PDL-based framework for reasoning about
actions

Giuseppe De Giacomo and Maurizio Lenzerini

Dipartimento di Informatica e Sistemistica
Universita di Roma “La Sapienza”
Via Salaria 113, 00198 Roma, [talia
{degiacomo,lenzerini}@assi.dis.uniromal.it

Abstract. Propositional Dynamic Logics (PDL’s) provide a suitable
formal framework for modeling actions and reasoning about them. How-
ever, the basic language of PDL’s lack several features that are impor-
tant for a sophisticated treatment of actions. In this paper, we present
a new logic that is obtained by enriching the basic PDL with powerful
modeling constructs that allow us to represent determinism and non-
determinisms, concurrency, hierarchies, mutual exclusion, backward ex-
ecution, and non-execution of actions. We demonstrate, by means of
examples, the expressive power of the formalism. In particular, we show
that although nonmonotonicity is not generally captured by PDL’s, our
logic is perfectly suited for exploiting monotonic solutions to the frame
problem. Finally, we establish that the proposed formalism is decidable,
and that the basic reasoning problems are EXPTIME-complete.

1 Introduction

Propositional Dynamic Logics (PDL’s) are modal logics for describing and rea-
soning about system dynamics in terms of states and actions (or events) modeled
as relations between states (see [19, 15, 23] for surveys on PDL’s, see also [31]
for a somewhat different account). The basic language of PDL includes atomic
propositions, that are interpreted as simple properties of states, plus the con-
struct [R]¢, where ¢ is a formula and R is an action, whose meaning is that
all executions of the action R terminate in a state where ¢ is true. The action
R can be either atomic or complex, i.e. constituted by sequential composition,
nondeterministic choice, iteration, or test.

PDL’s have been originally developed in Theoretical Computer Science to
reason about program schemas [9], and their variants have been adopted to
specify and verify properties of reactive processes (e.g., Hennessy Milner Logic
[16, 22], modal mu-calculus [18, 20, 31]). In Artificial Intelligence, PDL’s have
been extensively used in establishing decidability and computational complexity
results of many formalisms: for example they have been used in investigating
Common Knowledge [14], Conditional Logics [10], Description Logics [29, 6, 7],
Features Logics [1].

Though PDL’s have been only sparingly adopted for reasoning about actions
(main exceptions being [28, 17], but also [4]) there are two significant arguments

that make them attractive.

1. Transition systems are the semantics adopted by an increasing number of
proposal in reasoning about actions (see for example [3]). Transition systems
are exactly the semantics underling PDL’s.

2. Reiter’s work on cognitive robotics [24, 26, 27, 21] has somewhat diverged the
interest from nonmonotonic solutions to the frame problem, by illustrating
that monotonic solutions are often very succinct. Now, while PDL’s generally
do not capture nonmonotonicity, they allow for exploiting the epistemological
insight of the monotonic solutions to the frame problem, as shown later (see

also [8]).

The general advantages PDL’s offer in reasoning about actions are, on the
one hand, the ability of expressing nondeterministic and complex actions, and,
on the other hand, the availability of sophisticated tools for studying their com-
putational aspects such as decidability, complexity, and reasoning algorithms.

In this paper we propose a very powerful Propositional Dynamic Logic,
DIFR, which offers an effective framework to model and reason about actions.
The logic extends the previous formalisms in many ways. It allows for boolean
expressions of atomic actions by which we can denote both the concurrent execu-
tion and the nonexecution of actions. It allows for expressing interdependencies
between atomic actions such as specialization or mutual exclusion. It also in-
cludes constructs to impose the determinism of boolean combinations of atomic
actions and their inverse. Notably, the logic is decidable and its computational
complexity is EXPTIME (tight bound) as for the simplest PDL [9].

The rest of the paper is organized as follows: In Section 2 we introduce the
logic PZFR both formally and intuitively; In Section 3 we illustrate, by means
of examples, the use of DZFR in modeling and reasoning about actions; In
Section 4 we discuss DZFR main features individually and we draw some con-
clusions.

