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Abstract
Recent proposals to improve the quality of interaction with the World Wide Web suggest considering the Web as
a huge semistructured database, so that retrieving information can be supported by the task of database querying.
Under this view, it is important to represent the form of both the network, and the documents placed in the nodes
of the network. However, the current proposals do not pay sufficient attention to represent document structures and
reasoning about them. In this paper, we address these problems by providing a framework where Document Type
Definitions (DTDs) expressed in the eXtensible Markup Language (XML) are formalized in an expressive Descrip-
tion Logic equipped with sound and complete inference algorithms. We provide methods for verifying conformance
of a document to a DTD in polynomial time, and structural equivalence of DTDs in worst case deterministic ex-
ponential time, improving known algorithms for this problem which were double exponential. We also deal with
parametric versions of conformance and structural equivalence, and investigate other forms of reasoning on DTDs.
Finally, we show how to take advantage of the reasoning capabilities of our formalism in order to perform several
optimization steps in answering queries posed to a document base.
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1 Introduction

The view of the World Wide Web as a large information system constituted by a collection
of documents connected by hypertext links, is stimulating many lines of research related to
Knowledge Representation and Databases [25, 32, 26, 28]. One of the most interesting as-
pects addressed in recent papers is the design of suitable mechanisms for querying the World
Wide Web information system. While the basic mechanism for retrieving information in this
context is browsing and/or searching by keywords, several authors point out that some form
of declarative query formulation would greatly improve the effectiveness of the interaction
with the Web (see for example [32]).

One possibility of pursuing the goal of querying the World Wide Web is to consider the
Web as a huge semi-structured database, so that retrieving information can be supported by
the traditional task of database querying. The result of the query could be some representation
of the portion of the Web containing the information of interest: from such a portion, further
interaction may start, possibly based on browsing and searching. This framework is adopted,
for instance, in [26, 28, 32]. One important assumption of these approaches is that the query
process operates on the basis of a representation of the structure of the network. For example,
the query language WebSQL [32] considers the underlying database as constituted by suitable
virtual relations describing the Web in terms of its nodes and its hypertext links.
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The current proposals based on the above ideas, however, do not pay sufficient attention to
the problem of representing the structure of documents placed in the nodes of the network.
Representing such structural aspects, and having the ability to reason about them, would help
in several tasks related to query processing, such as query formulation, optimization and re-
structuring [15, 35, 21, 32, 23]. The role paid by the information on both document and
link structures corresponds to the one paid by the schema and the associated constraints in a
traditional database system. In this sense, it is important to study suitable mechanisms for rea-
soning about the representation of structural aspects. This reasoning facility is the analogue
of the schema level reasoning techniques in the traditional database setting (constraint infer-
ence in relational database, inheritance and subtyping inference in object-oriented databases,
etc.), and enables to improve both the precision of the information retrieved, by providing
flexible additional selection criteria, and the efficiency of the retrieval process, by allowing
for retrieving just a short description of a large document to decide its relevance, instead of
the document itself [31, 29, 30, 15, 35, 32].

In order to address the issue of devising more sophisticated forms of representation and rea-
soning about document structures, one must take into account that documents in the World
Wide Web are described by means of ad hoclanguages. Indeed, the structure of a docu-
ment is typically made explicit by using special tags to mark its various parts. One of the
most prominent formalisms for defining marked-up documents is the eXtended Markup Lan-
guage (XML) [8], which is a specialization of the Standard Generalized Markup Language
(SGML) [24]. In XML, the structure of marked-up documents is described by means of Doc-
ument Type Definitions(DTDs) which assert the set of ‘rules’ that each document of a given
document type must conform to. Such rules can be formalized by means of Extended Con-
text Free Grammars (ECFGs), in such a way that marked-up documents that are instances
of a DTD are seen as syntax trees of the corresponding grammar [42]. It is worth noticing
that XML DTDs have been used to define wide range of document types, from very general
ones, such as generic HTML documents, to very specific ones, e.g. a specific form of email
messages.

Several types of reasoning about DTDs are of interest for the purpose of supporting query
processing over a document base. Given two DTDs, a natural and fundamental question is
whether they are equivalent in some sense [42, 36]. Under the above formalization of DTDs
as ECFGs, this question can be reformulated in terms of checking various forms of equiva-
lence between grammars. In particular, checking strong equivalenceof DTDs, i.e. whether
two DTDs define the same sets of documents, can be effectively done by checking whether
the two corresponding grammars generate the same sets of syntax trees. Open problems
concerning reasoning on DTDs are pointed out in [42], such as:

1. Find algorithms and study the computational properties of structural equivalence, which
is a weaker form of equivalence abstracting from tag names in the documents.

2. Determine meaningful variants of structural equivalence, and study their computational
complexity.

The goal of this paper is to demonstrate that expressive Description Logics are well suited
to represent and reason about the structure of documents. Specifically, we provide the fol-
lowing contributions:

� We present a formalization of XML DTDs in terms of an expressive Description Logic,
called DL, equipped with sound, complete, and terminating inference procedures. This
logic includes non-first-order constructs, such as reflexive-transitive closure and well-
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foundedness, which play a crucial role in the formalization. The inference procedures
for DL provide us with a general reasoning mechanism that enables reasoning tasks on
DTDs to be effectively carried out. These include the verification of typical forms of
equivalences between DTDs [42, 36], such as strong equivalence, structural equivalence,
and parametric versions of equivalence. Notably, this general reasoning mechanism al-
lows for verifying structural equivalence in worst case deterministic exponential time, in
contrast to the known algorithms which are double exponential.

� We illustrate a method for retrieving a set of documents from a document base, that takes
advantage of the reasoning capabilities of DL. Documents are retrieved by means of
queries that ask for all documents conforming to a given structure. Reasoning is exploited
in order to devise several optimization strategies that improve upon the brute force ap-
proach of scanning the entire document base and checking, for every document instance,
whether it satisfies the query.

The paper is organized as follows. In Section 2, XML DTDs and documents are introduced,
and the basic reasoning tasks on DTDs are defined. In Section 3, the Description Logic DL
is presented. In Section 4, the formalization of DTDs and related reasoning tasks within
DL is developed. In Section 5, we address the problem of answering queries posed to a
document base. In Section 6, we discuss possible extensions of our approach, and compare
our proposal with recent work on modelling semi-structured data. Finally, conclusions are
drawn in Section 7.

2 The eXtended Markup Language (XML)

The eXtended Markup Languageis a specialization of the Standard Generalized Markup
Languagewhose goal is to facilitate the processing of generic marked-up documents on the
World Wide Web in a way that goes beyond what is now possible with HTML documents [8].
We focus only on aspects of XML and marked-up documents that are directly related to
the document structure, abstracting with respect to additional features that are related to the
physical representation of documents.

2.1 XML DTDs and documents

XML describes marked-up documents, called XML documents, each of which can be con-
sidered a pair (D; d), whereD is a Document Type Definition (DTD)and d is the document
instance. The document instance is made up of units, called elements, which denote the log-
ical components of the document and are delimited by marking tags. The DTD specifies the
logical structures, and hence the markups, that are admissible, in terms of a set of element
type definitions. In an XML document (D; d) the document instance d has to conform to the
DTDD, according to the definition of conformance provided below.

