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Introduction

This paper presents a work in progress on enhanced
Propositional Dynamic Logics for reasoning about ac-
tions.  Propositional Dynamic Logics (PDL’s) are
modal logics for describing and reasoning about system
dynamics in terms of properties of states and actions?
modeled as relations between states (see (Kozen &
Tiuryn 1990; Harel 1984; Parikh 1981) for surveys on
PDL’s, see also (Stirling 1992) for a somewhat different
account). The language of PDL includes formulae built
from the boolean combinations of atomic propositions
that are interpreted as simple properties of states, plus
the construct (R)¢, where ¢ is a formula and R is an
action, whose meaning is that it is possible to perform
R and terminate in a state where ¢ is true. The action
R can be either an atomic action, or a complex expres-
sion denoting sequential composition, nondeterministic
choice, iteration, or test.

PDL’s have been originally developed in Theo-
retical Computer Science to reason about program
schemas (Fisher & Ladner 1979), and their variants
have been adopted to specify and verify properties of
reactive processes (e.g., Hennessy Milner Logic (Hen-
nessy & Milner 1985; Milner 1989), modal mu-calculus
(Kozen 1983; Larsen 1990; Stirling 1992)). They are
also of interest in Philosophical Logic as a formal-
ism to capture “procedural reasoning” (see, for ex-
ample, (Van Benthem & Bergstra 1993; Van Ben-
them, Van Eijck, & Stebletsova 1993; de Rijke.M 1992;
Van Benthem 1991)).

In Artificial Intelligence;, PDL’s have been exten-
sively used in establishing decidability and computa-
tional complexity results of many formalisms: for ex-
ample they have been used in investigating Common
Knowledge (Halpern 1992), Conditional Logics (Fried-
man & Halpern 1994), Description Logics (Schild 1991;
De Giacomo & Lenzerini 1994a; 1994c), Features Log-
ics (Blackburn & Spaan 1993). However they have
been only sparingly adopted for reasoning about ac-
tions, main exceptions being (Rosenschein 1991; Kautz

1980) (but also (Cohen & Levesque 1990)).

'In this work we do not distinguish between actions and
events.

Propositional Dynamic Logics offer a elegant frame-
work with a well understood semantics and precise
computational characterization, that in our opinion
makes them a kind of Principled Monotonic Propo-
sitional Situation Calculus extended to deal with com-
plex actions.?

In this paper we propose a new Propositional Dy-
namic Logic that includes boolean expressions of prim-
itive actions denoting sets of primitive actions executed
concurrently, and that allows to represent interdepen-
dencies between primitive actions as specialization or
disjointness. Furthermore the logic includes constructs
to impose the determinism of boolean combinations
of primitive actions and their inverse. We have es-
tablished that such logic is decidable and its compu-
tational complexity is EXPTIME (tight bound). We
show some possible use of this logic in reasoning about
actions by means of examples.

The logic DIFR

Formulae in the logic DZFR are of two sorts: action
formulae and state formulae.

Action Formulae describe, by means of boolean op-
erators, properties of atomic actions -i.e., actions
that cannot be broken into sequences of smaller ac-
tions. The abstract syntax of action formulae is as
follows:

pu=Plany | ptAp2|p1Vp|-p

where P denotes a primitive action, any denotes a
special atomic action that can be thought of as “the
most general atomic action”, and p (possibly with
subscript) denotes an action formula. Observe that
an atomic action denoted by an action formulae 1s
composed, in general, by a set of primitive actions
intended to be executed 1n parallel.

