Making CATS out of kittens: description logics with aggregates

Giuseppe De Giacomo and Maurizio Lenzerini
Dipartimento di Informatica e Sistemistica
Universita di Roma “La Sapienza”

Via Salaria 113, 00198 Roma, Italia
{degiacomo,lenzerini}@assi.dis.uniromal.it

Abstract

Based on the research done in the last decade,
attempts have been made to propose descrip-
tion logics as unifying formalisms for the var-
ious class-based representation languages used
in different areas. These attempts have made
apparent that sound, complete, and decidable
description logics still suffer from several lim-
itations, regarding modeling classes of aggre-
gate objects, expressing general inclusion ax-
ioms, and the ability of navigating links be-
tween classes. In this paper, we propose a pow-
erful description logic overcoming the above
limitations and we show that its reasoning tasks
are decidable in worst case exponential time.

1 Introduction

Description logics are AI formalisms that allow one
to represent domain knowledge by focusing on classes
of objects [Brachman,1977] and their relationships
[Woods,1975], and offering specialized inferences on the
class structure.

The research developed in the last decade offers a
quite complete picture of several issues related to the
expressive power of the logics and the computational
complexity of the reasoning tasks (see [Woods and
Schmolze,1992]). Based on the outcome of this re-
search, attempts have been made to propose descrip-
tion logics as unifying formalisms for the various class-
based representation languages used in different areas,
such as semantic networks, feature logics, conceptual
and object-oriented database models, type systems, and
other formalisms used in software engineering [Bergam-
aschi and Sartori,1992; Piza et al.,1992; Borgida,1992;
Calvanese et al.,1994; Schreiber et al.,1993]. However,
these attempts have made apparent that description log-
ics equipped with sound, complete, and terminating rea-
soning procedures still suffer from several limitations
that are not acceptable when representing complex do-
mains in the different fields mentioned above. Here is a
list of the most important limitations.

e The domain of interpretation is flat, in the sense

that the logics consider the world as constituted by ele-
mentary objects (grouped in concepts) and binary rela-
tions between them. One consequence of this property
is that N-ary relations are not supported (an exception
is the logic proposed in [Schmolze,1989], for which no
complete decision procedure was proposed). In fact, N-
ary relations have been shown to be important in several
contexts (see [Catarci and Lenzerini,1993]), especially in
databases and natural language. For example, ‘exam’ is
correctly modeled as a ternary relation over ‘student’,
‘professor’ and ‘course’. Note that supporting N-ary re-
lations means that the logic offers suitable mechanisms
for their definition and characterization. For example,
one has to ensure that no pair of ‘exam’ instances con-
nect the same triple of objects; also, one may want to
assert that students linked to graduate courses by the
relation exam are graduate students. These kinds of
properties cannot be represented by simply modeling the
N-ary relation in terms of N binary relations.

e Usually, general inclusion axioms are not supported.
Although inclusion axioms are essential when we want
to assert properties of classes and relations, as required
in complex domains, most of the research on descrip-
tion logics either deals with class descriptions only, or
impose severe restrictions, such as acyclicity, on axioms.
Exceptions are, for example, [Nebel,1991; Baader,1991;
Schild,1991; De Giacomo and Lenzerini,1994; Buchheit
et al.,1993]. An important outcome of this research
is that reasoning with axioms is computationally hard,
even for the simplest description logics (weaker than
FL7). All these works, however, limit their attention
to axioms on concepts, and do not consider the problem
of expressing inclusion axioms on relations.

e Relationships between classes are generally de-
scribed by means of poor representation mechanisms. In
fact, when trying to use description logics for capturing
representation formalisms used in different fields, one re-
alizes that at least three features are essential: the abil-
ity of navigating relationships (say of a semantic network
or an entity-relationship schema) in both directions; the
ability of stating cardinality constraints of general forms
on relationships; the possibility of conceiving relation-
ships as sets, thus applying set theoretic operators on

them (including the notorious role value map [Woods
and Schmolze,1992]).

