
RESEARCH

Modeling and Querying
Semi-Structured Data

Diego Calvanese
Giuseppe De Giacomo
Maurizio Lenzerini
Dipartimento di Informatica e Sistemistica
Università di Roma “La Sapienza”
Via Salaria 113, 00198 Roma, Italy
{calvanese,degiacomo,lenzerini}@dis.uniroma1.it
http://www.dis.uniroma1.it/∼{calvanese,degiacomo,lenzerini}

ABSTRACT.We extend the model for semi-structured data proposed in [BUN 97], where both
databases and schemas are represented as graphs, with the possibility of expressing different
types of constraints on the nodes of the graphs. We discuss how the expressive power of the
constraint language may influence the complexity of checking subsumption between schemas,
and devise a polynomial algorithm for an interesting class of constraints. Wethen set up a
framework for defining queries which are used to select graphs from a database. The proposed
query language allows for expressing sophisticated fixpoint properties of graphs and can be
regarded as a basic building block of full-featured languages. We show that reasoning tasks
at the basis of query optimization, such as query-schema comparison,query containment, and
query satisfiability, are decidable.

KEY WORDS: Semi-structured databases, WWW, query languages, description logics

0This is an extended version of a paper submitted for publication to CAiSE’99

Networking and Information Systems Journal. Volume 2 - no 2/1999, pages 253 à 273

254 Networking and Information Systems Journal. Volume 2 - no 2/1999

1. Introduction

The ability to represent data whose structure is less rigid and strict than in conven-
tional databases is considered a crucial aspect in modern approaches to data modeling,
and is important in many application areas, such as web information systems, bio-
logical databases, digital libraries, and data integration [QUA 95, ABI 97a, BUN 97,
MEN 97, FER 98, FLO 98].

Following [ABI 97a], we define semi-structured data as data that is neither raw,
nor strictly typed as in conventional database systems. OEM(Object Exchange
Model) [ABI 97c], andBDFS (Basic Data model For Semi-structured data) [BUN 97]
are recent proposals of models for semi-structured data. They represent data as graphs
with labeled edges, where information on both the values andthe schema of data are
kept.

In particular,BDFS is an elegant graph-based data model, where graphs are used to
represent both portions of a database (called ground graphs) and schemas, the former
with edges labeled by data, and the latter with edges labeledby formulae of a suitable
logical theory. The notion of a ground graphg conforming to a schemaS is given
in terms of a special relation, called simulation, between the two graphs. Roughly
speaking, a simulation is a correspondence between the edges of g and those ofS
such that, whenever there is an edge labeleda in g, there is a corresponding edge inS
labeled with a formula satisfied bya. The notion of simulation is less rigid than the
usual notion of satisfaction, and suitably reflects the needof dealing with less strict
structures of data.
Example 1 In Figure 1, we show aBDFS schema and a ground graph that conforms
to it. The schema models documents representing papers witha title, a sequence of
sections, each with an associated text, and a final section ofreferences to other papers.
We assume that in the theory specifying the labels of graphs titles, sections, texts, and
references are mutually disjoint.

For several tasks related to data management, it is important to be able to check
subsumption between two schemas, i.e. to check whether every ground graph con-
forming to one schema always conforms to another schema. In [BUN 97] an algo-
rithm for checking subsumption inBDFS is presented and its complexity is analyzed.

u3

u1

Section

Title

u2
Text

u0

s1

t0

ti0

s2

s3

t1

t2

t3

t4

t6

s4

s5

ti1

t5

r0

Section

Ref

Figure 1. Schema for papers divided in ordered sections and a conforming ground
graph

Modeling and Querying Semi-Structured Data255

Additionally, in [BUN 97] the issue of extending the model with different types of
constraints is raised. Indeed, inBDFS all the properties of the schema are expressed
in terms of the structure of the graph, and the possibility ofspecifying additional con-
straints, such as existence of edges, is precluded.

In this paper we extend the framework of [BUN 97] presenting the following con-
tributions:

— We extendBDFS schemas with constraints. The basic idea is to express con-
straints in terms of formulae associated to nodes of the schema. A formula on a node
u imposes a condition that, for every ground graphg conforming toS, must be satis-
fied by every node ofg simulatingu (see Example 2). We consider different types of
constraints, and we discuss how the expressive power of the constraint language influ-
ences the complexity of subsumption checking. In particular, we show that by adding
edge-existence and functionality constraints the complexity of subsumption remains
polynomial.