State Formulae describe properties of states in
terms of propositions and complex actions. The ab-

?In this perspective many recent results on PDL’s are
relevant, for example (Danecki 1984; Vardi & Wolper 1986;
Passy & Tinchev 1991; De Giacomo & Lenzerini 1994b).



stract syntax for state formulae is as follows:

¢ = A|T[L[¢1Ad2| 1V a9 ]
[R]¢ | (R)¢ | (funr)

plp
T|R1VR2|R1;R2|R*|¢?|R_

roou=

R

where A denotes a primitive proposition, T denotes
“true”, L denotes “false”, ¢ (possibly with sub-
script) denotes a state formula, r denotes a simple
action which is either an atomic action or the inverse
of an atomic action (i.e., set of primitive actions or of
inverse of primitive actions), and finally R (possibly
with subscript) denotes a complex action composing
simple actions by nondeterministic choice, sequential
composition, reflexive transitive closure, test, and in-
verse.

Let us explain the intuitive meaning of some formu-
lae: the action formula P; A P, means “perform P
and P, in parallel”; =P means “don’t perform P”. In
general an atomic formula p denotes a set of primitive
actions that are performed in parallel and a set that
are not performed at all (note that primitive actions
that are not in these sets could be performed as well
-1.e., we are adopting an open semantics for action for-
mulae).

By forcing the validity of action formulae we can
represent hierarchies of atomic actions, for example by
climb_stairs = climb 3 we can represent that the ac-
tion climb_stairs 1s a specialization of of the action
climb. In the same way we can represent mutual exclu-
sion, for example by —(open_window A close_window)
we can represent that the actions open_window and
close_window cannot be performed together.

From atomic actions we build complex actions by
means of constructors that are intuitively interpreted
as follows: R; V R» means “nondeterministically per-
form Ry or perform R>”; Ri; Rs means “perform R;
and then R,”; R* means “repeat R a nondetermin-
istically chosen number of times”; ¢7 means “test ¢
and proceed only if true”; R~ means “perform R in
reverse”. By using these constructs we can build com-
plex action such as if ¢ then R, else R-, which is repre-
sented by (¢7; Ra) V (—¢7; Rz), or while ¢ do R which
is represented by (¢7; R)*; —¢7.

Turning to state formulae: [R]¢ expresses that after
every performance of the action R the property ¢ is
satisfied; (R)¢ expresses that after some performance
of the action R the property ¢ is satisfied -i.e. the
execution of R can lead to a state where ¢ holds (recall
that actions are nondeterministic in general).

The formula (R)T expresses the capability of per-
forming R; [R]L expresses the inability of perform-
ing R; [-r]L expresses the inability of performing any
atomic actions other than those denoted by r; [-any] L
expresses the inability of performing any atomic ac-
tions at all; (any)T A [-r]L expresses the necessity

° As usual we will use a = b an abbreviation of —a V b.

or tnevitability to perform some of the atomic actions
denoted by 7.

The construct (funr) called functional restriction
allows us to impose that the performance of a simple
action r (i.e. of an atomic action or the inverse of an
atomic action) is deterministic. Hence [r]¢ A (funr)
expresses that if the atomic action r is performed, then
it deterministicallyleads to a state where ¢ holds. Note
that this does not implies that the action r can be
performed. The formula (r)¢ A (funr) expresses that
atomic action r can be performed and deterministically
leads to a state where ¢ holds.

Propositional Dynamic Logics are subsets of Second
Order Logic, or, more precisely, of First Order Logic
plus Fixpoints. Typical properties that are not first
order definable are: (R*)¢, which expresses the capa-
bility for performing R until ¢ holds, and 1s equivalent
to the least fixpoint of the operator AX.(¢ V (RYX);
[R*]#, which expresses that ¢ holds in any state reach-
able from the current one by performing R any num-
ber of times, and is equivalent to the the greatest fix-
point of the operator AX.(¢A[R]X). Interesting special
cases of the last formula are: [any*]¢, which expresses
that ¢ holds from now on -i.e., no matter how the
world evolves from the current state ¢ will be true;
and [(any V any~)*]¢, which expresses that ¢ holds in
the whole connected component containing the current
state (the state in which the formula holds).