The aim of the present work is to devise a description
logic, called CATS, that finally addresses the above
issues. The basic ingredients of CATS are classes
and links. In contrast to traditional description logics,
classes are abstractions not only for a set of individu-
als (corresponding to the usual notion of concept, called
simple class here), but also for sets that have aggregates
as instances (called aggregate classes). There are two
types of aggregates: property aggregates and instance
aggregates. A property aggregate is an abstraction for
an object that is considered as an aggregation of other
objects, one for each attribute belonging to a specified
set [Smith and Smith,1977]. A typical example of such
an aggregate is a date, which is seen as an aggregation of
three objects, one for the attribute day, one for the at-
tribute month, and one for the attribute year. Another
example of property aggregate is an exam, which again
is seen as an aggregation of three objects (one professor,
one student and one course). This makes clear that N-
ary relations can be modeled as classes whose instances
are aggregates. An instance aggregate is an abstraction
of a group of other objects belonging to a certain class
[Brodie and Ridjanovic,1984]. A typical example of such
an aggregate is a team, which can be seen as a group of
players. Like any other description logics, CATS allows
one to form complex classes by applying suitable con-
structors to both simple and aggregate classes. Notably,
CATS includes a form of role value map, and the most
general form of number restrictions (called qualified).

Links are abstractions for atomic, basic, and complex
relationships between classes. An atomic link (denoted
simply by a name, and also called attribute) is the most
elementary mean for establishing a relationship between
classes. A basic link is formed by applying certain con-
structors (like inverse, union, intersection and difference)
to atomic links. A complex link is formed by applying
more complex constructors (like chaining, transitive clo-
sure, and identity) to basic links.

A knowledge base in CATS is simply a set of inclu-
sion axioms. We point out that CAT S allows inclusion
assertions to be stated on classes of all kinds (simple, ag-
gregate and complex), and on basic links, with no limita-
tion (for example on cycles). A particular care is put in
devising CATS so that its reasoning tasks remain decid-
able and even with the same computational complexity
as the simplest description logics where inclusion axioms
are allowed. Indeed, making use of the results in [De
Giacomo and Lenzerini,1994], we have proved that com-
puting logical implication (and satisfiability) in CATS,
is both EXPTIME-hard and decidable with exponential
time in the worst case.

2 The description logic CAT S

As we said above, the language of CAT S supports classes
and links. Classes are partitioned into simple classes
and aggregate classes, which are further distinguished in

property aggregate and instance aggregate classes. Links
are partitioned into atomic (also called attributes), basic,
and complex.

Let a nonempty finite alphabet A of atomic classes
(classes denoted simply by a name, no matter if simple
or aggregate), and a nonempty finite alphabet U of at-
tributes be available. We use A for a generic element
of A, U (possibly with subscript) for a generic element
of U, C (possibly with subscript) for a generic class, b
(possibly with subscript) for a generic basic link, and L
(possibly with subscript) for a generic complex link. The
language of CATS has the following syntax (n,k > 1):

C =u= A|7(U,...,Up) | x(C,Uy,...,Uy) | o(C) |
CiNCy | =C|VL.C | (< kb.C) | (< kb .C) |
(b1 Cba) | (by Cby)

b n= U|9|b1Ub2|b1\b2

L = b|L10L2|L1UL2|L*|L7|Zd(0)

We use a (possibly with subscript) for b and b~, and we
adopt the following abbreviations: T = AL-A, 1 = =T,
T =7U;)U---U7r(Up) (where {Uy,...,Un} = U),
o= O'(T), Cl (] CQ = —l(—|01 [l —|CQ), dL.C = —|VL.—|C,
P =>\ 3, (> ka0) = ~(< k+1a.C), a1 Nay =
ay \ (a1 \ a2), and (a1 = az) = (a1 C a2) N (a2 C ay).
Parentheses are used to disambiguate expressions.