— We introduce a basic form of queries, called graph selectionqueries, which
are used to select graphs from a database (see Example 3). Thequery language pre-
sented here represents a basic building block of a full-featured query language and
has been designed on one hand to express sophisticated fixpoint properties of graphs,
and on the other hand to keep several interesting reasoning tasks decidable. These
reasoning tasks, such as comparing queries and schemas or checking containment be-
tween queries, are at the basis of query optimization techniques applicable to a more
expressive query language.

Example 2 The schema in Figure 1 presents several modeling problems, which are
demonstrated by the sample ground graph. Although in principle we would like
that each section has exactly one text associated to it, the schema allows for sec-
tions with more that one text or no text at all. Similarly, to correctly represent
the order of sections it is essential to impose that each section is followed by at
most one other section, and that a final section of references, if present, contains
at least one reference. This calls for adding constraints onnodesu1 andu3 to im-
pose restrictions on the number of outgoing edges, which we specify asC(u1) =
∃=1edge (Text) ∧ ∃≤1edge (Section) andC(u3) = ∃edge (Ref).

Example 3 Given a database containing ground graphs conforming to theschema in
Figure 1,

∃path ((Title◦Section∗◦Ref)∗◦(Title∧(self = GraphQueries))) to (⊤)

is a query that selects all papers that reference either directly or indirectly, via other
papers, a paper of titleGraphQueries.

The paper is organized as follows. In Section 2 we describe the BDFS data model
and the description logicµALCQ, which are the basic formalisms in our investigation.
In Section 3 we address the problem of adding constraints toBDFS. In Section 4 we
define a language for expressing graph selection queries. InSection 5 we describe the
evaluation of graph selection queries. Finally, Section 6 concludes the paper.

256 Networking and Information Systems Journal. Volume 2 - no 2/1999

2. Preliminaries

In this section, we describe the basic characteristics of the formalism for mod-
eling semi-structured data proposed in [BUN 97], which we call BDFS, and which
is the basis of our investigation. In addition we introduce the description logic
µALCQ [DEG 97] whose reasoning tasks are exploited to reason on semi-structured
data schemas.

2.1. The BDFS Data Model

The formalismBDFS is appropriate for an edge-labeled graph model of data, where
labels denote properties of edges representing the actual data. To express such prop-
erties, a decidable, complete1 first-order theoryT over a fixed, finite universeU is
considered. The language ofT includes one distinct constant for each element of
U and special unary predicates of the form(self = a), for each constanta, where
(self = a)(a′) is true if and only if a = a′.
Definition 4 A T -ground graph is a rooted connected graph whose edges are labeled
with formulae of the form(self = a), wherea is a constant ofT . A T -graph schema
is a rooted connected graph whose edges are labeled with unary formulae ofT .

Note that aT -ground graph is a special case ofT -graph schema. In what fol-
lows, we omitT , and simply refer to ground graphs, and graph schemas (or simply
schemas), respectively. Also, in the labels of ground graphs, we abbreviate(self = a)
with a, and we use the term graph to denote either a ground graph or a graph schema.
A semi-structured database (or simply database) is a finite set of graphs. A database
constituted only by ground graphs is called ground database.

For any graphG, we denote the root ofG by root(G), the set of nodes ofG by
Nodes(G), and the set of edges ofG by Edges(G). We denote an edge from nodeu
to nodev labeled byp with u

p
→ v.

Definition 5 Given a ground graphg and a schemaS, a simulation fromg to S is a
binary relation� from the nodes ofg to those ofS such thatu � u′ implies that for
each edgeu

a
→ v in g, there exists an edgeu′

p
→ v′ in S such thatT |= p(a), and

v � v′.
Definition 6 A ground graphg conforms to a schemaS, in notationg � S, if there
exists a simulation fromg to S such thatroot(g) � root(S).
Definition 7 Given two schemasS andS′, S′ subsumesS, in notationS ⊑ S′, if for
every ground graphg, g � S impliesg � S′. S′ andS are equivalent if bothS ⊑ S′

andS′ ⊑ S.
In [BUN 97], an algorithm is presented for checking subsumption (and confor-

mance, being a ground graph a special case of schema). The algorithm essentially
looks for the greatest simulation between the nodes of the two schemas, and works in

1The theory is complete in the sense that for every closed formula f , eitherT entailsf , or T entails
¬f [BUN 97].

Modeling and Querying Semi-Structured Data257

timeO(mO(1) · tT (m)), wherem is the size of the two schemas, andtT (x) is the time
needed to check whether a formula of sizex is valid inT . In the setting of [BUN 97]
it is meaningful not to considerT to be part of the input of the subsumption problem.
Therefore, whenevertT (m) may be assumed to be independent ofm, tT (m) can be
replaced by a constant.