2 The logic DIFR

Formulae in the logic DZFR are of two sorts: action formulae and state formulae.

Action Formulae describe properties, by means of boolean operators, of atomic
actions -1.e., actions that cannot be broken in sequences of smaller actions. The
abstract syntax of action formulae is as follows:

pu=Plany |pi Apz|p1Vops|-p

where P denotes a primitive action, and any denotes a special atomic action
that can be thought of as “the most general atomic action”. Observe that an
atomic action denoted by an action formulae is composed, in general, by a set
of primitive actions intended to be executed in parallel.

State Formulae describe properties of states in terms of propositions and com-
plex actions. The abstract syntax for state formulae is as follows:

¢ =A|T|L|d1A@2| 1 V|0 |
[R]¢ | (R)¢ | (funr)

rou=plpT

RZZIT|R1VR2|R1;R2|R*|¢>?|R_

where A denotes a primitive proposition, T denotes “true”, L denotes “false”, ¢
(possibly with subscript) denotes a state formula, » denotes a simple action which
is either an atomic action or the inverse of an atomic action (i.e, set of primitive
actions or of inverse of primitive actions), and finally R (possibly with subscript)
denotes a complex action composing simple actions by nondeterministic choice,
sequential composition, reflexive transitive closure, test, and inverse.

Let us explain the intuitive meaning of some formulae: the action formula Py A Py
means “perform P and P, in parallel”; =P means “don’t perform P”. In general
an atomic formula p denotes a set of primitive actions that are performed in
parallel and a set that are not performed at all (note that primitive actions that
are not in these sets could be performed as well -1.e., we are adopting an open
semantics for action formulae).

By forcing the validity of action formulae we can represent hierarchies of
atomic actions, for example by climb_stairs = climb ' we can represent that
the action climb_stairs is a specialization of the action climb. In the same way we
can represent mutual exclusion, for example by —(open_window A close_window)
we can represent that the actions open_window and close_window cannot be
performed together.

From atomic actions we build complex actions by means of constructors
that are intuitively interpreted as follows: R; V Ry means “nondeterministically
perform R; or perform R»”; Ri; B2 means “perform R; and then R»”; R* means
“repeat R a nondeterministically chosen number of times”; ¢7 means “test ¢
and proceed only if true”; R~ means “perform R in reverse”. By using these
constructs we can build complex action such as if ¢ then R; else R», which is
represented by (¢7; Ra) V (=¢7; R2), or while ¢ do R which is represented by
(67; R)*; 7.

Turning to state formulae: [R]¢ expresses that after every performance of the
action R the property ¢ is satisfied; (R)¢ expresses that after some performance
of the action R the property ¢ is satisfied -i.e. the execution of R can lead to a
state where ¢ holds (recall that actions are nondeterministic in general).

The formula (R)T expresses the capability of performing R; [R].L expresses
the inability of performing R; [-r]L expresses the inability of performing any
atomic actions other than those denoted by r; [-any]L expresses the inability
of performing any atomic actions at all; (any)T A [-r]L expresses the necessity
or inevitability to perform some of the atomic actions denoted by 7.

1 As usual we will use @ = b an abbreviation of —a V b.

The construct (funr) called functional restriction allows us to impose that
the performance of a simple action r (i.e., an atomic action or the inverse of
an atomic action) is deterministic. Hence [r]¢ A (funr) expresses that if the
atomic action r 1s performed, then it deterministically leads to a state where
¢ holds. Note that this does not implies that the action r can be performed.
The formula {r)¢ A (funr) expresses that atomic action r can be performed and
deterministically leads to a state where ¢ holds.

Propositional Dynamic Logics are subsets of Second Order Logic, or, more
precisely, of First Order Logic plus Fixpoints. Typical properties that are not first
order definable are: (R*)¢, which expresses the capability for performing R until
¢ holds, and is equivalent to the least fixpoint of the operator AX.(¢ V (R)X);
[R*]#, which expresses that ¢ holds in any state reachable from the current one
by performing R any number of times, and is equivalent to the greatest fixpoint
of the operator AX.(¢ A [R]X). Interesting special cases of the last formula are:
[any*]¢, which expresses that ¢ holds from now on -i.e., no matter how the
world evolves from the current state ¢ will be true; and [(any V any™)*]¢, which
expresses that ¢ holds in the whole connected component containing the current
state (the state in which the formula holds).