We start by describing the form of document instances independently of the particular DTD
the document instance may conform to. We assume to deal with two alphabetsT of terminals
and E of element types. To each element type E 2 E we associate a start tag<E> and an
end tag</E>.

DEFINITION 2.1
The set docsT;E of all possible document instances that can be built overT and E is defined
inductively as follows:
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<!DOCTYPE Mail [

<!ELEMENT Mail (From, To, (Subject)?, Body)>

<!ELEMENT From (Address)>

<!ELEMENT To (Address)+>

<!ELEMENT Address (#PCDATA)>

<!ELEMENT Subject (#PCDATA)>

<!ELEMENT Body (#PCDATA | any)>

]>

FIG. 1. DTD M for mail documents

� If d is a terminal in T, then d 2 docsT;E.

� If d is a sequence of the form <E> d1 � � � dk </E>, where E 2 E is an element type and
d1; : : : ; dk 2 docsT;E, then d 2 docsT;E.

In the following we assume without loss of generality that the alphabets T of terminals
and E of element types are fixed, and we denote the set docsT;E simply by docs .

While the terminals inT are the basic types of XML, such as #CDATA and #PCDATA, which
represent generic (unmarked) strings with no associated structure, the structure of elements
corresponding to element types in E is specified by using DTDs. With the term symbol,
denoted by the letter S, we mean an element in T [ E, i.e. either a generic terminal or an
element type.

DEFINITION 2.2
A Document Type Definition(DTD)D is a pair (P; R), whereP is a set of element type def-
initions, and R 2 E is the root element type, i.e. the element type that specifies the document
type. Each element type definition has the formE ! �, whereE is the defined element type,
and �, called content model, is an expression over symbols in T [ E constructed according
to the following abstract syntax:

� ::= S j empty j �1j�2 j �1; �2 j �? j �
�
j �

+

i.e. � is a regular expression with empty denoting the empty string, ‘,’ denoting concate-
nation, and ‘j’ denoting union, extended with both optional expressions (‘?’) and transitive
closure (‘+’)1. In addition, XML content models may contain the construct any that stands
for any sequence of elements types defined in the DTD. Formally, any is an abbreviation for
(E1j � � � jEn

)�, where E1; : : : ; En
are all element types that appear in P.

Consistently with XML, we assume that for each element type E 2 E, P contains at most
one element type definition E ! � where E appears on the left-hand side. We also assume
that for each element type E appearing in P, there is an element type definition E ! � in P
in which E is the symbol on the left-hand side. In fact, if such condition is not satisfied, the
DTD can easily be transformed (in polynomial time) into one that generates the same set of
document instances, and in which the condition holds.

EXAMPLE 2.3 (Mail documents)
Figure 1 shows an example of a DTD M for a simple mail document, expressed in XML
syntax—it is straightforward to rephrase the element type definitions using the abstract syntax
above.

1Observe that in XML the ‘&’ operator of SGML is not allowed.
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<Mail>

<From>

<Address> Dante@dsn.fi.it </Address>

</From>

<To>

<Address> Beatrice@pitti.fi.it </Address>

<Address> Virgilio@spqr.rm.it </Address>

</To>

<Subject> Appointment </Subject>

<Body>

Why don't we meet at disco.inferno at midnight.

Tell also Caronte. Cheers,

- D.A.

</Body>

</Mail>

FIG. 2. A document instance conforming to the DTD in Figure 1

DEFINITION 2.4
The set docs(P; S) of document instances generated by a set of element type definitions P
starting from a symbol S is inductively defined as follows:

� If S is a terminal F , then docs(P; F ) = F .

� If S is an element type E and E ! � 2 P, then docs(P; E) is the set of sequences
<E> d1 � � � dk </E>, where <E> and </E> are the start and end tags associated to E,
and d1; : : : ; dk are document instances generated by an instance of the content model �.
Formally:

docs(P; E) = f<E> d1 � � � dk </E> j there exists a word S1 � � �Sk generated by
� such that d

i
2 docs(P; S

i
), for i 2 f1; : : : ; kgg:

The set docs(D) of document instances generated by a DTD D = (P; R) is given by
docs(P; R). A document instance d conformsto a DTDD if d 2 docs(D).

EXAMPLE 2.5 (Mail documents)
Figure 2 shows a document instance conforming to the DTD in Figure 1.

From a formal point of view, a DTD can be considered as an Extended Context Free Gram-
mar (ECFG) [42], which is used to generate a set of syntax treesrather than a language. The
set of element types and terminals are the nonterminal and terminal symbols of the ECFG,
the root element type is the initial symbol, and the element type definitions are the production
rules. Marked-up documents are seen as syntax trees constructed according to the grammar,
where the tree structure is determined by the various tags that occur in the document and that
constitute the markup.

2.2 Basic reasoning tasks on XML DTDs

Besides conformancedefined above, several other reasoning tasks turn out to be useful when
managing XML documents. A fundamental problem is to check various forms of equivalence
between DTDs [42, 36]. Additionally, the possibility of checking inclusion, and disjointness
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between DTDs can be exploited to improve the efficiency of retrieving documents from a
document base (see Section 5).

The most basic form of inclusion (equivalence, disjointness) is inclusion (equivalence,
disjointness) of the sets of document instances conforming to the two DTDs.

DEFINITION 2.6
Given two DTDsD1 andD2:

� D1 is strongly includedinD2, denoted withD1 vs
D2, if docs(D1) � docs(D2);

� D1 is strongly equivalenttoD2, denoted withD1 �s
D2, if docs(D1) = docs(D2);

� D1 is strongly disjointfromD2, denoted withD1 
s
D2, if docs(D1)\ docs(D2) = ;.

For determining strong inclusion (equivalence, disjointness), the names of the start and end
tags that constitute the markup of documents play a fundamental role.

In some cases, however, the actual names of the tags may not be relevant, while the doc-
ument structure imposed by the tags is of importance. For example, if we simply want to
check if two DTDs describe documents with the same level of nesting of tags, the names of
the tags are irrelevant. The form of inclusion (equivalence, disjointness) obtained by ignoring
the names of tags and considering only their positions is called structural inclusion (equiva-
lence, disjointness)[42]. One DTDs is structurally included into another if, when we replace
in every document conforming to the DTDs all start and end tags with the unnamed tags <>
and </> respectively, the resulting sets of documents for the two DTDs are one included into
the other. Similar definitions hold for structural equivalence and disjointness.

Structural equivalence of two DTDs is decidable, but the known algorithms take time dou-
bly exponential in the size of the two DTDs [42]. 2

While the restrictions imposed by strong inclusion (equivalence, disjointness) may be too
strict in some cases, structural inclusion, which ignores completely all tag names, may be too
weak. A natural generalization of these two concepts is obtained by considering a spectrum
of possible inclusions, of which strong and structural inclusion are just the two extremes.
The different forms of inclusion are obtained by considering certain tag names as equal, and
others as different, when confronting documents. This allows us to parameterize inclusion
of DTDs with respect to an equivalence relation on the set of tag names. For example, when
checking equivalence of two DTDs, we may want to abstract from the difference between
the names enumerate and itemize. This can be obtained by imposing that the two tags are
equivalent, and by checking whether the DTDs enforce the same structure (for example a list
of items) on the corresponding parts of the documents.