The semantics for the language of CAT S is based on
an interpretation T = (O, 1), where O is the universe
of the interpretation, and - is the interpretation func-
tion over such a universe. Differently from the usual
notion of interpretation, @ is a nonempty set of poly-
morphic objects, which means that every object in OF
has none, one, or both of the following two forms:

1. The form of tuple: when an object has this form, it
can be considered as a property aggregation, which
is formally defined as a partial function from i to
Of. We use the term tuple to denote an object in
O that has the form of tuple, and we write (U; :
01,...,U, : o,)! to denote any tuple ¢ such that,
for each i € {1,...,n}, t(U;) is defined and equal
to 0; (which is called the U;-component of ¢). Note
that the tuple ¢ may have other components as well,
besides the U;-components.

2. The form of set: when an object o has this form, it
can be considered as an instance aggregate, which
is formally defined as a nonempty finite collection of
objects in OF, with the following proviso: the view
of o as a set is unique, in the sense that there is
only one finite collection of objects of which o can
be considered an aggregation, and no other object
o' is the aggregation of the same collection. We use
the term set to denote an object in O that has the
form of set, and we write {o, ..., 0n[} to denote the
collection whose members are exactly og,...,0,.

Objects having none of these forms are called elementary
objects - i.e., individuals with no structure.

'This notation makes it clear that a tuple is indeed a
function assigning one element of O to some of the elements
of U.

The interpretation function - is defined as follows:

e It assigns to 3> a subset of OF x OF such
that for each {...,o0,...}€ O, we have that

({...,0,...},0) €37,
e It assigns to every attribute U a subset of O x

OT such that, for each (..., U : o,...) € O,
((...,U:0,...),0) € UL, and there is no o’ € O
different from o such that ((...,U : o,...),0") € UZ.

Note that this implies that every U in a tuple is
functional for the tuple.

e It assigns to every basic link a subset of O x O
such that the following conditions are satisfied:

(biub)t = blubd
(b1 \b2)* = bf =03
b7)* = {(0,0)](d,0) € b7}

e It assigns to every complex link a subset of O x O
such that the usual conditions for o, U, *, ~, and id
are satisfied:

(LiuL)f =LTu Ll

(LyoLy)* = L{ o L3

(L*)I — (LI)*

(L)L ={(0,0") € OF x OF | (o', 0) € RT}
id(C) = {(0,0) € O x OF |0 € C*}.

e It assigns to every class a subset of OF in such a
way that the following conditions are satisfied (#{}

denotes the cardinality of a set): - AT C O
-7(U,.. ., U)E = {{Us 2 01,...,Up, : 0,) € OF |
01,...,0, € OT}

-x(C,Uy,...,U)E =8 C7(Uy,...,U,) N CT and

no distinct s,s’ € S have the same Uy,...,U,-

components
-o(C)Y ={{o1,...,0n€ OF | 01,...,0, € C*}
Cin 02)1 cincy
c)* -ct

- (
- (=
(VLC’) _{OEOI|VO (0,0) e RT D0 € L%}
- (L ka.C)f ={oe€ O | #{(0,0') € a* N0 € C*} <
k}
(a1 Ca2) ={oc OF | {d | (0,0') € al} C {0 |
(0,0') € az}}.

A CATS TBox K is a finite set of inclusion assertions
of the form Cy C Cs, where C; and Cy are classes in
CATS (We write Cl = 02 for Cl E CQ,CQ E Cl) As
usual, an interpretation Z is a model of C; C Cy if CT C
Cf and K |= Cy C Oy (read as K logically implies C; C
C3), if each model of all assertions in K is also a model
of C1 C C3. As mentioned, we have the following result.

Theorem 1 Logical implication i CATS s

EXPTIME-complete.

3 Discussion

Let us discuss the most important modeling capabilities
of CAT S by means of one example.