2.2. The Description Logic µALCQ

Description logics allow one to represent a domain of interest in terms of con-
cepts and roles. Concepts model classes of individuals, while roles model relation-
ships between classes. We concentrate on the description logic µALCQ studied
in [DEG 97], where a correspondence was shown with a well-known logic of pro-
grams, called modal mu-calculus [KOZ 83, STR 89], that is used for expressing tem-
poral properties of reactive and parallel processes [STI 96, EME 96]. In fact,µALCQ
can be viewed as a variant of modal mu-calculus extended withgraded modalities (see
e.g. [HOE 95]).µALCQ can also be viewed as a well-behaved fragment of first-order
logic with fixpoints (see e.g. [ABI 95]).

We make use of the standard first-order notions of scope, bound and free occur-
rences of variables, closed formulae, etc., treatingµ andν as quantifiers.

The primitive symbols inµALCQ are atomic concepts, (concept) variables, and
atomic roles (in the following called simply roles). Concepts are formed according to
the following syntax:

C ::= A | ¬C | C1 ⊓ C2 | ∃R.C | (≥ nR.C) | µX.C | X

whereA denotes an atomic concept,R a role,n a natural number, andX a variable,
and the restriction is made that every free occurrence ofX in µX.C is in the scope of
an even number of negations.

We introduce the following abbreviations:

C1 ⊔ C2 for ¬(¬C1 ⊓ ¬C2)

⊤ for A ⊔ ¬A

⊥ for ¬⊤

∃R.C for (≥ 1R.C)

∀R.C for ¬∃R.¬C

(≤ nR.C) for ¬(≥ n+1R.C)

(= nR.C) for (≤ nR.C) ⊓ (≥ nR.C)

νX.C for ¬µX.¬C[X/¬X]

whereC[X/¬X] is the concept obtained by substituting all free occurrences of X
with ¬X.

258 Networking and Information Systems Journal. Volume 2 - no 2/1999

An interpretationI = (∆I , ·I) consists of an interpretation domain∆I , and an
interpretation function·I , which maps every atomic concept to a subset of∆I , and
every atomic role to a subset of∆I × ∆I . The presence of free variables does not
allow us to extend the interpretation function·I directly to every concept of the logic.
For this reason we introduce valuations. A valuationρ on an interpretationI is a
mapping from variables to subsets of∆I . Given a valuationρ, we denote byρ[X/E]
the valuation identical toρ except for the fact thatρ[X/E](X) = E .

Let I be an interpretation andρ a valuation onI. We assign meaning to concepts
of the logic by associating toI andρ an extension function·Iρ , mapping concepts to
subsets of∆I , as follows:

XI
ρ = ρ(X) ⊆ ∆I

AI
ρ = AI ⊆ ∆I

(¬C)Iρ = ∆I − CI
ρ

(C1 ⊓ C2)
I
ρ = (C1)

I
ρ ∩ (C2)

I
ρ

(≥ nR.C)Iρ = {s ∈ ∆I | #{s′ | (s, s′) ∈ RI ands′ ∈ CI
ρ } ≥ n}

(µX.C)Iρ =
⋂

{E ⊆ ∆I | CI
ρ[X/E] ⊆ E }

Observe that the semantics assigned toνX.C is

(νX.C)Iρ =
⋃

{E ⊆ ∆I | E ⊆ CI
ρ[X/E] }

The expressionCI
ρ[X/E] can be seen as an operator from subsetsE of ∆I to subsets of

∆I , and, by the syntactic restriction enforced on variables, such an operator is guar-
anteed to be monotonic wrt⊆. The constructsµX.C andνX.C denote respectively
the least fixpoint and the greatest fixpoint of the operator. The extension of closed
concepts is independent of the valuation, and therefore forclosed concepts we do not
consider the valuation explicitly. A closed conceptC is satisfiable if there exists an
interpretationI such thatCI 6= ∅.

A µALCQ knowledge base is a finite set of axiomsC1 ⊑ C2 whereC1 andC2

are closed concepts ofµALCQ. We useC1 ≡ C2 as an abbreviation for the pair of
axiomsC1 ⊑ C2 andC2 ⊑ C1. An interpretationI satisfies an axiomC1 ⊑ C2, if
CI

1 ⊆ CI
2 . I is a model of a knowledge baseK, if I satisfies all axioms inK. A

closed conceptC is satisfiable in a knowledge baseK if there exists a modelI of K
such thatCI 6= ∅.