Formally, we consider an equivalence relation R on the set E of element types. For an
element type E 2 E, we denote by [E]R the equivalence class of E with respect to R.

DEFINITION 2.7
The set docsR(P; S) ofR-document instancesgenerated by a set of element type definitions
P starting from a symbol S is inductively defined as follows:

� If S is a terminal F , then docsR(P; F ) = F .
� If S is an element type E and (E ! �) 2 P, then

docsR(P; E) = f<E0> d1 � � � dk </E
0> j E

0
2 [E]R, and there exists a word

S1 � � �Sk generated by � such that d
i
2 docsR(P; Si), for

i 2 f1; : : : ; kgg:

2This complexity bound holds if one does not consider the ‘&’ operator of SGML (as in XML), which, if ex-
panded may lead to an additional exponential blowup.
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<!DOCTYPE Note [

<!ELEMENT Note (From, To, Text)>

<!ELEMENT From (Address)>

<!ELEMENT To (Address)>

<!ELEMENT Address (#PCDATA)>

<!ELEMENT Text (#PCDATA | any)>

]>

FIG. 3. DTD N for note documents

The set docsR(D) of R-document instances generated by a DTD D = (P; R) is given by
docsR(P; R). A document instance d R-conformsto a DTDD if d 2 docsR(D).

DEFINITION 2.8
A DTD D1 is R-included in a DTD D2, denoted with D1 vR D2, if docsR(D1) �

docsR(D2). R-equivalence, denoted with �R, and R-disjointness, denoted with 
R, of
two DTDs are defined in a similar way.

EXAMPLE 2.9 (Note documents)
The DTD N defining note documents, shown in Figure 3, is strongly disjoint from the DTD
M defining mail documents, shown in Figure 1. However, if we abstract from the difference
between the names Mail and Note and the names Body and Text, then a note is a special
kind of mail. Indeed, it is easy to see that for any equivalence relation R containing the pairs
(Mail; Note) and (Body; Text), we have that N vR M .

As already mentioned strong inclusion and structural inclusion are just special cases ofR-
inclusion (similarly for equivalence and disjointness). In fact, if we choose for R the equiv-
alence relation in which all equivalence classes are singletons, we obtain strong inclusion
(equivalence, disjointness). On the other hand, if R contains a single equivalence class con-
stituted by the whole setE, we obtain structural inclusion (equivalence, disjointness). There-
fore in the following without loss of generality we considerR-inclusion,R-equivalence, and
R-disjointness only.

3 The description logic for representing DTDs

We introduce the Description Logic DL that will be used in Section 4 to represent DTDs.
In Description Logics(DLs) [33, 19], the domain of interest is modeled by means of indi-
viduals, concepts, and roles, denoting objects of the domain, unary predicates, and binary
predicates respectively. 3 For the purpose of this paper we do not deal with the possibility of
expressing knowledge about individuals, and therefore we conceive a DL as formed by three
components:

� A description language, which specifies how to construct complex concept and role ex-
pressions (also called simply concepts and roles), by starting from a set of atomic symbols
and by applying suitable constructs.

� A knowledge specification mechanism, which specifies how to construct a DL knowledge
base, in which properties of concepts and roles are asserted.

3More general Description Logics make also use of relations, which correspond to n-ary predicates [13].
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TABLE 1. Syntax and semantics of DL concept and role constructs
Concepts C Syntax Semantics

atomic concept A A
I � �I

top > �I

negation :C �I n CI

conjunction C1 u C2 C
I

1
\ C

I

2

universal quantif. 8R.C fo j 8o0 : (o; o0) 2 R
I ! o

0 2 C
Ig

qual. number restr. (� n P .C) fo j ]fo0 j (o; o0) 2 P
I ^ o

0 2 C
Ig � ng

well-founded wf (R) fo0 j 8o1; o2; : : : (ad infinitum) 9i � 0 : (oi; oi+1) 62 R
Ig

Roles R Syntax Semantics

atomic role P P
I � �I ��I

union R1 [ R2 R
I

1
[ R

I

2

concatenation R1 Æ R2 R
I

1
Æ RI

2

refl. trans. closure R
� (RI )�

transitive closure R
+ (RI)+

identity id(C) f(o; o) j o 2 C
Ig

� A set of basic reasoning servicesprovided by the DL.

In the rest of the section we describe the specific form that these three components assume in
DL.

3.1 The Description Language ofDL

In DLs, starting from a set of atomic conceptsand atomic roles, one can build complex
concepts and roles by applying certain constructs. It is the set of allowed constructs that
characterizes a specific description language. The basic concept constructs encountered in
DLs include the Boolean constructs, denoted ‘u’, ‘t’, and ‘:’, and interpreted as the cor-
responding set operations, and universaland existential quantification over roles[39]. For
example, the concept Personu 8child.Maleu 9child.Doctor, denotes the set of individ-
uals that are instances of the concept Person and are connected through the role child only
to instances of the concept Male and to some instance of the concept Doctor. Additionally,
more expressive DLs include number restrictions, which allow for delimiting the number
of times an object is connected to other objects via a certain role, and constructs on roles,
such as intersection, or the possibility to construct arbitrary regular expressions over atomic
roles [6, 38, 17].

In particular, the Description Logic DL, that we use for formalizing DTDs, is a variant of
the very expressive DLs studied in [12, 16, 11, 10, 18]. It includes besides the basic constructs
mentioned above, also:

� a very general form of number restrictions, called qualified number restrictions, by means
of which one can limit for an object o the minimum and maximum number of objects that
are instances of a specified concept and that are connected to o via a role;

� the possibility to use roles which are constructed as regular expressions over atomic roles;
� a construct to denote the objects that are the initial point of a sequence of roles which is

well-founded.
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The full set of constructs of DL is shown in Table 1, where we denote atomic concepts
by A, arbitrary concepts by C, atomic roles by P , and arbitrary roles by R, all possibly
with subscripts. We also use the following abbreviations to increase readability: ? for :>,
C1 t C2 for :(:C1 u :C2), and 9R.C for :8R.:C.

In DLs, the formal semantics is specified through the notion of interpretation. An interpre-
tationI is a pair (�I

; �
I), where �I is the interpretation domainand �I is an interpretation

functionthat assigns to each concept C a subset CI of �I , and to each role R a binary rela-
tion RI over �I , respecting the specific conditions imposed by the structure of the concept
or role. CI and RI are called the extensionof C and R respectively.

The semantics of the DL constructs, shown in Table 1 is quite standard, except for the
construct wf (R), called well-founded, which is interpreted as those objects that are the initial
point of only finite R-chains. Notice that besides reflexive transitive closure of roles (‘�’),
DL includes also the ‘+’ construct for transitive closure, which turns out to be necessary
for a characterization of DTDs in terms of DLs. Obviously one can eliminate ‘+’ from any
complex role expression by replacing any occurrence of R+ with R Æ R

�. However, such
a replacement may in the worst case lead to an exponential increase in the size of the role
expression.

3.2 Knowledge bases inDL

A DL knowledge baseis a set of assertions of the form:

C1 v C2

where C1 and C2 are arbitrary DL concepts without any restrictions. We use C1 � C2 as an
abbreviation for the pair of assertions C1 v C2 and C2 v C1.