The formal semantics of DZFR 1s based on the notion of Kripke structure
or transition system, which is defined as a triple M = (S,{Rg},V), where S
denotes a set of states, {Rg} is a family of binary relations over S, such that
each action R is given a meaning through Rp, and V is a mapping from atomic
propositions to subsets of § such that V(A) determines the states where the
proposition A is true. The family {Rg} is systematically defined as follows:

Rany C S x S,

Rp C Rany,

Rpinps = Rpy MR,

Rpivps = Rpy UR s,

R—.p IRany —Rp,

Rp- ={(s51,52) €S x S| (s2,51) ER,},
Rr=R, ifr=p,

Rr=R,- ifr=p7,

Rr,vr, = Rr, URR,,

RR,:R; = Rr, ©RRr, (seq. comp. of Rg, and Rg,),
Rp~ = (Rr)* (refl. trans. closure of Rg),
Rgr- = {(51,82) ESxS| (82,81) €Rg},
R¢? :{(8,8) ESXS|Ma5 ':¢}

Note that actions (even primitive actions) are nondeterministic in general.

The conditions for a state formula ¢ to hold at a state s of a structure M,
written M, s |= ¢, are:

M, s = Aiff s € V(A)

M,s =T always,

M,s =L never,

M,s = ¢1 Ao iff M, s = ¢y and M, s |E ¢o,
M,sE g1 Vo it M,s = ¢y or M,s |E ¢,
M,s =g iff M,s £ ¢,

M,s E(R)¢ iff 3s'.(s,5') € Rg and M,s" |= ¢,
M,s |E [R]¢ iff ¥s'.(s,s") € R implies M, s' = ¢,
M, s |E (funr) iff exists at most one s'.(s,s') € R,.

A structure M is a model of an action formula p if R, = Rany. A structure
M is a model of a state formula ¢ if for all s in M, M,s | ¢. Let I' be a finite
set of both state and action formulae, a structure is a model of I" if is a model
of every formula in I'. A set of formulae I' logically implies a (state or action)
formula +, written

r'Ev

if all the models of I' are models of ¢ as well.

A crucial question to be answered is: Is logical implication decidable in
DIFR? If yes, which is its computational complexity? Note that known re-
sults in PDL’s do not help directly. Tt is possible to prove (see [5]) that this
problem is indeed decidable and its computational complexity can be precisely
characterized, by providing a reduction to the PDL DZF presented in [6].

Theorem 1. Logical implication for DIFR s an EXPTIME-complete problem.

Observe that logical implication is already EXPTIME-complete for the basic
modal logic K (which corresponds to a Propositional Dynamic Logic including
just one primitive action, no functional restrictions, and no action constructor
at all).

3 Examples

Below we show the power of DZFR in modeling a dynamically changing world by
means of two examples. We remark that those examples do not aim at providing
the definitive DZFR-based formalizations of the scenarios they describe, nor
they exhaust the possibility of using DZFR in representing and reasoning about
actions?. They are intended to give a taste of what can be done with such a logic.
In the examples we refer to situation calculus as it is presented in [24, 26, 27, 21].

Example: Lifting both sides of a table A vase is on top of a table, and if
just one side is lifted then it slides down and falls on the floor. However if both

2 In addition these examples do not make use of many features of the logic such as
axioms on atomic actions.

sides are simultaneously lifted this doesn’t happen [12]. We formalize the sce-
nario as follows. We consider the following primitive propositions (corresponding
to “propositional” fluents in situation calculus): vase_on_table, down_le ft_side,
down_right_side; and the following primitive actions (corresponding to actions in
situation calculus®): vase_slides_down, lift_le ft, lift_right. The intended mean-
ing of these propositions and actions is the natural one (sometimes we use initials
as abbreviations):

As usual actions have preconditions which are conditions that must be satis-
fied in order to be able to perform the action?.

