Representing and Reasoning on
SGML Documents

Diego Calvanese, Giuseppe De Giacomo, and Maurizio Lenzerini

Dipartimento di Informatica e Sistemistica
Universita di Roma “La Sapienza”
Via Salaria 113, 00198 Roma, Italy
{calva.nese ,degiacomo, lenzerini}Qdis .uniromal.it

Abstract. In this paper, we address the issue of representing and rea-
soning about documents for which an explicit structure is provided.
Specifically, we devise a framework where Document Type Definitions
(DTDs) expressed in the Standard Generalized Markup Language (SGML)
are formalized in an expressive Description Logic equipped with sound,
complete, and terminating inference procedures. In this way, we provide
a general reasoning mechanism that enables various reasoning tasks on
DTDs, including the verification of typical forms of equivalences between
DTDs, such as strong equivalence and structural equivalence, as well as
parametric versions of these equivalences. Notably, this general reasoning
mechanism allows for verifying structural equivalence in worst case de-
terministic exponential time, in contrast to the known algorithms which
are double exponential. As a whole, the study in this paper provides some
of the fundamental building blocks for developing articulated inference
systems that support tasks involving the intelligent navigation of large
document databases such as the World Wide Web.

1 Introduction

In this paper, we address the issue of representing and reasoning on documents
for which an explicit structure is provided. The possibility of representing and
reasoning on the document structure is advocated by research in both Knowledge
Representation and Databases. In particular, the view of the World Wide Web
as a large information system constituted by a collection of interconnected docu-
ments, and the increasing popularity of private intranets among large companies
or institutions for keeping documentation online, is stimulating much work on in-
formation retrieval from large document databases (see for example [9,13,10,11]).

This work points out that being able to represent and reason on the structure
of documents placed in document databases helps in several tasks related to
information retrieval. For example, it enables to improve both the precision of
the information retrieved by providing flexible additional selection criteria, and
the efficiency of the retrieval process, by allowing for retrieving just a short
description of a large document to decide its relevance, instead of the document
itself [8,12,1,6,14,13].



<IDOCTYPE Mail [

<!ELEMENT Mail (From, To, Subject, Body)>

<1ELEMENT From (Address)> <!ELEMENT To (Address)+>
<!ELEMENT Subject (#PCDATA)> <!ELEMENT Body (#PCDATA)>
<!ELEMENT Address (#PCDATA)> 1>

Fig. 1. DTD M for mail documents

The structure of a document is typically made explicit by using special tags
to mark its various parts. One of the most prominent formalisms for defining
marked-up documents is the Standard Generalized Markup Language (SGML) [7].
In SGML, the structure of marked-up documents is described by means of Doc-
ument Type Definitions (DTDs) which assert the set of “rules” that each docu-
ment of a given document type must conform to. SGML DTDs have been used
to define wide range of document types, from very general ones, such as generic
HTML documents, to very specific ones, e.g. a specific form of email messages.

In this paper, we show a formalization of SGML DTDs in terms of an ex-
pressive Description Logic, DL, equipped with sound, complete, and terminat-
ing inference procedures. This logic includes non-first-order constructs, such as
reflexive-transitive closure and well-foundedness, which play a crucial role in the
formalization. The inference procedures for such logic provide us with a general
reasoning mechanism that enables effective reasoning tasks on DTDs. These in-
clude the verification of typical forms of equivalences between DTDs [17,15], such
as: strong equivalence, i.e. whether two DTDs define the same sets of marked-
up documents; structural equivalence, a weaker form of equivalence abstracting
from tag names in the documents; and parametric versions of these equivalences.
Notably, this general reasoning mechanism allows for verifying structural equiv-
alence in worst case deterministic exponential time, in contrast to the known
algorithms which are double exponential.

The paper is organized as follows. In Section 2, SGML DTDs and documents
are introduced. In Section 3, the basic reasoning tasks on DTDs are defined. In
Section 4, the Description Logic DL is presented and the formalization of DTDs
(and related reasoning tasks) within DL is developed. Finally in Section 5 some
conclusions are drawn.

2 SGML DTDs and Documents

An SGML document consists of an SGML prologue and a marked-up document.
The prologue includes a Document Type Definition (DTD), which is constituted
by a set of element type definitions defining the generic structure of the various
components of the marked-up document. The logical components of a document
are called elements.