An interpretation I satisfiesthe assertion C1 v C2 if CI1 � C
I

2 . An interpretation is a
modelof a knowledge base K if it satisfies all assertions in K. Thus, we adopt descriptive
semanticsfor cyclic knowledge bases, i.e. knowledge bases in which the concept in the right-
hand side of an assertion refers (either directly or indirectly via other assertions) to some
concept in the left-hand side of the assertion [34, 7, 18].

3.3 Reasoning services inDL

The basic reasoning service in DL is satisfiabilityof a conceptC in a knowledge base K, de-
notedK j= C 6� ?. It amounts to checking whetherK admits a model in which the extension
of C is nonempty. Other reasoning services are knowledge base satisfiability, i.e. determin-
ing whether a knowledge base admits a model, and subsumption. Determining subsumption
between two concepts C1 and C2 in a knowledge base K, denoted K j= C1 v C2, amounts
to check whether CI1 � C

I

2 for every model I of K.
Both knowledge base satisfiability and subsumption can be immediately reduced to con-

cept satisfiability as follows:

� A knowledge base K is satisfiable if and only if > is satisfiable in K.

� A conceptC1 is subsumed by a conceptC2 in a knowledge baseK if and only ifC1u:C2

is not satisfiable in K.

Hence it is sufficient to consider concept satisfiability only.
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THEOREM 3.1
Concept satisfiability in DL is an EXPTIME-complete problem.

PROOF. Here we give only a sketch of the proof. The complete proof can be found in [11].
The proof exploits a correspondence between DLs and Propositional Dynamic Logics
(PDLs) [22] established for the first time in [38] and extended successively to more expressive
DLs and PDLs in [17, 12, 11]. In order to decide concept satisfiability in DL we polynomi-
ally reduce it to satisfiability in repeat-ADPDL. Repeat Automata Deterministic Propositional
Dynamic Logic (repeat-ADPDL) [40, 41] is a variant of PDL in which all atomic programs
(which correspond to atomic roles) are assumed to be deterministic (i.e. they correspond to
globally functional roles), and in which complex programs are represented by means of finite
automata over the language of atomic programs, rather than by regular expressions. Addi-
tionally, it contains the ‘repeat’ construct over programs (that corresponds to the negation of
the well-founded construct over roles).

Qualified number restrictions have no counterpart in PDLs, and therefore, we need to get
rid of them in order to exploit the correspondence with PDLs. Following the construction
in [17], we define a satisfiability preserving polynomial transformation of a knowledge base
that eliminates qualified number restrictions. We introduce for each atomic role P , two new
atomic roles F

P
and G

P
, which are globally functional, and replace every occurrence of

(� n P .C) in the knowledge base with:

8(F
P
ÆG

�

P
Æ (id (C) ÆG+

P

)n).:C

where Rn denotes the concatenation of R repeated n times.
After this transformation the only roles that appear in the knowledge base are functional,

and we are ready to establish a correspondence with repeat-ADPDL. In order to deal with the
‘+’ operator for transitive closure, we exploit the fact that the regular language over atomic
roles described by a complex role expression R, can be encoded by means of a finite (non-
deterministic) automaton whose size is polynomial in the size of R. Hence, we can encode
each concept C of DL into a formula of repeat-ADPDL whose size is polynomial in the size
of C.

The EXPTIME upper bound follows from decidability in deterministic exponential time of
satisfiability in repeat-ADPDL [40, 20].

3.4 Representing inductive structures inDL

With the rich language of DL one can represent and reason on a variety of inductive data
structures, such as lists and trees. Generally speaking, the unrestricted form of assertions
allows for expressing recursive structures, while the well-founded construct allows for im-
posing finiteness of paths of a specified form on the structures. The combination of the two
can thus be used to define inductive structures in which both infinite and cyclic paths are ruled
out. This feature will be important for correctly representing XML documents in DL.

We illustrate the above ideas showing how to represent binary trees. Typically, the class of
binary trees is defined inductively as the smallest setBinTree such that:

� every node with no left-successor and no right-successor (i.e. every node that is a
Leaf) is a BinTree;

� every node having left and right successors which are BinTrees is a BinTree.
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This inductive definition is captured by the concept BinTree in the following DL knowl-
edge base:

Node v (= 1 info.>)

Leaf � Node u 8(left [ right).?

BinTree � Leaf t (Node u 8(left[ right).BinTreeu
(� 1 left.>) u (� 1 right.>) u
wf (left [ right)):

This knowledge base allows us to represent binary trees in the following sense. In every
model of the knowledge base, if we consider any instance b of BinTree, then the set of
objects and links that can be reached from b by following left and right links form a
binary tree. Note that, in this way, a binary tree is actually identified by its root.

The concept BinTree is characterized by a recursive equation, in which the term BinTree

on the left-hand side occurs also in the right-hand side of the equation. Let us remark the
difference between a recursive equation of this form and an inductive definition: a recursive
equation simply states a certain condition to be satisfied by its solutions, without specifying
any selection criteria to choose among all possible solutions. An inductive definition instead,
selects the smallest set satisfying the condition, and hence identifies a unique solution. The
well-foundedness declaration in the right-hand side of the equation characterizing BinTree

accomplishes this selection, making the recursive equation of BinTree equivalent to an in-
ductive definition.

Once binary trees are represented in the above way they can be easily specialized by se-
lecting for example the kind of information contained in certain nodes, e.g.:

UrlTree v BinTreeu 8(left[ right)�.(:Leaf t 9info.URL)

or additional structural constraints, such as a specific maximal depth, e.g.:

DepthTwoTree v BinTreeu 8((left[ right) Æ (left [ right)).Leaf:

Obviously, recursively defined structures are taken into account like any other concept
definition when reasoning about the knowledge base. Suppose for example that we define
UrlTree2 as the smallest set such that:

� every node that is a Leaf and points to an URL is an UrlTree2;
� every node having left and right successors which are UrlTree2s is an UrlTree2.

Such structure is captured by the following additional assertion:

UrlTree2 � Leafu 9info.URL t (Node u 8(left [ right).UrlTree2u
(� 1 left.>) u (� 1 right.>) u
wf (left [ right)):

One can verify that the knowledge base including all assertions so far correctly implies that
UrlTree2 is logically equivalent to UrlTree.

4 Representing and reasoning over DTDs in DLs

We describe how to construct a DL knowledge base capable of fully capturing the structural
aspects of DTDs. Without loss of generality we refer to a fixed alphabet E of element types,
a fixed alphabet T of terminals, and a fixed equivalence relation R on the set E of element
types.
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4.1 Representation of DTDs

Given a DTDD = (P; S0), we define a DL knowledge base K, called characteristic knowl-
edge baseofD, as follows.

The alphabet of K includes the following atomic concepts and roles:

� the atomic concepts Tag and Terminal,

� for each terminal F 2 T, one atomic concept F ,

� for each element type E 2 E, one atomic concept StartE and one atomic concept
EndE,

� for each element type definition (E ! �) 2 P, one atomic concept ED,

� the atomic roles f and r.

The atomic concepts StartE and EndE represent the tags of an element type E and are
independent from the specific DTD. The atomic concept ED associated to an element type
definition contains the information about the DTD it belongs to and hence is specific to such a
DTD. Indeed, when considering different DTDsD1 andD2, both containing an element type
definition for the same element type E, the associated knowledge bases contain the distinct
atomic concepts ED1

and ED2
.