Theorem 8 ([DEG 97]) Satisfiability of (closed)µALCQ concepts and satisfiability
of (closed)µALCQ concepts inµALCQ knowledge bases are EXPTIME-complete
problems.

Modeling and Querying Semi-Structured Data259

3. Schemas with Constraints

We address now the problem of extending theBDFSdata model in order to express
constraints on a schema. We conceive a constraint for a schemaS as a formula asso-
ciated to a nodeu of the schema. The formula is expressed in a certain languageL,
and its role is to impose a condition that, for every ground graphg conforming toS,
must be satisfied by every node ofg simulatingu. In other words, constraints are used
to impose additional conditions on the schema, with respectto those already implied
by the structure of the graph.
Definition 9 A schema withL-constraints, or simplyL-schema, is a schema where
each nodeu is labeled by a formulaC(u) of the constraint languageL.

Definition 10 Given a ground graphg and anL-schemaS, a simulation fromg to S
is a binary relation� from the nodes ofg to those ofS such thatu � u′ implies that
(1) u satisfiesC(u′), and (2) for each edgeu

a
→ v in g, there exists an edgeu′

p
→ v′

in S such thatT |= p(a), andv � v′.

The notions of conformance, subsumption and equivalence remain unchanged,
given the new definition of simulation. We assume thatL contains the formula⊤,
which is satisfied by every node of every ground graph. Therefore, we can view a
ground graphg as anL-schema, whereC(u) = ⊤ for every nodeu of g. Thus,
conformance is again a special case of subsumption.

Since constraints may contradict each other, or may even be incompatible with the
structure of the graph, the notion of consistency becomes relevant (notice that a ground
graph is always consistent). Moreover, we can introduce thenotion of disjointness
betweenL-schemas.
Definition 11 Given anL-schemaS, a nodeu ∈ Nodes(S) is consistent if there is
at least one ground graph which conforms toS′, whereS′ is equal toS except that
root(S′) = u. S is consistent, ifroot(S) is consistent. TwoL-schemasS1 andS2 are
disjoint, if there is no ground graph that conforms toS1 andS2.

We consider now different forms of constraints, and study consistency and sub-
sumption checking. Being conformance a special case of subsumption, we do not
explicitly deal with conformance.

3.1. Local Constraints

We consider a languageLl in which only local constraints can be expressed,
i.e. only constraints on the edges directly emanating from anode. Formulae inLl

have the following syntax (γ, γ1 andγ2 denote constraints, andp denotes a formula
of T):

γ ::= ⊤ | ∃edge (p) | ¬∃edge (p) | ∃≤1edge (p) | γ1 ∧ γ2

We use∃=1edge (p) as an abbreviation for∃edge (p) ∧ ∃≤1edge (p). Intuitively,
a constraint of the form∃edge (p) on a nodeu, called edge-existence constraint,

260 Networking and Information Systems Journal. Volume 2 - no 2/1999

imposes thatu has at least one outgoing edgeu
a
→ v such thatT |= p(a), while

a constraint of the form∃≤1edge (p), called functionality-constraint, imposes thatu
has at most one such outgoing edge. More precisely, letS be anLl-schema andg a
ground graph. Then a nodeu of g satisfies a constraintγ, in notationu |= γ, if the
following conditions are satisfied:

u |= ⊤

u |= ∃edge (p) iff ∃u
a
→ v ∈ Edges(g). T |= p(a)

u |= ¬∃edge (p) iff ∀u
a
→ v ∈ Edges(g). T |= ¬p(a)

u |= ∃≤1edge (p) iff #{u
a
→ v ∈ Edges(g) | T |= p(a)} ≤ 1

u |= γ1 ∧ γ2 iff (u |= γ1) ∧ (u |= γ2)

First of all, we show that we do not lose in expressiveness if we omit fromLl the
possibility of using constraints of the form¬∃edge (p). In fact, given anLl-schema
S, we can obtain an equivalentLl-schemarnec(S) = S′ not containing constraints of
the form¬∃edge (p) and with the same set of nodes asS as follows. For every nodeu
in S with C(u) = ∃edge (p1)∧· · ·∧∃edge (pr)∧¬∃edge (n1)∧· · ·∧¬∃edge (ns)∧

∃≤1edge (f1) ∧ · · · ∧ ∃≤1edge (ft) and outgoing edgesu
q1

→ v1, . . . , u
qk→ vk, we

set the label ofu in S′ asC(u) = ∃edge (p1) ∧ · · · ∧ ∃edge (pr) ∧ ∃≤1edge (f1) ∧

· · · ∧ ∃≤1edge (ft), and fori ∈ {1, . . . , k} we replace inu
qi
→ vi the formulaqi by

q′i = qi ∧ ¬n1 ∧ · · · ∧ ¬ns.