The fundamental characteristics of DTDs can be formalized by means of Ex-
tended Context Free Grammars (ECFGs) [17]. Marked-up documents are seen
as syntaz trees constructed according to the grammar, where the tree structure
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is determined by the various tags that occur in the document and that constitute
the markup. An ECFG is a tuple (E, T,P,I), where E is an alphabet of non-
terminal symbols, T is an alphabet of terminal symbols, P is a set of production
rules, and I € E is the initial symbol of the grammar. The nonterminal symbols
are the elements defined in the DTD, and the start symbol is the element that
specifies the document type. The terminal symbols are the basic types of SGML,
such as #PCDATA, which represent generic (unmarked) strings with no associated
structure within the DTD. In the following, with the term symbol, denoted by
the letter S, we mean a generic terminal or nonterminal symbol in E U T. Each
production rule £ — « of the ECFG corresponds to an element type definition.
FE is the defined element, and «, called content model, is an expression over the
symbols of the grammar constructed according to the following syntax:

ax=S|e|a,a | allag | .

In fact, a is a regular expression with “” denoting concatenation and “|” denot-
ing union. When no ambiguity may arise, we identify « with the set of words
generated by the regular expression that a represents. Additionally, in content
models, the following standard abbreviations are used:

ar&ag = (a1, az)|(ag, a1) a? =¢la at =a,a".

We observe that while “?” and “4” pose no particular problem, expanding “&”
may in the worst case lead to an exponential increase in the size of the DTD.

Figure 1 shows an example of a DTD M for a simple mail document, ex-
pressed in SGML syntax. It is straightforward to derive the set of ECFG pro-
ductions corresponding to the various element type definitions.

DTDs contain in fact also other aspects that are not directly related to the
document structure. An example is the possibility to associate to each element
a set of properties by means of a so called attribute list. In the following, for
the sake of simplicity, we do not consider those additional aspects. We remark,
however, that the representation of DTDs in terms of Description Logics provided
in Section 4, makes it easy to take also these aspects into consideration.

Let D = (E, T,P,I) be a DTD. We assume without loss of generality that
for each element F € E, P contains at most one element type definition £ — «
where E appears on the left hand side. We also assume that for each element
FE appearing in P, there is an element type definition £ — « in which F is
the symbol on the left hand side. In fact, if such condition is not satisfied, the
grammar can easily be transformed in polynomial time into one that generates
the same set of marked-up documents, and in which the condition holds.

The set docs(P, S) of marked-up documents generated by P starting from a
symbol S is inductively defined as follows:

— If S is a terminal, then docs(P,S) = S.
— If S is an element and (S — «) € P, then docs(P, S) is the set of sequences
<S>dy - - - dy </ 5>, where <S> and </S5> are the start and end tags associated
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to the element S, and dy,...,d; are documents generated by an instance of
the regular expression «. Formally

docs(P,S) = {<S>dy ---dy, </S> | Jo € a such that o =51 --- 5
and d; € docs(P, S;), fori € {1,...,k}}

The set of marked-up documents generated by a DTD D = (E, T, P, I) is given
by docs(P,T).

3 Basic Reasoning Tasks on DTDs

Given two DTDs, a fundamental problem is to determine whether they are equiv-
alent in some sense, i.e. whether they define the same sets of documents [17,15].
Here, we consider a more general problem, which is that of checking various
forms of language inclusion (instead of equivalence). The most basic form of
inclusion (equivalence) is inclusion (equality) of the sets of marked-up doc-
uments generated by the two DTDs. Formally, let Dy = (E,T,Py,[;) and
Dy = (E, T, Py, I3) be two DTDs!. We say that D; is strongly included in Da,
denoted with Dy < Dy, if docs(P1,11) C docs(Ps, Is). For determining strong
inclusion, the names of the start and end tags that constitute the markup of the
two documents play a fundamental role.

In some cases, however, the actual names of the tags may not be relevant
while the document structure imposed by the tags is of importance. The form
of inclusion obtained by ignoring the names of tags and considering only their
positions is called structural inclusion [17]. One DTDs is structurally included
into another if, when we replace in every document generated by the DTDs all
start and end tags with the unnamed tags <> and </> respectively, the resulting
sets for the two DTDs are one included into the other.