The set of assertions of the knowledge baseK is constituted by three partsKT;E, KR, KD,
which are defined as specified below. We observe that in defining K, we will not exploit
the full power of qualified number restrictions in DL. We refer the reader to Section 6
for a discussion on how qualified number restrictions can be used for capturing additional
interesting characteristics of XML documents.

KT;E: encoding of general structural properties.Our aim is that KT;E captures the gen-
eral structural properties of document instances. In particular, we want to enforce that every
model of KT;E represents a document instance d by means of a tree. Intuitively, the root
of the tree represents the root element of d, and is connected by means of the roles f and
r (standing for ‘first’ and ‘rest’ respectively) to the objects representing the tags associated
to the root element and to those representing the components of d. More specifically, for
a document instance d with h components, the start tag is represented by the f-filler of the
root, the first component by the (r Æ f)-filler, the second component by the (r Æ r Æ f)-filler,
the last component by the rh Æ f-filler, for some h > 0, and the end tag by the rh+1-filler.
Document instances are by definition finite, and hence have a finite nesting of components.
Since an infinite model of KT;E or a model containing cycles would correspond to a docu-
ment instance with infinite nesting, such models have to be ruled out. Therefore, we need to
impose finiteness and acyclicity of all chains of objects connected by f[r. This can be done
by means of the well-foundedness construct.

Figure 4 illustrates the structure of the tree representing a document instance of the form
<E><E1>� � �</E1>� � �<Eh

>� � �</E
h
></E>, according to the criteria specified above.

Taking into account the above considerations, we can defineKT;E to be constituted by the
following assertions:

> � (� 1 f.>) u (� 1 r.>) u wf (f [ r)

Tag v 8(f [ r).?

Terminal v 8(f [ r).?u :Tag

F v Terminal for each terminal F 2 T
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FIG. 4. Tree representing the document <E><E1>� � �</E1>� � �<Eh
>� � �</E

h
></E>

F1 v :F2 for each pair of terminals F1; F2 2 T such that F1 6= F2

StartE v Tag for each element type E 2 E

EndE v Tag for each element type E 2 E:

Observe thatKT;E reflects the modeling of binary trees inDL as illustrated in Section 3.4,
with the further requirement that in all models of KT;E every object represents a binary tree.
Indeed, the first assertion ensures us that in every model ofKT;E, every object is the root of a
tree in which every node has at most one f successor and one r successor. The second and the
third assertions impose that every instance of Tag and Terminal are leaves of the tree, and
that Tag and Terminal are disjoint. Finally, the other assertions specify that every instance
of F is also an instance of Terminal, that two different terminals have disjoint instances,
and that StartE and EndE are subsets of Tag, for each E 2 E.

KR: encoding of the equivalence relationR. Our aim is that KR fully captures the equiv-
alence relation R. Therefore, KR should impose the disjointness of the concepts represent-
ing tags of element types belonging to different equivalence classes, and the equivalence
of all the concepts representing tags of element types in the same equivalence class. Let
ffE

1
1 ; : : : ; E

1
n1
g; : : : ; fE

m

1 ; : : : ; E
m

nm

gg be the set of equivalence classes determined by R.
From the above observation it is easy to see that we reach our goal by defining KR to be
constituted by the assertions:

StartEi

1 v :StartE
j

1

EndEi

1 v :EndE
j

1

for i; j 2 f1; : : : ;mg and i 6= j

StartE
j

i
� StartE

j

i+1

EndE
j

i
� EndE

j

i+1

for i 2 f1; : : : ; n
j
�1g and j 2 f1; : : : ;mg:

In this way, when reasoning, the differences between the various tags associated to equiv-
alent element types are ignored, coherently with the notion of R-inclusion.

KD: encoding of the DTD.The goal here is to define KD in such a way that it encodes the
knowledge about the various element type definitions inD = (P; R). In order to do so, for
every E in D, KD must impose suitable conditions on ED, so that in every model of K, the
instances of ED represent the parts of document instances coherent with the definition of E
inD.
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MailM � 9f.StartMail u 9(r Æ id(9f.FromM ) Æ r Æ id(9f.ToM ) Æ r

Æ ((id(9f.Subject
M
) Æ r) [ id(>)) Æ id(9f.Body

M
) Æ r).EndMail

FromM � 9f.StartFrom u 9(r Æ id(9f.AddressM ) Æ r).EndFrom

ToM � 9f.StartTo u 9(r Æ id(9f.AddressM ) Æ r Æ (id(9f.AddressM ) Æ r)�).EndTo

Subject
M

� 9f.StartSubject u 9(r Æ id(9f.#PCDATA) Æ r).EndSubject

Body
M

� 9f.StartBody u 9(r Æ id(9f.#PCDATA) Æ r).EndBody

AddressM � 9f.StartAddress u 9(r Æ id(9f.#PCDATA) Æ r).EndAddress

FIG. 5. Characteristic knowledge base derived from the DTD M (specific part only)

As we said when commenting the definition of KT;E, the first component (the f-filler) of
every instance of ED is its start tag, whereas the last component (the rh-filler) is its end tag.
The remaining components (i.e. the (rk Æ f)-fillers, with k < h) are determined by the form
of the element type definition (E ! �) 2 P, and in particular by the form of �. In order to
represent �, we use a complex role �(�), defined inductively as follows:

�(empty) = id(>)
�(S) = id(9f.ac(D; S)) Æ r

�(�1j�2) = �(�1) [ �(�2)
�(�1; �2) = �(�1) Æ �(�2)

�(��) = �(�)�

�(�+) = �(�)+

�(�?) = �(�) [ id(>)

where ac(�; �) is a mapping that associates to each pair constituted by the DTD D and a
symbol S an atomic concept as follows:

ac(D; S) =
n
ED if S = E for an element type E 2 E

F if S = F for a terminal F 2 T
:

Indeed, �(�) reflects the structure imposed by � on the parts of a document instance that
are defined by E ! �, and can be explained in terms of an encoding of the tree representing
the document instance into a binary tree. It is worth noticing that � exploits the analogy
between the constructs used in expressing content models in XML, and the constructs used
to form complex roles in DL. For example, if � has the form �1; �2, then the corresponding
complex role is r1 Æ r2, where in turn, r1 and r2 are the complex roles corresponding to �1
and �2, respectively.

From all the above observations, we can conclude that, for each element type definition
(E ! �) 2 P, KD contains the assertion:

ED � 9f.StartE u 9(r Æ �(�)).EndE:

EXAMPLE 4.1 (Mail documents)
Figure 5 shows the characteristic knowledge base K for the DTD M described in Figure 1.
The general part has been omitted.

The next lemma states a fundamental property of a characteristic knowledge base, which
will be used in the following. Let us call ‘basic’ all atomic concepts and roles except for the
atomic concepts ED. Then in each model of K, the extension of every atomic concept ED is
completely determined by the extension of basic concepts and roles. Formally:
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LEMMA 4.2
Let D be a DTD, K be its characteristic knowledge base, and I and I 0 be two models of K
that have the same domain and agree on the interpretation of the basic atomic concepts and
roles. Then I and I 0 agree also on the interpretation of ED, for each element type E defined
inD.