(liftleft)T = downleft_side
(lift_right)T = down_right_side
(vsd) T = (vot A ((dls A —drs) V (—dls A drs)))

Actually the if part of the last axioms must be strengthened: If the vase is on
the table and one of the side of the table is not on the floor, then it is inevitable
(not just possible) that the vase slides towards the floor. This can be enforced
by:

' (vot A ((dls A =drs) V (=dls Adrs))) = (any) T A [-wsd] L.

We also need to specify when the actions lift_left and lift_right can be
performed simultaneously. With the next axiom we assert that they can be
performed simultaneously simply if they both can be performed individually:

(liftleft Nliftoright)T = (liftleft)T A (lift_right)T.
Actions have effects if they can be performed?:

[liftleft]-down_lefi_side
[lifi_right]~down_righi_side
[vase_slides_down]—wase_on_table

As usual we need to cope with the frame problem. We do it by adopting
a monotonic solution as in [13, 30, 24]. We enforce the following frame azioms
saying that if the vase is on the table then all atomic actions not including
vase_slides_down leave the vase on the table; if the vase is not on the table then
no atomic action will change its position; etc.:

vase_on_table = [~wase_slides_down]vase_on_table

down e ft_side = [~lift_left]down_left_side
down_right_side = [-lift_right]down_right_side

—wase_on_table = [any]|—vase_on_table
—down_le fi_side = [any]—downle ft_side
—down_right_side = [any]|~down_right_side

? Note that (contrary to what is usually assumed in situation calculus) actions are not
necessarily deterministic in DZFR.

* Note that (r)T have the same role as Poss(a, s) in Reiter’s situation calculus.

° Note that state formulae of the form [a]¢ have the same rtole as Poss(a,s) =
¢(do(a,s)) which is a common formula configuration in Reiter’s situation calculus
[24, 27].

We adopted the last three axioms for sake of brevity.
Let us call I' the set of the axioms above and let the starting situation be

described by
S = vase_on_table A down e ft_side N\ down_right_stde.
Then we can make the following two inferences. On the one hand:
I' =S = [l ANlr][vase_slides_down] L

that is if the vase is on the table and both the sides of the table are on the floor,
then lifting the two sides concurrently does not make the vase falling. On the
other hand:

I'E S = [l A-lr][lr]—vase_on_table

that is if the vase is on the table and both the sides of the table are on the
floor, then lifting first the left side without lifting the right side and then the
right side, has as a result that the vase is fallen. Notice that the above inferences
don’t say anything about the possibility of performing the actions described,
however this possibility is guaranteed by I' = S = (lift_left ANlift_right)T and
I'E S = ((liftleft A=lift_right);lift_right))T respectively.

Example: Making the heating operative We want to make our (gas) heating
operative. To do so we need to strike a match, to turn its gas handle on and to
ignite the security flame spot. To strike a match we need to concurrently press
the match against the match box and rub it until it fires.

We make the following intuitive assumption: the past is backward linear that
is from any state there is only one accessible (immediately) previous state. This
can be easily imposed by means of the following axiom:

(funany ™).

We assume the following preconditions and effects of actions.

Preconditions:
turn_on_gas)T = —gas_open

(
(turn_of f_gas)T = gas_open
(ignite_flame_spot) T = match_lit
(press)T = —match lit

(rub) T = —match_ it

(while —~match_lit do (press A rub))T

Effects:
match_lit \ gas_open =

[ignite_flame_spotlheating operative
[turn_on_gas]gas_open
[turn_of f _gas]—gas_open

In this example we model frame axioms more systematically starting from
explanation closure arioms [30] in line with [24, 27]. There are two main difficulty
in following this approach in PDL: the first is that, as in any modal logic, we can

directly refer to just one state the “current one”, the second is that we cannot
quantify on atomic actions. In DZFR we can overcome these difficulties. By
assuming (funany™) from the current state we can univocally refer back to the
previous state through the action any~. On the other hand by using the action
any we can simulate the universal quantification on atomic actions. Hence we
proceed as follows from the current state we make a step forward and then we
model the various condition backward. This leads to the following frame axioms:

