. In so many possible worlds. Notre Dame Journal of Formal Logic, 13(4):516-520,
1972.

N. J. Fisher and R. E. Ladner. Propositional dynamic logic of regular programs. Journal of
Computer and System Sciences, 18:194-211, 1979.

D. Harel. Dynamic logic. In D. M. Gabbay and F. Guenthner, editors, Handbook of Philo-
sophical Logic, pages 497-603. D. Reidel Publishing Company, Oxford, 1984.

D. Kozen and J. Tiuryn. Logics of programs. In J. van Leeuwen, editor, Handbook of

Theoretical Computer Science, pages 790-840. Elsevier Science Publishers, 1990.

R. Parikh. The completeness of propositional dynamic logic. In Proceedings of the 7th
Symposium on the Mathematical Foundations of Computer Science, number 64 in Lecture

Notes in Computer Science, pages 403-415. Springer-Verlag, 1978.

R. Parikh. Propositional dynamic logic of programs: A survey. In Proceedings of the 1st
Workshop on Logic of Programs, number 125 in Lecture Notes in Computer Science, pages
102—-144. Springer-Verlag, 1981.

V. R. Pratt. Models of program logics. In Proceedings of the 20th IEFE Symposium on the
Foundations of Computer Science, pages 115-122, 1979.

V. R. Pratt. A near-optimal method for reasoning about action. Journal of Computer and
System Sciences, 20:231-255, 1980.

K. Schild. A correspondence theory for terminological logics: Preliminary report. In Pro-
ceedings of the 12th International Joint Conference on Artificial Intelligence (IJCAI-91),
pages 466471, 1991.

14

[14] C. Stirling. Modal and temporal logic. In S. Abramsky, D. M. Gabbay, and T. S. E. Maibaum,
editors, Handbook of Logic in Computer Science, pages 477-563. Clarendon Press, Oxford,
1992.

[15] W. van der Hoek. On the semantics of graded modalities. Journal of Applied Non-Classical
Logics, 2(1):81-123, 1992.

[16] M. Vardi and P. Wolper. Automata-theoretic techniques for modal logics of programs.
Journal of Computer and System Sciences, 32:183-221, 1986.

15