T C (father Nmother C M)

(father N children C P)M

(children Nmother C 0)
T C Vfather™ Umother™ Uchildren .Family
Date = x(Date, day,month, year)

Jdate™.T C Date
Jday~.T C Day
dmonth™ . T C Month
dyear™.T C Year

Jeity”.T C City
Day Ll Month Ll Year C =7 M —o
Mayor = dmayor™.T
Jmayor.T C City
City C 7(name, state, country, mayor)M
X(City,name, state, country) M x(City, mayor)
Family C o(Person) M 7(father, mother, date, city)r
X(Family, father,mother,date)ll
(5= father Umother U children)
StillFamily C Family M x(StillFamily, father,mother)
PhdFamily = (> 3 > .PhdPerson) (< 1 5 .-PhdPerson)
Person C (Jchildren™.T) M (< 1children™.T)
ChildOfMayor = Jchildren™ o father.Mayor
VeryPhd = V(children™ o (father Umother))*.PhdPerson

Figure 1: Families, persons, and cities

Figure 1 shows a TBox K modeling a world with per-
sons, families and cities. The following observations help
understanding the expressive power of CATS.

e Objects are polymorphic. For example, every in-
stance of Family (representing families resulting
from a marriage) can be seen both as a set of per-
sons, and as a tuple with attributes father, mother,
date (of marriage) and city (of marriage). Note,
however, that assertions can be used to impose that
the instances of a certain class (Day, Month and Year
in our example) can only be seen as elementary ob-
jects.

e Inclusion assertions on classes are used with no lim-
itation. In particular, they can be stated for all
kinds of classes, and cycles are allowed in the TBox.
Notably, inclusion assertions can also be stated for
basic links: indeed, T C (b; C by) forces by to a
subset of by in every model of K. Inclusion asser-
tions of this kind are used in the example to specify
the properties of the attributes father, mother and
children.

e N-ary relations are supported. Any instance of
Family can indeed be considered as a relation with
four arguments. The x constructor is used to de-
fine keys for (N-ary) relations: for example, the
fact that every instance of Family is an instance
of x(Family, father, mother, date) implies that the
three attributes form a key for the class. On
the other hand, StillFamily, representing families
whose father and mother are still married, has a
more specialized key, constituted by the attributes
father and mother. Observe that several keys can

be defined for a class (see City).

e Qualified number restrictions and role value maps
on basic links can be used without any limitation.
Indeed, (5= father Umother U children) is a role
value map on basic links.

e Complex links can be used for modeling interest-
ing relationships. For example, the relationship
hasfather between a person and her/his father
is captured in K by children™ o father (sim-
ilarly for hasmother). Also, ancestor is cap-
tured by (hasfather U hasmother) o (hasfather U
hasmother)* (see the definition of VeryPhd).

As an example of inference that can be draw from I,
observe that:

K |= 3children .T C Person 3> .Jfather.T.

Indeed, note that every instance of Jdchildren .T is
also an instance of 3father™ Umother™ Uchildren™.T
and therefore is an instance of Family. This means
that £ |= Ichildren™.T C Jchildren .Family. Ob-
serve that K |= Family C (children C3), and, since
K |= Family C V 5 .Person (because K |= Family C
o(Person)), we have that £ }= 3children .T C
dchildren™.(Vchildren.Person), which implies that
K | 3Jchildren .T C Person. The fact that £ =
Jchildren™.T C 3 3~ .dfather.T easily follows from
the fact that every Family is a tuple with attribute
father.

4 Conclusions

It is our opinion that the work described in this paper
makes description logics accomplish the necessary leap in
order to be well equipped for the new challenging appli-
cations they are faced with. Our first investigations show
that CATS can indeed capture and extend most class-
based representation formalisms used in different areas
as Al, databases, software engineering, etc.. One main
issue still remains to be addressed, namely, the possibil-
ity of adding to CATS suitable constructs for express-
ing finiteness of nested aggregates, and, correspondingly,
suitable techniques for reasoning in finite models (in the
style of [Calvanese et al.,1994]). This will be the subject
of further research.