[any]—-gas_open =

(any ™)—gas_open V (turn_of f _gas™)T
[any]—matchlit =

(any ™)—match_lit
[any]—healing operative =

(any ™)—heating_operative

[anylgas_open =

(any ")gas_open V (turn_on_gas™)T
[any]match lit =

(any " Yymatch lit V {(press Arub)™)T
[any]heating operative =

(any " Yheating _operativeV

(ignite_flame_spot™)gas_open

For example the last axiom says: “consider any successor state (such a state
has exactly one previous state which is the current state), if the heating is
operative in such a state then either it was operative in the previous state or
the action ignite_flame_spot was just performed and the gas was open in the
previous state” .’

Let us call I" the set of all these axioms, and let the starting situation be

described by
S = —open_gas A ~match_lit A —heating_operative

5 The frame axioms can be proved to be equivalent to the following ones (respecting
the order):

gas_open = [“turn_of f_gas|gas_open
match lit = [any]match_lit
heating_operative = [any|heating_operative

—gas_open = [—turn_on_gas|-gas_open
—match_lit = [-(press A rub)]—match_lit
—heating_operative =
[-ignite_flame_spotV
—gas_open?; any|-heating operative.

The last axiom says: “if the heating is not operative then every performance of an
atomic action not including tgnite_flame_spot and every performance of any action
starting from a state in which the gas is not open, leads to a state where the heating
is still not operative”.

The first inference we are interested in is the following:
I' E S = (any™)heating operative

i.e., there is a sequence of action (a plan) starting from a situation described by
S resulting in making the heating operative. Assuming all primitive actions to
be deterministic, inferences of the form

I' =S = (any")G

are the typical starting point in planning synthesis [11]: if the answer is yes then
from the proof we can generate a working plan to achieve the goal G starting
from an initial situation described by S. The dual of the above inference

I'E S = [any"]G

is of interest as well: it establishes that there are no plan at all achieving a given
goal GG starting from a situation described be S.

Next inference says that the complex action “strike a match turn on the gas,
ignite the control flame spot” results in making the heating operative:

I' = (while —match_lit do (press A push);
turn_on_gas;
tgnite_flame_spot
Yheating_operative

Note that the similar action “turn on the gas, strike a match, ignite the control
flame spot” is not guaranteed to make the heating operative.

I' [£ (turn_on_gas;
while —match_lit do (press A push);
tgnite_flame_spot
Yheating_operative

The reason why above the complex action may fail is because the gas could be
turned off while we are trying to strike the match.

The problem of checking inferences as the two above is known as projection
problem (see e.g. [26]). A typical projection problem as the form: Does G hold
in the state reachable from initial situation described by S by executing the
(complex) action a7 This corresponds to checking the inference below:

I'ES=(0)d.

We have seen that executing the complex action “turn on the gas, strike a
match, ignite the control flame spot” may fail to make the heating operative. If
this is the case, the following inference tells us that the gas has been turned off
before striking the match succeeded:

I' E (turn_on_gas;
while —match_lit do (press A push);
tgnite_flame_spot
Y(—heating operative =
((any ~;any ™)*;turn_of f_gas)T)

Inferences as the one above are answers to “historical queries” [26, 25] -i.e.,
queries of the form: if from the initial state described by S we execute the
complex action « getting ¢, then does this implies that before the termination
of a, a given formula ¢’ is true in some state, or that a given action a has been
executed? These questions can be answered by checking the inferences”:

I'E S=(a)(¢= ((any”)*)¢')

I'E S=(a)(¢ = ((any™)";a7)T).

4 Discussion

It is our opinion that Propositional Dynamic Logics offer a elegant framework
with a well understood semantics and precise computational characterization,
that makes them a kind of Principled Monotonic Propositional Situation Calcu-
lus extended to deal with complex actions.