The formal semantics of DZFR is based on the no-
tion of Kripke structure (or interpreted transition sys-
tem), which is defined as a triple M = (S, {Rgr},V),
where S denotes a set of states, {Rgr} is a family of bi-
nary relations over &, such that each action R is given
a meaning through Rp, and V is a mapping from &
to atomic propositions such that V(s) determines the
propositions that are true in the state s. The family
{Rr} is systematically defined as follows:

Rany - S x S,
RP g Ranya
Ropinps = Rpy NRpy,

pives = Rpy UR,,,

-p = Rany — R,
R~ = {(51,52) €S x S| (s2,51) ER,},
Rr=R, ifr=p,
Rr:Rp_ if?”zp_,
Rr,vr, = Rr, URR,,
Rry:r, = Rr, ©Rr, (seq. comp. of Rg, and Rg,),
Rp» = (Rr)*  (refl. trans. closure of Rp),
Re- ={(s1,52) €S x 8| (s2,51) € Rr},
Rir = {(5,5) €8 x S [ M, b= 0).

Note that actions (even primitive actions) are nonde-
terministic in general.

The conditions for a state formula ¢ to hold at a
state s of a structure M, written M, s |= ¢, are:



M,s EAiff s e V(A)

M,s =T  always,

M,s =1 never,

M,S':¢1/\¢)2 iﬁMaS':¢1 aHdM,S':¢2,
M,S':¢1\/¢)2 iﬁMaS':¢1 OI'M,S':¢2,

M, s (=~ iff M, s |£ o,

M,s E(R)¢ ift 3s'.(s,s') € Rg and M,s" = ¢,
M,s = [R]¢ iff Vs'.(s,8') € Rr implies M, 5" |= ¢,
M, s |= (funr) iff exists at most one s'.(s,s') € R,.

A structure M 1s a model of an action formula p if
R, = Rany. A structure M is a model of a state
formula ¢ if for all s in M, M,s |= ¢. Let T be a finite
set of both state and action formulae, a structure is a
model of T if 13 a model of every formulain I'. A set of
formulae T logically implies a (state or action) formula

¥, written
NS

if all the models of I' are models of ¢ as well.

A crucial question to be answered is: Is logical im-
plication decidable in DZFR? And if yes, which is
its computational complexity? Note that known re-
sults in PDL’s do not help directly. We have proven
that this problem is indeed decidable and we have pre-
cisely characterized its computational complexity, by
providing a reduction to the PDL DZF presented in
(De Giacomo & Lenzerini 1994a).

Theorem 1 Logical implication for DIFR s an
EXPTIME-complete problem.

Observe that logical im-
plication is already EXPTIME-complete for the basic
modal logic K (which corresponds to a Propositional
Dynamic Logic including just one primitive action, no
functional restrictions, and no action constructors at

all).

Using DIFR for reasoning about
actions

Below we show the power of DZFR in modeling a dy-
namically changing world by means of two examples.
We remark that those examples do not aim at provid-
ing the definitive DZFR-based formalizations of the
scenarios they describe, nor they exhaust the possibil-
ity of using PDZFR in representing and reasoning about
actions *. They are intended to give a taste of what
can be done with such a logic. In the examples we refer
to situation calculus as it is presented in (Reiter 1991;

1992b; 1993; Lin & Reiter 1994).

Example: lifting both sides of a table

A wvase i1s on top of a table, and if just one
side 1s lifted then 1t slides down and falls on

4In addition these examples do not make use of many
features of the logic such as axioms on atomic actions.

the floor. However if both sides are simulta-
neously lifted this doesn’t happen (Grosse 1994).
We formalize the scenario as follows. We con-
sider the following primitive propositions (correspond-
ing to “propositional” fluents in situation calcu-
lus): wase_on_table, downle ft_side, down_right _side;
and the following primitive ac-
tions (corresponding to actions in situation calculus®):
vase_slides_down, lift_left, lift_right. The intended
meaning of these propositions and actions is the nat-
ural one (sometimes we use initials as abbreviations).
We do not include actions to put down the table for
sake of brevity.

As usual actions have preconditions which are con-
ditions that must be satisfied in order to be able to
perform the action®.