References

[Baader, 1991] F. Baader. Augmenting concept lan-
guages by transitive closure of roles: An alternative
to terminological cycles. In Proc. of IJCAI-91, Syd-
ney, Australia, 1991.

[Bergamaschi and Sartori, 1992] S. Bergamaschi and C.
Sartori. On taxonomic reasoning in conceptual de-
sign. ACM Trans. on Database Systems, 17(3):385—
422, 1992.

[Borgida, 1992] A. Borgida. From type systems to
knowledge representation: Natural semantics speci-
fications for description logics. J. of Intelligent and
Cooperative Information Systems, 1(1):93-126, 1992.

[Brachman, 1977] R. J. Brachman. What’s in a concept:
Structural foundations for semantic networks. Inter-
national Journal of Man-Machine Studies, 9(2):127—
152, 1977.

[Brodie and Ridjanovic, 1984] M. L. Brodie and D. Rid-
janovic. On the design and specification of database
transactions. In On Conceptual Modelling, pages 277—
306. Springer-Verlag, 1984.

[Buchheit et al., 1993] M. Buchheit, F. M. Donini, and
A. Schaerf. Decidable reasoning in terminological
knowledge representation systems. J. of Artificial In-
telligence Research, 1:109-138, 1993.

[Calvanese et al., 1994] D. Calvanese, M. Lenzerini, and
D. Nardi. A unified framework for class based repre-
sentation formalisms. In Proc. of KR-94, pages 109—
120, Bonn, 1994. Morgan Kaufmann, Los Altos.

[Catarci and Lenzerini, 1993] T. Catarci and M. Lenz-
erini. Representing and using interschema knowledge
in cooperative information systems. J. of Intelligent
and Cooperative Information Systems, 2(4):375-398,
1993.

[De Giacomo and Lenzerini, 1994] G. De Giacomo and
M. Lenzerini. Boosting the correspondence between
description logics and propositional dynamic logics. In
Proc. of AAAI-9/, pages 205-212. AAAI Press/The
MIT Press, 1994.

[Nebel, 1991] B. Nebel. Terminological cycles: Seman-
tics and computational properties. In Principles of Se-
mantic Networks, pages 331-361. Morgan Kaufmann,
Los Altos, 1991.

[Piza et al., 1992] B. Piza, K.-D. Schewe, and J. W.
Schmidt. Term subsumption with type constructors.
In Proc. of CIKM-92, pages 449-456, Baltimore, 1992.

[Schild, 1991] K. Schild. A correspondence theory for
terminological logics: Preliminary report. In Proc. of
IJCAI-91, pages 466-471, Sydney, 1991.

[Schmolze, 1989] J. G. Schmolze. Terminological knowl-
edge representation systems supporting n-ary terms.
In Proc. of KR-89, pages 432-443. Morgan Kaufmann,
Los Altos, 1989.

[Schreiber et al., 1993] G. Schreiber, B. Wielinga, and J.
Breuker. KADS: A principled approach to knowledge-
based system development. Academic Press, 1993.

[Smith and Smith, 1977] J. M. Smith and D. C. P.
Smith. Database abstractions: Aggregation and gen-
eralization. ACM Transactions on Database Systems,
2(2):105-133, 1977.

[Woods and Schmolze, 1992] W. A. Woods and J. G.
Schmolze. The KL-ONE family. In Semantic Net-
works in Artificial Intelligence, pages 133-178. Perga-
mon Press, 1992.

[Woods, 1975] W. A. Woods. What’s in a link: Foun-
dations for semantic networks. In Representation and

Understanding: Studies in Cognitive Science, pages
35-82. Academic Press, 1975.