Lemma 12 If S is an Ll-schema, thenrnec(S) is equivalent toS and its size is
polynomial in|S|.

Proof. Let S′ bernec(S).
“S ⊑ S′” Let g be a ground graph that conforms toS and� a simulation from

g to S respecting the constraints ofS. (i.e. all conditions in Definition 10). We show
that� is also a simulation fromg to S′ respecting the constraints ofS′. Indeed, letd
be a node ofg andu a node ofS (andS′) with d � u. For each edged

a
→ e from u

in g there is an edgeu
q
→ v is S such thatT |= q(a) ande � v. Sinced |=c C(u),

we also haved |=c C′(u), and moreoverT |= ¬p(a), for all ¬∃edge (p) appearing in
C(u). HenceT |= q′(a).

“S′ ⊑ S” Similar.

Next we present a method for checking consistency, based on the functionrin

defined in Figure 2. The role ofrin is to first remove the non-existence constraints
by calling the functionrnec, and then remove all inconsistent nodes from a schema.
Condition (1) ensures that nodes not connected to the root are removed, while condi-
tions (2) and (3) remove nodes in which a constraint cannot besatisfied. In particular,
condition (2) deals with nodes having no outgoing edges but requiring the existence
of at least one, while condition (3) verifies the existence inT of appropriate objects
that can simultaneously satisfy the edge-existence and functionality constraints.

Theorem 13 An Ll-schemaS is consistent if and only ifrin(S) containsroot(S).
Moreover,rin(S) runs in time polynomial in|S|.

Modeling and Querying Semi-Structured Data261

function rin(S: L-schema):L-schema;
{ S′ ← rnec(S);

repeat
if there is a nodeu in S′ with
C(u) = ∃edge (p1) ∧ · · · ∧ ∃edge (pr) ∧ ∃

≤1edge (f1) ∧ · · · ∧ ∃
≤1edge (fs),

that satisfies one of the following conditions:
(1) u is not connected toroot(S′) in S′

(2) r ≥ 1 andu has no outgoing edge inS′

(3) r ≥ 1, u
q1→ v1, . . . , u

qm
→ vm, with m ≥ 1, are all outgoing edges ofu in S′, and

T |= ¬∃x1 · · · ∃xr(
∧

1≤i≤r
(pi(xi) ∧

∨

1≤j≤n
qj(xi)) ∧

∧

1≤k≤s

∧

1≤i<j≤r
((fk(xi) ∧ fk(xj)) ⊃ xi = xj))

then remove fromS′ the nodeu and all edges from and tou;
until root(S′) has been removed fromS′ or no new node has been removed fromS′;
return S′

}

Figure 2. Functionrin that removes non-existence constraints and inconsistent nodes

Proof. “⇐” If a node u of S is consistent, then there is a ground graph which
conforms to the schemaSu identical toS except for the root which isu. Hence
neither condition (2) nor (3) ofrin can be satisfied foru, and ifu = root(S) thenu
is not removed fromS.

“⇒” Let S′ = rin(S) andu a node (connected toroot(S) = root(S′)) in S′.
If conditions (2) and (3) inrin are not satisfied foru, then: eitherC(u) contains no
edge-existence constraints, and the ground graph consisting of a single node conforms
toSu, orC(u) contains edge-existence constraints∃edge (p1), . . . ,∃edge (pr), u has
outgoing edgesu

q1

→ v1, . . . , u
qm
→ vm in S′ and the formula in condition (3) is not

satisfied. In this case there are (not necessarily distinct)objectsa1, . . . , ar in T which
can be used to construct a ground graph with a rootd, having outgoing edges labeled
with a1, . . . , ar, and satisfyingC(u).

“Complexity” The number of iterations is bounded by the number of nodes in
S, and at each iteration, for each nodeu a validity check is done for a formula of
T whose size is bounded by a polynomial in the sum of the size ofC(u) and the
sizes of the formulae labeling the outgoing edges ofu. Hencerin runs in time
O(|S|O(1) · tT (|S|O(1))), and the thesis follows sincetT (|S|O(1)) is assumed to be
constant.