Structural equivalence of two DTDs is decidable, but the known algorithms
take time doubly exponential in the size of the two DTDs [17]. This complexity
bound holds if one does not consider the “&” operator, which, if expanded may
lead to an additional exponential blowup.

While the restrictions imposed by strong inclusion may be too strict in some
cases, structural inclusion, which ignores completely all tag names, may be too
weak. A natural generalization of these two concepts is obtained by considering a
spectrum of possible inclusions, of which strong and structural inclusion are just
the two extremes. The different forms of inclusion are obtained by considering
certain tag names as equal, and others as different, when confronting documents.
This allows us to parameterize inclusion (and therefore equivalence) of DTDs
with respect to an equivalence relation on the set of tag names.

Formally, we consider an equivalence relation R on the set E of nonterminal
symbols. For an element E € E, we denote by [E]g the equivalence class of
E with respect to R. Given a DTD D = (E, T,P,I) and such an equivalence

! In general, when comparing DTDs we assume without loss of generality that they
are over the same alphabets of terminals and elements.
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H Concepts C Syntax Semantics H

concept name A AT C A?

top T AT

bottom L ]

negation -C AT\ C*

conjunction Ci1MCy Cll N CQI

disjunction C1uUCy Clz U CQI

universal quantif. | VR.C {o|V0': (0,0) € RT — o € C*}
existential quantif.| JR.C {0|30": (0,0') € RE N0 € C*}

qualified number | 35"Q.C {o] #{0" | (0,0') € QF N0’ € CT} < n}
restrictions 3="Q-.C {o]#{0"] (0,0") € (@) Ao € CT} < n}
well-founded wf(R) |{oo | Yo1,02, ... (ad infinitum) Fi > 0: (04,0i41) & RI}
HRoles R ‘ Syntax ‘ Semantics H
role name P Pt C AT x A?

union RiUR, R{UR;

concatenation Ri10oR> R% o R%

inverse R~ {(0,0") | (¢,0) € R*}

refl. trans. closure R* (RT)*

identity id(C) {(0,0) | 0 € C*}

Table 1. Syntax and semantics of DL concept and role constructs.

relation R, we inductively define the set docsg (P, .S) of R-marked-up documents
generated by P starting from a symbol S as follows:

— If S is a terminal, then docsg(P,S) = S.
— If S is an element and (S — «) € P, then

docsr(P,S) = {<[S|r>d1---dp</[S]r> | Jo € a such that 0 = 57 --- Sk
and d; € docsg(P,S;), forie {l,...,k}}

The set of R-marked-up documents generated by a DTD D = (E,T,P,I) is
given by docsgr (P, I).

For two DTDs D; = (E,T,Py,[;) and Dy = (E, T,P2,]5) and an equiv-
alence relation R on E, we say that D; is R-included in Dy, denoted with
Dl jR DQ, if dOCSR(Pl,Il) g dOCS'R(PQ,IQ).

Observe that, if we choose for R the equivalence relation in which all equiv-
alence classes are singletons, we obtain strong inclusion. On the other hand, if
R contains a single equivalence class constituted by the whole set E, we obtain
structural inclusion.

4 Description Logic for DTDs

Let us introduce the logic DL which we use for formalizing DTDs and which is a
simplified version of the formalisms in [5,4]. The syntax and semantics of DL are
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shown in Table 1, where we denote concept names by A, arbitrary concepts by
C, role names by P, and arbitrary roles by R, all possibly with subscripts. The
semantics of the DL constructs is the standard one, except for the construct
wf (R), called well-founded, which is interpreted as those objects that are the
initial point of only finite R-chains.

A DL knowledge base is a set of assertions of the form

Cl E 02 )

where C and Cs are arbitrary concepts without any restrictions. We use also
C1 = Cs as an abbreviation for the pair of assertions C7; C Cs and Cy C Cf.

An interpretation Z satisfies the assertion C; T Cy if C¥ C C%. An inter-
pretation is a model of a knowledge base K if it satisfies all assertions in 2.
Typical reasoning services (i.e. subsumption, satisfiability, logical implication)
in DL are EXPTIME-complete [5,4].