PROOF. By contradiction. Let I and I 0 be two models ofK that have the same domain agree
on the interpretation of f, r and all atomic concepts except for ED. We remind the reader
that, for each ED, K includes the axiom ED � 9f.StartE u 9(r Æ �(�)).EndE. Let o be
an object such that o 2 E

I

D
but o 62 E

I
0

D
. We show that we get a contradiction, by induction

on the number of f-steps on the longest r Æ (f [ r)�-path from o to a leaf of the tree in I,
which by the well-foundedness constraint on f [ r must be finite.

Base case. There are no f-steps in the path. Then since o 2 E
I

D
= (9f.StartE u 9(r Æ

�(�)).EndE)I , and since� generates the empty string (no f-steps are allowed), it follows that
o 2 (9f.StartE u9r.EndE)I . Since I and I 0 agree on f, r, StartE, and EndE, it follows
that o 2 (9f.StartE u 9r.EndE)I

0

and hence o 2 (9f.StartE u 9(r Æ �(�)).EndE)I
0

.
Contradiction.

Inductive case. There are n + 1 f-steps in the path. Let o1; : : : ; ok be the objects along
the r Æ r�-path satisfying 9(r Æ �(�)).EndE from o, and let o0

i
be the f-successor of o

i
, for

i 2 f1; : : : ; kg. By induction hypothesis, and since I and I 0 agree on the interpretation of
each F 2 T, we have that I and I 0 agree on the interpretation of ac(D; S

j
) in o

j
, for every

symbol S
j
2 T [E. This implies that they must agree also on the interpretation of ED in o.

Contradiction.

The above lemma ensures us that, given a model I ofK, it is possible to determine whether
an object o is an instance of ED by taking into account only the structure of the (f [ r)�

connected component of I containing o. Observe that, in establishing this property, the
well-foundedness construct plays a prominent role, since it ensures that there is no infinite
(f [ r)�-path starting at o.

4.2 Conformance

The way in which we have definedK allows us to demonstrate that eachR-document instance
d 2 docs (over T and E) directly corresponds to a model of KT;E and KR. Indeed, we can
define a one-to-one mapping � from R-document instances to models of KT;E and KR.

Given a document instance d, we define �(d) by induction on the structure of d as follows:

� If d is a terminal F 2 T, then �(d) = (��(d)
; �
�(d)) is defined as follows: ��(d) =

F
�(d) = Terminal�(d) = fog, and the extension of the other concepts and of the roles

is empty. We say that o is the root of �(d).

� If d is a sequence of the form <E> d1 � � � dk </E>, where E 2 E is an element type,
<E> and </E> are its start and end tags, and d1; : : : ; dk 2 docsE;T, then �(d) =
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(��(d)
; �
�(d)) is obtained as follows:4

��(d) = fo; o
b
; o1; : : : ; ok; oeg ]

U
1�i�k �

�(di)

(we say that o is the root of �(d))

StartE0�(d)

EndE0�(d)

=
=

fo
b
g ]

U
1�i�k StartE

0�(di)

fo
e
g ]

U
1�i�k EndE

0�(di)
for each element type E0

2 [E]R

StartE0�(d)

EndE0�(d)

=
=

U
1�i�k StartE

0�(di)U
1�i�k EndE

0�(di)
for each element type E0

2 E n [E]R

Tag�(d) = fo
b
; o

e
g ]

U
1�i�k Tag

�(di)

r�(d) = f(o; o1); (o1; o2); : : : ; (ok�1; ok); (ok ; oe)g ]
U

1�i�k r
�(di)

f�(d) = f(o; o
b
); (o1; o

0

1); : : : ; (ok; o
0

k
)g ]

U
1�i�k f

�(di)

where o0
i

is the root of �(d
i
), for i 2 f1; : : : ; kg:

EXAMPLE 4.3 (Mail documents)
Figure 6 shows the result of applying � to the document instance in Figure 2. For each
element type E, the nodes labelled <E> and </E> in the figure, are instances of StartE
and EndE respectively.

LEMMA 4.4
Let D = (P; R) be a DTD, d be a document instance, �(d) be as specified above, o be the
root of �(d), and S be a symbol in T [ E. Then there is a unique way to extend �(d) to a
model I of K, and for each S 2 T [ E, d 2 docsR(P; S) if and only if o 2 ac(P; S)I .

PROOF. One can easily verify by construction that �(d) is a model ofKT;E[KR. Moreover,
Lemma 4.2 ensures us that, given a DTDD and a document instance d, there is a unique way
to extend �(d) to a model I of K = KT;E [ KR [ KD. It remains to show that for each
S 2 T [E, d 2 docsR(P; S) if and only if o 2 ac(P; S)I . We proceed by induction on the
structure of d.

Base case. If d is a terminal F 2 T, then the thesis holds trivially.
Inductive case. If d is a sequence of the form <E> d1 � � � dk </E>, then �(d) is constructed

from �(d1); : : : ; �(dk) as specified above. In particular, let o0
i

be the root of �(d
i
), for i 2

f1; : : : ; kg, and let (o; o
b
) 2 fI . If S is a terminal in T then d 62 docsR(P; S), and since

o has o
b

as f-successor, o 62 (8f.?)I � TerminalI � S
I , and we are done. If S is an

element type in E, let S ! � 2 P be the corresponding element type definition. Since o 2
(9f.StartE)I , then o 2 (9f.StartS)I only if S 2 [E]R. Hence o 2 S

I

D
= (9f.StartS u

9(r Æ �(�)).EndS)I if and only if S 2 [E]R and there exists a string S1 � � �Sk generated by
� and atomic concepts ac(D; S1); : : : ; ac(D; Sk) such that o0

i
2 ac(D; S

i
). By induction

hypothesis o0
i

is in the extension of ac(D; S
i
) if and only if d

i
2 docsR(P; Si). Hence, by

definition of docsR(P; S), we get that o 2 ac(D; S) if and only if d 2 docsR(P; S).

The following theorem provides the basis for verifyingR-conformance by resorting to the
translation of DTDs in DL.
THEOREM 4.5
Checking R-conformance of a document instance to a DTD can be polynomially reduced to
model checking in DL.

4The symbol ] denotes disjoint union.
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FIG. 6. The result of applying � to the document instance in Figure 2

PROOF. To check whether a document instance d R-conforms to a DTD D = (P; R), we
construct �(d) and extend it to an interpretation I

d
of K as follows. For each E 2 E, we

interpret ED as:
E
Id

D
= (9f.StartE)Id :

Observe that if o is the root of �(d), then o 2 R
Id

D
, but that I

d
is not necessarily a model of

KD, and hence of K. The following argument ensures us that the latter is the case exactly if
dR-conforms toD.

By Lemma 4.4, applied to the root element type R of D, we can conclude that if I
d

is
a model of K and o 2 R

I
d , then d 2 docsR(D). On the other hand, by proceeding by

induction on the structure of d, analogously to the proof of Lemma 4.4, it can be shown that
if d 2 docsR(D), then I

d
is a model of K and o 2 R

Id .
The reduction is polynomial since the construction of K takes polynomial time in the size

ofD, and the construction of I
d

takes linear time in the size of d.

COROLLARY 4.6
Checking R-conformance of a document instance d to a DTD D can be done in time poly-
nomial in the size of d andD.