We now turn our attention to the method for checking subsumption of schemas
with constraints, which is also a method for checking conformance of ground graphs
to schemas. The method is based on the functionsubs defined in Figure 3. Note
that subs is an extension of the algorithm in [BUN 97]. Its basic idea isto look for
a simulation between the two schemas by constructing a relation R as the Cartesian
product of the two sets of nodes, and then removing fromR all the pairs(u, u′) for
which no relation� satisfying condition (2) of Definition 10 may exist. Intuitively,

262 Networking and Information Systems Journal. Volume 2 - no 2/1999

function subs(S0, S′
0: L-schema): boolean

{ S ← rin(S0);
S′ ← rin(S′

0);
if S does not containroot(S0) then return true;
if S′ does not containroot(S′

0) then return false;
R← {(u, u′) | u ∈ Nodes(S), u′ ∈ Nodes(S′)};
repeat

if there is(u, u′) ∈ R, with u
q1→ v1, . . . , u

qn
→ vn all outgoing edges ofu in S,

C(u) = ∃edge (p1) ∧ · · · ∧ ∃edge (pr) ∧ ∃
≤1edge (f1) ∧ · · · ∧ ∃

≤1edge (fs),
C(u′) = ∃edge (p′

1) ∧ · · · ∧ ∃edge (p′
r′) ∧ ∃≤1edge (f ′

1) ∧ · · · ∧ ∃
≤1edge (f ′

s′),
that satisfies one of the following conditions:
(1) there isi ∈ {1, . . . , n} such that
T |= ∃x0∃x1 · · · ∃xr(qi(x0) ∧

∧

1≤j≤m
¬q′j(x0) ∧

∧

1≤j≤r
(pj(xj) ∧

∨

1≤k≤n
qk(xj)) ∧

∧

1≤ℓ≤s

∧

0≤j<k≤r
((fℓ(xj) ∧ fℓ(xk)) ⊃ xj = xk))

whereu′
q′

j
→ v′

j , j ∈ {1, . . . , m} are all edges fromu′ in S′ such that(vi, v
′
j) ∈ R

(2) r = 0 andr′ 6= 0, or r 6= 0 and there isi ∈ {1, . . . , r′} such that
T |= ∃x1 · · · ∃xr(

∧

1≤j≤r
¬p′

i(xj) ∧
∧

1≤j≤r
(pj(xj) ∧

∨

1≤k≤n
qk(xj)) ∧

∧

1≤ℓ≤s

∧

1≤j<k≤r
((fℓ(xj) ∧ fℓ(xk)) ⊃ xj = xk))

(3) there isi ∈ {1, . . . , s′} such that
T |= ∃x1 · · · ∃xr∃xr+1∃xr+2(f

′
i(xr+1) ∧ f ′

i(xr+2) ∧ xr+1 6= xr+2 ∧
∧

1≤j≤r
pj(xj) ∧

∧

1≤j≤r+2

∨

1≤k≤n
qk(xj) ∧

∧

1≤ℓ≤s

∧

1≤j<k≤r+2
((fℓ(xj) ∧ fℓ(xk)) ⊃
xj = xk))

then remove(u, u′) from R;
until no new pair has been removed fromR;
return (root(S), root(S′)) ∈ R

}

Figure 3. Functionsubs that verifies subsumption of schemas with local constraints

the algorithm checks locally for the pair(u, u′), whether it is possible to construct a
ground graphg which can be used as a counterexample to the subsumption, andwhich
consists just of a noded and the nodes connected tod by means of its outgoing edges.
In particular, condition (1) checks the existence of an object in T which can label an
edge fromd which has a corresponding edge fromu but none fromu′. Due to the
functionality constraints onu, this test must also take into account the constraints on
u in S. Condition (2) checks whetherg could violate the edge-existence constraints
onu′ while satisfying the constraints onu, and condition (3) does a similar check for
the functionality constraints onu′.

Theorem 14 If S1 andS2 areLl-schemas, thenS1 ⊑ S2 if and only ifsubs(S1, S2)

Modeling and Querying Semi-Structured Data263

(a) Section

Title

Text

Section

Ref

Section

Section

Text

u′
0

u′
1

u′
2

u′
3

u′
5

u′
4

C(u′
1) = C(u′

4) = ∃=1edge (Text) ∧

∃≤1edge (Section)

C(u′
2) = ∃≤1edge (Section)

(b)

Title

Section

Ref

Section

Text

Section

u′′
0

u′′
1

u′′
2

u′′
3

C(u′′
1) = ∃=1edge (Text) ∧

∃≤1edge (Section)

C(u′′
2) = ∃≤1edge (Section)

Figure 4. Schemas for papers divided in ordered nested sections

returns true. Moreover,subs(S1, S2) runs in time polynomial in|S1| + |S2|.
Proof. For a schemaS and a nodeu of S, let Su denote the schema identical to
S except thatroot(Su) = u. The proof is based on showing that the pair(u, u′)
is removed fromR, if and only if there is a ground graphg such thatg � Su