(liftleft)T = downleft_side
(lift_right)T = down_right_side
(vsd) T = (vot A ((dls A =drs) V (=dls A drs))).

Actually the if part of the last axioms must be
strengthened: If the vase is on the table and one of
the side of the table is not on the floor, then it is in-
evitable (not just possible) that the vase slides towards
the floor. This can be enforced by:

(vot A((dlsA—drs)V(—dlsAdrs))) = (any) T A[-vsd] L.

We need also to specify when the actions lift_left and
lift_right can be performed simultaneously. With the
next axiom we assert that they can be performed simul-
taneously simply when they both can be performed:

(liftlefinlift_right)T = (liftlefO)TA{ift_right)T.
Actions have effects if they can be performed”:

[liftle ft]-~down_le fl_side
[lift_right]—down_right_side
[vase_slides_down]—wase_on_table.

As usual we need to cope with the frame problem.
We do it by adopting a monotonic solution as in
(Haas 1987; Schubert 1990; Reiter 1991). We enforce
the following frame azioms saying that if the vase
in on the table then all atomic actions not including
vase_slides_down leave the vase on the table; if the
vase 1s not on the table then no atomic action will

*Note that (contrary to what is usually assumed in situ-
ation calculus) actions are not necessarily deterministic in
DIFR.

State formulae of the form (a)T have the same role as
Poss(a, s) in Reiter’s situation calculus.

"State formulae of the form [a]¢ have the same role
as Poss(a,s) = ¢(do(a,s)) which is a common formula
configuration in Reiter’s situation calculus (Reiter 1991,
1993).



change its position; etc.:

vase_on_table = [~wase_slides_down]vase_on_table
down e ft_side = [~lift e ftldown_left_side
down_right_side = [-lift_rightldown_right_side

—wase_on_table = [any]|-wvase_on_table
—down_le fi_side = [any|-down_le ft_side
—down_right_side = [any]|—~down_right_side.

Let us call T' the set of the axioms above, and let the
starting situation be described by

S = vase_on_table Ndown e ft_side Adown_right_side.

Then we can make the following two inferences. On
the one hand:

I'E= S = [l Alr][vase_slides_down] L

that is if the vase is on the table and both the sides
of the table are on the floor, then lifting the two sides
concurrently does not make the vase falling. On the
other hand:

I'E S = [l A=lr]llr]—vase_on_table

that is if the vase is on the table and both the sides
of the table are on the floor, then lifting first the left
side without lifting the right side, and then the right
side, has as a result that the vase is fallen. Notice
that the above inferences don’t say anything about
the possibility of performing the actions described,
however this possibility is guaranteed by T E S =
(liftleft ANlift_right)T and T = S = ((liftleft A
lift_right);lift_right))T, respectively.

Example: making the heating operative

We want to make our (gas) heating operative. To do
so we need to strike a match, to turn its gas handle
on and to ignite the security flame spot. To strike a
match we need to concurrently press the match against
the match box and rub it until it fires.

We make the following intuitive assumption: the
past 18 backward linear that is from any state there is
only one accessible (immediately) previous state. This
can be easily imposed by means of the following axiom:

(funany™).
We assume the following preconditions and effects of

actions.
Preconditions:

(turn_on_gas)T = —gas_open

(turn_of f_gas)T = gas_open
(ignite_flame_spot) T = match_lit
(press)T = —match_ it

(rub)T = —match_lit

(while —match_lit do (press A rub))T.

Effects:

match lit A\ gas_open =
[ignite_flame_spot]heating operative

[turn_on_gas]gas_open

[turn_of f _gas]—gas_open.