PROOF. By Theorem 4.5, R-conformance can be polynomially reduced to model checking
in DL. Each DL knowledge base can be translated into a formula of first-order logic plus
fixpoints (see [2]) which uses at most three variables and two levels of fixpoint nestings [27].
Since I

d
can be considered as a first-order structure, the claim follows from the fact that
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model checking in first-order logic plus fixpoint with the above restrictions has polynomial
complexity with respect to the size of the structure and the formula.

EXAMPLE 4.7 (Mail documents)
Let us consider the structure shown in Figure 6. It is easy to see that, if we assign every node
that is an f-predecessor of a node labelled <E> to the extension of the atomic concept E

M
,

then we obtain a model of K where the root is in the extension of Mail
M

.

4.3 Inclusion and disjointness

In order to show how DL can be used to determine R-inclusion and R-disjointness between
DTDs, we first define a mapping 
 from models of K to document instances.

Let I = (�I
; �
I) be a model of K and o 2 �I . We define 
(o) by induction on the

number of f-steps on the longest r Æ (f [ r)�-path from o in I. By the well-foundedness
constraint on f [ r, such path must be finite. 
(o) is defined as follows:

� If o 2 F
I for some terminal F 2 T, then 
(o) = F .

� If for some element type E, there are some integer k � 0 and objects o
b
, o

e
, o1; : : : ; ok,

o
0
1; : : : ; o

0

k
, such that o

b
2 StartEI , o

e
2 EndEI , (o; o1); (o1; o2); : : : ; (ok�1; ok);

(o
k
; o

e
) 2 rI , and (o; o

b
); (o1; o

0

1); : : : ; (ok; o
0

k
) 2 fI , then 
(o) = hEi
(o01) � � � 
(o

0

k
)

h=Ei.

� Otherwise 
(o) is undefined.

LEMMA 4.8
LetD = (P; S0) be a DTD,K be its characteristic knowledge base, I = (�I

; �
I) be a model

ofK, o 2 �I , and S be a symbol inT[E. Then o 2 ac(P; S)I if and only if 
(o) is defined
and 
(o) 2 docsR(P; S).

PROOF. If 
(o) is undefined or if S is a terminal, then the thesis holds trivially. So let us
assume that 
(o) is defined and that S is an element type. Let S ! � 2 P be the corre-
sponding element type definition. We proceed by induction on the number of f-steps on the
longest r Æ (f [ r)�-path from o in I.

Base case. There are no f-steps in the path. Then by construction either 
(o) = F for
some terminal F 2 T, or 
(o) = <E> </E> for some element type E 2 E. The case where

(o) = F is easy. In the second case, o 2 (9f.StartE u 9r.EndE)I . If S 2 [E]R and �
generates the empty string, then o 2 ac(P; S)I and also 
(o) 2 docsR(P; S). Otherwise
o 62 ac(P; S)I and 
(o) 62 docsR(P; S).

Inductive case. There are n + 1 f-steps in the path. Let o1; : : : ; ok be the objects along
the r Æ r�-path satisfying 9(r Æ �(�)).EndE from o, and let o0

j
be the f-successor of o

j
, for

j 2 f1; : : : ; hg, where E is the element type such that 
(o) = <E> 
(o01) � � � 
(o
0

k
) </E>. If

there are symbols S1; : : : ; Sk in T [ E such that o0
j
2 ac(P; S

j
)I , for j 2 f1; : : : ; kg, then

by induction hypothesis 
(o0
j
) 2 docsR(P; Sj), and if S 2 [E]R and � generates the string

S1 � � �Sk, then o 2 ac(P; S)I and also 
(o) 2 docsR(P; S). Otherwise o 62 ac(P; S)I and

(o) 62 docsR(P; S).

We extend the notion of characteristic knowledge base in such a way that it represents a
set of DTDs, rather than a single DTD. Given a set D = fD1; : : : ;Dn

g of DTDs over E,
T and R, we define the characteristic knowledge base of D simply as K = KT;E [ KR [

KD1
[ � � � [ KDn . In other words, we include in K both KT;E and KR, and we add to K
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the encoding of each D
i
2 D. A model of K represents now a set of document instances.

Observe that Lemma 4.4 and Lemma 4.8 extend immediately to the case where we consider
a set of DTDs, rather than a single DTD.

Exploiting Lemma 4.4 and Lemma 4.8 we can provide the following characterization of
R-inclusion and R-disjointness between DTDs in terms of satisfiability in DL.

THEOREM 4.9
Let D and D0 be two DTDs, and K = KT;E [ KR [ KD [ KD0 be the knowledge base
derived fromT, E, R, fD;D0

g as described above. Then

D vR D
0 if and only if K j= RD v R

0

D0 (4.1)

D 
R D
0 if and only if K j= RD uR

0

D0 v ?: (4.2)

PROOF. LetD = (P; R) andD0 = (P0; R0).
(1) “(” By contradiction. Let d be a document instance that conforms toD but does not

conform toD0, let I be the unique model ofK that extends �(d), and let o be the root of �(d).
Since d 2 docsR(P; R) and d 62 docsR(P

0
; R

0), by Lemma 4.4, o 2 R
I

D
and o 62 R

0I

D0 .
Contradiction.

“)” By contradiction. Let I = (�I
; �
I) be a model of K with o 2 �I such that

o 2 R
I

D
and o 62 R

0I

D0 . Then by Lemma 4.8 
(o) is defined, 
(o) 2 docsR(P; R), and

(o) 62 docsR(P

0
; R

0). Contradiction.
(2) can be proved analogously.

From decidability in deterministic exponential time of logical implication in DL we obtain
as an immediate consequence an EXPTIME upper bound forR-inclusion andR-equivalence
between DTDs. This results also in an exponential improvement over previously known
algorithms for checking structural equivalence [42].

COROLLARY 4.10
R-inclusion,R-equivalence, and R-disjointness between two DTDs can be verified in deter-
ministic exponential time in the size of the DTDs.

5 Retrieving XML documents from a document base

We now describe how to exploit the reasoning techniques presented in the previous section to
evaluate queries posed to a database of documents. As before we refer to a fixed alphabet E
of element types, a fixed alphabet T of terminals, and a fixed equivalence relation R on the
setE of element types. A document base onE,T, andR represents a set of XML documents,
and is defined as follows.

DEFINITION 5.1
A document baseB is a pair B = hD; Ii, where

� D is a set of DTDs, with the assumption that for each pair D1;D2 2 D, it is known
whetherD1 vR D2, and whetherD1 
R D2;

� I is a set of document instances, with the assumption that for each d 2 I there is at least
one D 2 D such that d conforms to D, and for each pair d 2 I, D 2 D, it is known
whether d conforms toD.

A query posed to a document base is simply a document type definition, used to retrieve
all document instances in the document base that satisfy such definition.
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DEFINITION 5.2
A queryQ is a DTD, and the evaluation of Q over a document base B returns as an answer
the set Q(B) of all document instances d 2 B such that dR-conforms to Q.