1 but
g 6� Su′

2 .
“⇐” Let g be a ground graph such thatg � Su

1 , and let�1 be the corresponding
simulation respecting the constraints ofSu

1 . Then the relationR constructed bysubs

can be used to obtain a simulation�2 from g to Su′

2 respecting the constraints ofSu′

2 .
“⇒” Let (u, u′) be a pair removed fromR by subs at theK-th iteration of the

repeat-until loop. The construction of a ground graphg such thatg � Su
1 andg 6� Su′

2

is by induction onK, exploiting the fact that all inconsistent nodes inS1 andS2 have
been removed before starting the construction ofR.

“Complexity” The number of iterations is bound by|S1| · |S2|, and at each itera-
tion a polynomial number formulae of size polynomial inm = |S1|+|S2| are checked
for validity in T . Hencesubs runs in timeO(mO(1) ·mO(1)). The thesis follows from
the fact thattT (mO(1)) is assumed to be constant.

The above result, together with Lemma 12, shows that adding conjunctions of
local constraints toBDFS does not increase the complexity of subsumption.
Example 15 Figure 4 shows two extensions to the schema in Figure 1, in which nest-
ing of sections is considered2. Schema (a) models papers in which sections may con-
tain subsections (i.e. with nesting of depth two). Schema (b), instead, models papers in
which sections may be nested at arbitrary depth. It is possible to verify, that schema (b)
subsumes schema (a), and that both subsume the schema in Figure 1.

Observe that, if we replace∃=1edge (Text) by ∃≤1edge (Text) in C(u′4) (thus

2Constraints equal to⊤ are not shown in the figures.

264 Networking and Information Systems Journal. Volume 2 - no 2/1999

modeling draft papers with possibly empty sections), the functionsubs eliminates the
pair(u′1, u

′′
1) fromR because of condition (2), and in turn the pair(u′0, u

′′
0) because of

condition (1). Hence, in this case, schema (a) is not subsumed by schema (b).
In [BUN 97], it is shown that the notion of Least Upper Bound (LUB) of two

schemas is useful for several purposes (e.g. for computing the “canonical fragments”
of ground graphs). The LUB of two schemasS1 andS2, denoted byS1 ⊓ S2, is a
schema satisfying the following property: the set of groundgraphs that conform to
S1 ⊓ S2 is the set of ground graphs that conform to bothS1 andS2. We can show
that the method mentioned in [BUN 97] for computing the LUB oftwo schemas can
be easily extended in order to compute the LUB of twoLl-schemasS1 andS2 in time
O(|S1|·|S2|). This implies that we also have a method for checking if twoLl-schemas
are disjoint, based on the observation thatS1 andS2 are disjoint if and only ifS1 ⊓S2

is inconsistent.
Theorem 16 Checking the disjointness of twoLl-schemasS1 andS2 can be done in
time polynomial in|S1| · |S2|.

3.2. Non-Local Constraints

We consider a simple constraint languageLn in which the constraints are not
local, i.e. they can express conditions on edges that are notdirectly connected to the
node labeled with the constraint. We show that consistency (and thus subsumption) of
schemas with constraints becomes intractable.

The formulae of the constraint languageLn have the following syntax:

γ ::= ⊤ | ∃edge (p) to (γ) | ∀edge (p) to (γ) | γ1 ∧ γ2

where the additional rules for the satisfaction of constraints ofLn in a nodeu of a
ground graph are:

u |= ∃edge (p) to (γ) iff ∃u
a
→ v ∈ Edges(g). (T |= p(a) ∧ v |= γ)

u |= ∀edge (p) to (γ) iff ∀u
a
→ v ∈ Edges(g). (T |= p(a) ⊃ v |= γ)

Observe thatLn is not local since the constraints imposed on one node may imply
other constraints on adjacent nodes. By exploiting this property and the hardness
results in [DON 92], we can show that consistency checking iscoNP-hard.
Theorem 17 Checking the consistency of anLn-schemaS is coNP-hard in the size
of S, even ifT is empty, i.e. all edges ofS are labeled withtrue.
Proof. The proof is an adaptation of the proof of coNP-hardness of satisfiability in the
Description LogicALE [DON 92], and is based on a reduction of the NP-complete
ALL -POS ONE-IN-THREE 3SAT problem3 to inconsistency of anLn-schema.