Let D = {Dy,..., Dy} be a finite collection of DTDs. We assume without
loss of generality that all DTDs in the collection share the same alphabets T
of terminals and E of elements, i.e. that D; = (E, T,P;, I;), for i € {1,...,k}.
We describe now how to construct from D a DL knowledge base K capable of
fully capturing the various structural aspects of the DTDs in D. The knowledge
base KC is constituted by three parts, called Ko, 1 and Ko, respectively, which
we now describe.

Independently from the particular collection of DTDs, Ky contains special
assertions that model general structural properties of marked-up documents:

DStruc = VY(fUr).DStruc M3 TNISr. TNISH(fUr)™.T Nuf(fUr)
Tag C DStrucMV(fUr).L
Terminal L DStrucMV(fUr).L M —-Tag

Every instance of DStruc represents an SGML document. Every instance of
Tag represents a tag in D, either a start or an end tag. Finally, every instance
of Terminal represents a terminal symbol in D.

The concept DStruc is defined in terms of the roles £ and r (standing for
“first” and “rest” respectively). The components of a document are found by
following the (f U r)*-links. More precisely, the first component of a document
d is its f-filler, the second component is its (r o f)-filler, the third component is
its (r o r o £)-filler, and the last component is its r"-filler, for some h > 03.

Observe that the definition of DStruc imposes that £ and r are functions,
and that every instance of DStruc has at most one (f U r)-predecessor, hence
enforcing a binary tree structure on the (f U r)*-connected components in the
models of the knowledge base. Notably, the use of the well-foundedness construct
is essential to impose finiteness and acyclicity of such connected components.

K1 is used to represent the specific tags and terminal symbols appearing in
D. In particular,

2 This means that we adopt descriptive semantics for cycles.
3 " denotes ro--- or (h times).
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— For each terminal F' € T, Ky contains an assertion
F [C Terminal.
— For each element F € E, I contains two assertions
StartE C Tag EndEl C Tag,

where StartF and EndF represent start and end tags.

Ko encodes the knowledge about the various production rules in D. In par-
ticular, for each D; € D, and for each element E, such that (E — «) € P;, Ko
contains the assertion:

Ep, = DStrucl3f.StartEM3I(ro7(a)).EndE

i

with 7(a) defined inductively as:

T(e) = id(T
T(ailaz) = 7(a
7(

1
(@) = 7(@)

where c¢n(-,-) is a mapping that associates to each pair constituted by a DTD
D; and a symbol S a concept name as follows:

7(S) = id(3f.cn(D;, S)) o
U7(as) T(a1, a) = 7(en) o 7(2)

¥ —

Ep. if S =F for an element £ €¢ E
D;,S) = { De .
en( 5) F if § = F for a terminal F' € T

Note that the first component (the f-filler) of every instance of Ep, is its
start tag, whereas the last component (the r’-filler) is its end tag. The remaining
components (the (r” o £)-fillers, with k < h) are determined by the complex role
7(). Indeed 7 () reflects the structure imposed by « on the parts of a document
that are defined by F — «, and can be explained in terms of an encoding of the
tree representing the marked-up document into a binary tree.

Observe that for each element E we have introduced two concept names
StartF,EndE representing its tags. Thus, for each tag in the collection D of
DTDs there is a unique pair of corresponding concepts in K. On the contrary,
the information about the DTD a given element belongs to is explicitly carried
out in the knowledge base. Indeed, there is one concept Ep, in K for each DTD
D; in D containing the definition of an element F.

We stress that in each model of I, the extension of every Ep, is completely
determined by the extension of the concepts representing tags and terminal sym-
bols. In other words, given a model M of K, it is possible to determine whether
an object o is an instance of E'p, by taking into account only the structure of
the (fUr)* connected component of M containing o. This property, which is en-
sured by the well-foundedness construct in the assertion on DStruc, is essential
in order to obtain the desired correspondence between reasoning on the DTDs
in D and reasoning on K.
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Mailps = DStruc M 3f.StartMail M 3(r o id(If.Fromys) or o id(If.Toa) o
otd(3f.Subject,,) o r o id(If.Body,,) o r).EndMail

Fromy = DStruc 1 3f.StartFrom M 3(r o id(3f.Addressy) o r).EndFrom

Toys = DStruc M 3If.StartTo M
3(r o id(3f.Addressys) o r o (id(3f.Addressy) o r)*).EndTo