In this example we model frame axioms more sys-
tematically starting from explanation closure azioms
(Schubert 1990) in line with (Reiter 1991; 1993). There
are two main difficulty in following this approach in
PDL: the first i1s that, as in any standard modal logic,
we can directly refer to just one state, the “current
one”; the second is that we cannot quantify on atomic
actions. In DZFR we can overcome these difficulties.
By assuming (funany™) from the current state we
can univocally refer back to the previous state through
the action any~. On the other hand by using the ac-
tion any we can simulate the universal quantification
on atomic actions. Hence we proceed as follows from
the current state we make a step forward and then we
model the various condition backward. This leads to
the following frame axioms:

[any](—gas_open =

(any~Y—gas_open V (furn_of f gas™)T)
[any](—~match lit =

(any~)Y—match lit)
[any](—heating operative =

(any ™ )-heating operative)

[any](gas_open =

(any~Ygas_open V (turn_on_gas™)T)
[any](match lit =

(any " Ymatch lit V {(press A rub)™)T)
[any](heating_operative =

(any ™ Yheating_operativeV

(ignite_flame_spot™ )gas_open).

For example the last axiom says: “consider any suc-
cessor state (such a state has exactly one previous state
which is the current state), if the heating is operative
in such a state then either it was operative in the previ-
ous state or the action ignite_flame_spot was just per-
formed and the gas was open in the previous state”.®

Let us call I' the set of all these axioms, and let the
starting situation be described by

S = —open_gas A ~match_lit A —heating_operative

8The frame axioms can be proved to be equivalent to
the following ones (respecting the order):

gas_open = [~turn_of f_gas]gas_open
match_lit = [any|match_lit
heating_operative = [any|heating_operative

—gas_open = [~turn_on_gas|-gas_open

—match it = [=(press A rub)]—match_lit

—heating_operative =
[-ignite_flame_spotV

—gas_open?; any|-heating_operative.

The last axiom says: “if the heating is not operative then
both every performance of an atomic action not including
tgnite_flame_spot, and every performance of any action
starting from a state in which the gas is not open, leads to
a state where the heating is still not operative”.



The first inference we are interested in is the follow-
ing:
I' = S = (any”)heating_operative
i.e. there is a sequence of action (a plan) starting from
a situation described by S resulting in making the heat-
ing operative. Assuming all primitive actions to be
deterministic, inferences of the form

I' =S = (any™)C

are the typical starting point in planning synthesis
(Green 1969): if the answer is yes then from the proof
we can generate a working plan to achieve the goal GG
starting from an initial situation described by S. The
dual of the above inference

I'ES = [any" -G

is of interest as well: it establishes that there are no
plan at all achieving a given goal G starting from a
situation described be 5.

Next inference says that the complex action “strike
a match, turn on the gas, ignite the control flame spot”
results in making the heating operative:

I' = (while ~match_lit do (press A push);
turn_on_gas;
tgnite_flame_spot
Yheating_operative.

Note that the similar action “turn on the gas, strike a
match, ignite the control flame spot” is not guaranteed
to make the heating operative:

T £ (turn_on_gas;
while —match_lit do (press A push);
tgnite_flame_spot
Yheating_operative.

The reason why above the complex action may fail is
because the gas could be turned off while we are trying
to strike the match.

The problem of checking inferences as the two above
is known as projection problem (see e.g. (Reiter
1992b)). A typical projection problem as the form:
Does G hold in a state reachable from initial situation,
described as S, by executing the (complex) action a?
This corresponds to checking the inference below:

I'=S=(0)d.

We have seen that executing the complex action
“turn on the gas, strike a match, ignite the control
flame spot” may fail to make the heating operative.
If this is the case, the following inference tells us that
the gas has been turned off before striking the match
succeeded:

I' | (turn_on_gas;
while —match_lit do (press A push);
tgnite_flame_spot
Y(—heating operative =
((any~;any ™ )*;turn_of f_gas)T).

Inferences as the one above are answers to “historical
queries” (Reiter 1992b; 1992a) -i.e., queries of the form:
if from the initial state described by S we execute the
complex action « getting ¢, then does this implies that
before the termination of o, ¢’ is true in some state,
or does it implies that the action a as been executed?
These questions can be answered by checking the in-
ferences °:

I'ES=(a)(¢= ((any”)*)¢')
['ES=(a)(é¢={((any*)”;a”)T).
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