According to this perspective, DZFR has been designed to address issues
that are important in modeling actions but are not satisfactorily dealt with by
traditional PDL’s. Here, we briefly discuss the most relevant features of DZFR
in modeling actions.

e The ability of specifying the performance of different atomic actions concur-
rently. This characteristic, illustrated in the examples of Section 3, is one of the
most original aspects of DZFR. Indeed, the attention to reason about concurrent
actions has emerged only recently. DZFR takes into account concurrency of ac-
tions that cannot be interrupted (atomic actions in our terminology). Obviously
further work has to be done for capturing more general forms of concurrency. In
this context, we argue that it is relevant for the Al community to look at the
vast computer science literature on modeling concurrent processes.

e The ability of specifying the “non-execution” of atomic actions. This feature
called for a careful definition of the notion of “non-executing an action”. In our
approach, this notion has been formulated by interpreting it as “the execution
of some action other than a given one”. Observe that it is essentially this feature
that allows us to provide a compact representation of the frame axioms, as
illustrated in the examples above.

e The ability of structuring atomic actions. In particular, DZFR allow the de-
signer to organize actions in hierarchies, where actions are related by means
of two basic mechanisms: one for stating that an action is a specialization of
another one, and the other for representing mutual exclusion between actions.

" Observe that ¢’ (a) could be true (executed) before the starting of o in the for-
mulation above. To avoid this we need to distinguish the initial state, for example
by assuming that the initial situation does not have a past, which can be done by
including in S the state formula [any ~]L.

e The ability of distinguishing deterministic and nondeterministic atomic ac-
tions. Note that in DZFR the determinism or nondeterminism of an atomic
action may be modeled on a state-to-state basis. This ability provides the de-
signer with more expressive power with respect to the case where actions are
assumed to be always deterministic. Indeed in this last case there 1s no distinc-
tion between nondeterminism and incomplete knowledge about the situation
resulting from executing an action (see for example [2]).

e The ability of expressing properties of both future and past states. In particu-
lar, the usual linearity of the past can be asserted. This ability makes our logic
capable to reason about not only projection problems but also historical queries.
Some examples of these have been provided in Section 3.

The result on the computational properties of DZFR shows that the logic is
decidable, which means that reasoning procedure that are sound, complete, and
terminating are available. Space limitations prevented us to elaborate more on
this issue, the interested reader is referred to [5] for a deep investigation.

References

1. P. Blackburn and E. Spaan. A modal perspective on computational complexity of
attribute value grammar. Journal of Logic, Language and Computation, 2:129-169,
1993.

2. C. Boutilier and N. Friedman. Nondeterministic actions and the frame problem.
In [3], 39-44, 1995.

3. C. Boutilier, M. Goldszmidt, T. Dean, S. Hanks, D. Heckerman, and R. Reiter, ed-
itors. Working notes of the AAAT 1995 Spring Symposium on Extending Theories
of Action: Formal and Practical Applications, Stanford, CA, USA, 1995.

4. P. Cohen and H. Levesque. Intention is choice with communication. Artificial
Intelligence, 42:213-261, 1990.

5. G. De Giacomo. Decidability of Class-Based Knowledge Representation For-
malisms and their Application to Medical Terminology Servers. PhD thesis, Dipar-
timento di Informatica e Sistemistica, Universita di Roma ”La Sapienza”, 1995.

6. G. De Giacomo and M. Lenzerini. Boosting the correspondence between descrip-
tion logics and propositional dynamic logics. In Proceedings of the 12th National
Conference on Artificial Intelligence, pages 205212, 1994.

7. G. De Giacomo and M. Lenzerini. Description logics with inverse roles, functional
restrictions, and n-ary relations. In Proceedings of the 4th European Workshop on
Logics in Artificial Intelligence, LNAT 838, pages 332-346. Springer-Verlag, 1994.

8. G. De Giacomo and M. Lenzerini. Enhanced propositional dynamic logic for rea-
soning about concurrent actions (extended abstract). In [3], pages 62-67, 1995.