Subject,, = DStruc 1 3f.StartSubject M I(r o id(I£.#PCDATA) o r).EndSubject
Body,, = DStruc 1 3f.StartBody M 3(r o id(3I£.#PCDATA) o r).EndBody
Address)s = DStruc M 3f.StartAddress M 3(r o id(I£.#PCDATA) o r).EndAddress

Fig. 2. The K2 part of the knowledge base K derived from the DTD M

Figure 2 shows the Iy part of the knowledge base K corresponding to the
DTD M described in Figure 1. One can easily derive the Ky and Ky parts of K.

The knowledge base K corresponding to a collection D of documents can
directly be used to determine strong inclusion between DTDs belonging to D.

Theorem 1. Let D; and D; be two DTDs in D, and K the DL knowledge base
derived from D as specified above. Then D; is strongly included in D; if and only
if en(D;, I;) is subsumed by cn(Dj, ;) in K.

The knowledge base K can also be extended in order to verify the other forms
of inclusions introduced in Section 2. Let R = {{E1,...,E} },... . {E{",...,E" }}
be an equivalence relation on the set E of elements. We obtain the knowledge

base Kx from IC by adding for each equivalence class {E{ e E{LJ} and for each
element Eﬂ with 4 € {1,...,n;—1}, the assertions:
StartEf = StartEg_i_1 EndEg = EndEg_i_1

With these assertions we are essentially imposing the equivalence of all the con-
cepts representing tags of elements belonging to each set {EY, ... ,Ef;j }. There-
fore, when reasoning on Kr the differences between the various tags associated
to equivalent elements are ignored, coherently with the notion of R-inclusion.

Theorem 2. Let D; and D; be two DTDs in D, R an equivalence relation on
E, and K the DL knowledge base derived from D as specified above. Then D;
is R-included in Dj if and only if cn(D;, I;) is subsumed by cn(Dj, I;) in Kg.

From decidability in deterministic exponential time of logical implication in
DL [5] we obtain as an immediate consequence an EXPTIME upper bound for
R-inclusion and R-equivalence between DTDs. This results also in an expo-
nential improvement over previously known algorithms for checking structural
equivalence.

Corollary 3. R-inclusion and R-equivalence between two DTDs can be verified
in deterministic exponential time in the size of the DTDs.
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5 Conclusions

Several recent papers dealing with the problem of retrieving information from a
document database such as the World Wide Web argue that the current tech-
niques for representing and reasoning on document structures should be im-
proved. We have provided a view of DTDs as concepts of the expressive De-
scription Logic DL, and we have demonstrated that this approach is indeed
very effective for both faithfully representing document structures, and answer-
ing some open questions regarding DTD equivalence checking. By exploiting the
constructs of DL, we are able to integrate into the structure of documents also
aspects related to the semantics of the information contained in them. For ex-
ample, attribute lists of DTD elements can be modeled easily in DL. As another
example, if part of a document (corresponding to a terminal symbol T in the
DTD) includes a table with information about, say, departments and employees,
this can be represented by adding suitable properties to the concept correspond-
ing to T'. We can also represent links to other documents, such as those typically
found in the Web, by means of a special concept with suitable roles for the name
of the link and the associated anchor. Obviously, by means of suitable assertions
we can constrain the anchor to point to a document of a specific DTD.

The framework presented in this paper for representing and reasoning on
structured documents provides a notable example of handling objects composed
of different parts. The part-whole relation is seen as having a special importance
in several applications [6,3,12]. DL, by means of the reflexive-transitive closure
and the well-foundedness constructs, is able to capture fundamental aspects of
the part-whole relation [12,2,16] as shown in [5].

Two further research directions are worth pursuing. On the one hand, further
aspects of DTDs could be captured in order to represent, for example, other
properties of documents, exceptions (as described in [17]), and constraints on
the number of occurrences of a certain pattern in an element definition. On the
other hand, the deductive power of DL allows one to study new types of reasoning
on DTDs, such as further forms of parameterized equivalence (e.g. abstracting
from the definition of a specified element) and document classification (infer
which is the DTD that best matches a given marked document among a set of
candidates).
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