The goal of this section is to present an algorithm for computing the answer Q(B) to a
query Q posed to a document base B = hD; Ii, which exploits the possibility of reasoning
over DTDs. The algorithm maintains two sets S and J of DTDs and document instances,
and computes a set A(B; Q) of document instances by proceeding as follows:

1. Let S be equal to D, and let J be equal to I.

2. While S is not empty, repeatedly select a DTD D from S such that there is no D0
2 S

withD vR D
0, and do the following:

(a) IfD �R Q, then letA(B; Q) be all the document instances d in I such that d conforms
toD, and stop.

(b) IfD vR Q, then
(b.1) move from J to A(B; Q) all document instances that conform toD,
(b.2) remove from S every DTDD0 such thatD0

vR D,
(b.3) continue with the next iteration of the while-loop.
(c) If Q vR D, then
(c.1) removeD from S,
(c.2) for every DTDD0 in S such thatD0


R D, removeD0 from S and remove from J

every document instance that conforms toD0,
(c.3) continue with the next iteration of the while-loop.
(d) IfD 
R Q, then
(d.1) remove from S every DTDD0 such thatD0

vR D,
(d.2) remove from J every document instance that conforms toD0,
(d.3) continue with the next iteration of the while-loop.
(e) Otherwise, removeD from S, and continue.

3. Add to A(B; Q) every document instance d in J that conforms to Q.

The correctness of the above algorithm is shown in the next theorem.

THEOREM 5.3
Let B = hD; Ii be a document base, and Q be a query. Then the set A(B; Q) computed by
the algorithm above is equal to Q(B).

PROOF. Since Step 3 considers all document instances whose conformance to Q could not
be determined by looking only at the DTDs in D, it is sufficient to show that Step 2 of the
algorithm does not remove from A(B; Q) any document instance that contributes to Q(B).

Step 2.a is obvious: ifD is R-equivalent to Q, then the answer to Q is the set of document
instances in I that conform toD.

Step 2.b deals with the case where D is R-included in Q. In such a case, the set of
document instances conforming to D takes part to the answer to the query. Moreover, since
such a set comprises all documents conforming to the DTDs that are R-included inD, these
DTDs need not to be considered anymore and are discarded.

Step 2.c considers the case whereQ isR-included inD. Since the document instances sat-
isfying Q are among those that conform toD, the algorithm discards all document instances
conforming to some DTD that is R-disjoint fromD.

Step 2.d takes care of the case where Q is R-disjoint from D, and therefore, discards all
DTDs that are R-included in D, and excludes from the answer all document instances that
conform toD.
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Observe that the above method, can be seen as an adaptation of the semantic indexing
technique developed in DLs [43], where DTDs act as semantic indexes on XML documents
in the document base. In this way they help in improving performance of query evaluation
with respect to the brute force approach of evaluating document instances one by one. In
other words, reasoning on DTDs allows for a more effective query evaluation process. Obvi-
ously, since comparing DTDs is costly, the method pays off when the size of DTDs is small
(e.g. logarithmic) with respect to the size of the document instances, which is usually the
case.

6 Discussion

We have shown how to use the Description LogicDL to represent and reason on the structural
aspects of XML documents. We have also shown how to use DL reasoning to improve the
efficiency of query answering over document bases.

By exploiting the constructs of DL, we are also able to integrate into the structure of
documents aspects related to the semantics of the information contained in them. Although
for the sake of simplicity we did not include these aspects in the formal development of this
paper, we would like to briefly mention how they can be taken into account in our framework.

� DTDs in XML may include attributes describing properties of DTD elements. An at-
tribute for a DTD D has a name, a value type, and is associated with an element type
of D. It is easy to see that such attributes can be modelled in DL by adding one role
for each attribute, and by including in the knowledge base representing the DTD suitable
assertions on such roles. In particular, qualified number restrictions can be used to im-
pose constraints on the number of values that a certain element type may have for a given
attribute.

� Documents may contain links to other documents. In our framework, links can be easily
represented by means of a special concept with suitable roles for the name of the link and
the associated anchor. Observe that, since document links can form cycles, documents
with links can be considered as graphs, rather than trees. However, the roles used to
represent links are different from those used to represent document structures (i.e. f and
r), and therefore the resulting knowledge base can correctly model the situation where
finite tree substructures are embedded in arbitrary graphs.

� With respect to the above point, suitable assertions can be used to constrain the anchor
to point to a document of a specific DTD, or to limit the number of links pointing to
documents of a certain type. To impose the latter type of condition, we again resort to
qualified number restrictions.

� If part of a document (corresponding to a terminal symbol F in the DTD) includes a
special structure (for example, a list of records, or a table with information about, say,
departments and employees), this can be represented by adding suitable properties to the
concept corresponding to F .

� The idea of capturing more semantics related to the tags of documents can be pursued in
DL by introducing new concepts and roles and using it for this purpose.

We note that the framework presented in this paper for representing and reasoning on
structured documents provides a notable example of handling objects composed of different
parts. The part-wholerelation is seen as having a special importance in several applica-
tions [15, 5, 29]. The Description Logic DL, by means of the reflexive-transitive closure and
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the well-foundedness constructs, is able to capture fundamental aspects of the part-whole
relation [29, 4, 37] as shown in [12].

Recently, there has been a strong interest in the Database community on the development
of new data models for semi-structured data. The ability to represent data whose structure
is less rigid and strict than in conventional databases is indeed considered a crucial aspect in
modern approaches to data modelling, and is important in many application areas, such as
biological databases, digital libraries, and data integration [1, 9, 15, 32, 35]. Following [1],
semi-structured data can be defined as data that is neither raw, nor strictly typed as in conven-
tional database systems. OEM (Object Exchange Model) [3], BDFS (Basic Data model For
Semi-structured data) [9], and its extension presented in [14] are recent proposals of models
for semi-structured data. They represent data as graphs with labelled edges, where informa-
tion on both the values and the schema of data are kept. The formalism presented in this paper
can be seen as a formalism for representing semi-structured data. Indeed, if we associate to
each element E of a DTDD one node, and we consider the content model associated to E as
the specification of the allowable children of the node, we obtain a method by which a DTD
can be seen as a graph G, in such a way that the graphs conforming to G correspond to the
document instances conforming to D. Notably, the results presented in this paper provide
effective procedures for reasoning about semi-structured data schemas, a feature that is miss-
ing, for example, in OEM. Further research is needed to compare the expressive power of our
formalism with respect to the above mentioned data models.

7 Conclusions

Several recent papers dealing with the problem of retrieving information from a document
database such as the World Wide Web argue that the current techniques for representing and
reasoning on document structures should be improved. We have provided a view of DTDs
as concepts of the expressive Description Logic DL, and we have demonstrated that this
approach is indeed very effective for both faithfully representing document structures, and
answering some open questions regarding DTD equivalence checking. In particular, we have
proposed a method for checking structural equivalence of DTDs in worst case deterministic
exponential time, in contrast to the known algorithms which are double exponential. Also,
we have shown that conformance in our setting can be done in polynomial time, and query
answering can be done efficiently, by taking advantage of the reasoning methods associated
to the DL.

Two further research directions are worth pursuing. On the one hand, further aspects of
DTDs could be captured in order to represent other properties of documents such as excep-
tions (as described in [42]). On the other hand, the deductive power of DL allows one to
study new types of reasoning on DTDs, such as further forms of parameterized equivalence
(e.g. abstracting from the definition of a specified element) and document classification (infer
which is the DTD that best matches a given marked document among a set of candidates).
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