9. N. J. Fisher and R. E. Ladner. Propositional dynamic logic of regular programs.
Journal of Computer and System Sciences, 18:194-211, 1979.

10. N. Friedman and J. Halpern. On the complexity of conditional logics. In Proc.
of the 4th Int. Conf. on Principles of Knowledge Representation and Reasoning,
1994.

11. C. Green. Theorem proving by resolution as basis for question-answering systems.
In Machine Intelligence, volume 4, pages 183-205. American Elsevier, 1969.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

G. Grosse. Propositional state event logic. In Proceedings of the 4th Furopean
Workshop on Logics in Artificial Intelligence, LN AT 838, pages 316-331. Springer-
Verlag, 1994.

A. Haas. The case for domain-specific frame axioms. In Proc. of the Workshop on
the Frame Problem, pages 343-348. Morgan Kaufmann Publishers, 1987.

J. Halpern and Y. Moses. A guide to completeness and complexity for modal logics
of knowledge and belief. Artificial Intelligence, 54:319-379, 1992.

D. Harel. Dynamic logic. In D. M. Gabbay and F. Guenthner, editors, Handbook
of Philosophical Logic, pages 497-603. D. Reidel Publishing Company, Oxford,
1984.

M. Hennessy and R. Milner. Algebraic laws for nondetrminism and concurrency.
Journal of Association for Computing Machinery, 32:137-162, 1985.

H. Kautz. A first order dynamic logic for planning. Master’s thesis, Department
of Computer Science, University of Toronto, Toronto, Ontario, Canada, 1980.

D. Kozen. Results on the propositional mu-calculus. Theoretical Computer Sci-
ence, 27:333-355, 1983.

D. Kozen and J. Tiuryn. Logics of programs. In J. van Leeuwen, editor, Handbook
of Theoretical Computer Science, pages 790-840. Elsevier Science Publishers, 1990.
K. J. Larsen. Proof systems for satisfiability in Hennessy-Milner logic with recur-
sion. Theoretical Computer Science, 72:265-288, 1990.

F. Lin and R. Reiter. State constraints revisited. Journal of Logic and Computa-
tion, Special Issue on Action and Processes, 4(5):655-678, 1994.

M. Milner. Communication and Concurrency. Prentice-Hall, 1989.

R. Parikh. Propositional dynamic logic of programs: A survey. In Proceedings
of the 1st Workshop on Logic of Programs, LNCS 125, pages 102-144. Springer-
Verlag, 1981.

R. Reiter. The frame problem in the situation calculus: A simple solution (some-
times) and a completeness result for goal regression. In Artificial Intelligence and
Mathematical Theory of Computation: Papers in Honor of John McCarthy, pages
359-380. Academic Press, 1991.

R. Reiter. Formalizing database evolution in the situation calculus. In Proc. Int.
Conf. on Fifth Generation Computer Systems, pages 600—609, 1992.

R. Reiter. The projection problem in the situation calculus: a soundness and com-
pleteness result, with an application to database updates. In Proc. First Int. Conf.
on Al Planning Systems, pages 198-203, 1992.

R. Reiter. Proving properties of states in the situation calculus. Artificial Intelli-
gence, 64:337-351, 1993.

S. Rosenschein. Plan synthesis: a logical approach. In Proc. of the 8th Int. Joint
Conf. on Artificial Intelligence, 1981.

K. Schild. A correspondence theory for terminological logics: Preliminary report.
In Proc. of the 12th Int. Joint Conf. on Artificial Intelligence, 1991.

L. Schubert. Monotonic solution of the frame problem in the situation calculus:
an efficient method for worlds with fully specified actions. In Knowledge represen-
tation and Defeasible Reasoning, pages 23—67. Kluwer Academic Press, 1990.

C. Stirling. Modal and temporal logic. In S. Abramsky, D. M. Gabbay, and
T. S. E. Maibaum, editors, Handbook of Logic in Computer Science, pages 477—
563. Clarendon Press, Oxford, 1992.

This article was processed using the INTpX macro package with LLNCS style