Given a setF = {f1, . . . , fm} of positive clauses with three literals over
{x1, . . . , xn}, the schemaSF which encodesF is shown in Figure 5, where

3ALL -POS ONE-IN-THREE 3SAT is the problem of deciding whether a 3CNF positive formula admits a
truth assignment such that each clause has exactly one true literal.

Modeling and Querying Semi-Structured Data265

...
⊤⊤⊤⊤

u0 u1 u2 u2m−2 u2m−1

CF true true true true

Figure 5. Schema encodingF = {f1, . . . , fm}

root(SF) = u0 andC(u0) = C1
1 ∧· · ·∧C

n
1 , withCj

i , i ∈ {1, . . . ,m}, j ∈ {1, . . . , n},
defined inductively by:

Cj
i =

{

∃edge (P) to (Cj
i+1), if xj ∈ fi,

∀edge (P) to (Cj
i+1), if xj 6∈ fi.

Cj
m+i =

{

∃edge (P) to (Cj
m+i+1), if xj ∈ fi,

∀edge (P) to (Cj
m+i+1), if xj 6∈ fi.

It is possible to show thatSF is consistent if and only if there is no truth assignment
such that each clause has exactly one true literal.

Theorem 17 shows that consistency checking remains coNP-hard (and subsump-
tion NP-hard), even ifT can be used as an oracle for validity. The complexity of
checking consistency in the presence of non-local constraints lies in the necessity to
verify whether a ground graph may exist, whose topology is determined by the con-
straints. SinceT cannot predict anything about the possible topologies of ground
graphs, the validity checker ofT cannot be used to “hide” a potentially exponential
computation.

4. Graph Selection Queries

In general, query languages on semi-structured data are constituted by two compo-
nents: one for selecting graphs, and another one for restructuring the selected graph to
produce the actual answer [BUN 96, ABI 97c, FER 97, ABI 97b]. Here we introduce
a basic form of queries, which we call graph selection queries (gs-queries), which
deal only with the selection part. The language of gs-queries allows for expressing
sophisticated fixpoint properties of graphs, which are not available in the above men-
tioned formalisms. Furthermore it has been carefully designed in order to keep several
interesting reasoning tasks decidable, such as checking query satisfiability, checking
containment or disjointness between queries, and comparing queries and schemas.

Observe that the unit retrieved by a gs-query is a graph, whereas there is no means
to extract and further manipulate specific data from a retrieved graph (see for exam-
ple [GOL 97]). Therefore our language cannot be considered afull-featured query
language, such as UnQL [BUN 96], but should rather be regarded as providing basic
building blocks for querying semi-structured data, to be exploited in query processing
for improving evaluation performance (see Section 5).

In the rest of the paper, we deal only withLl-schemas, which we simply call
schemas. The language for expressing graph selection queries has the following syn-

266 Networking and Information Systems Journal. Volume 2 - no 2/1999

tax (p denotes a formula ofT , n a positive integer, andX a node variable)

node formulae: N ::= X | ∃≥nedge (E) | ¬N | N1 ∧N2 | µX.N

edge formulae: E ::= p | to(N) | ¬E | E1 ∧ E2

with the restriction that every free occurrence ofX in µX.N is in the scope of an
even number of negations4. We introduce the following abbreviations:α1 ∨ α2 for
¬(¬α1∧¬α2), α1 ⊃ α2 for ¬α1∨α2, ⊤ for α∨¬α, ⊥ for α∧¬α, ∃≤nedge (E) for
¬∃≥n+1edge (E), ∃edge (E) for ∃≥1edge (E), and∀edge (E) for ¬∃edge (¬E).

Let g be a ground graph. A valuationρ on g is a mapping from node variables to
subsets ofNodes(g). We denote byρ[X/N] the valuation identical toρ except for
ρ[X/N](X) = N . For each nodeu ∈ Nodes(g), we define whenu satisfies a node
formulaN under a valuationρ, in notationρ, u |= N , as follows:

ρ, u |= X iff u ∈ ρ(X)

ρ, u |= ∃≥nedge (E) iff #{u
a
→ v ∈ Edges(g) | ρ, u

a
→ v |= E} ≥ n

ρ, u |= ¬N iff ρ, u 6|= N
ρ, u |= N1 ∧N2 iff (ρ, u |= N1) ∧ (ρ, u |= N2)
ρ, u |= µX.N iff ∀N ⊆ Nodes(g).

(∀v ∈ Nodes(g).ρ[X/N], v |= N ⊃ ρ[X/N], v |= X)
⊃ ρ[X/N], u |= X

where

ρ, u
a
→ v |= p iff T |= p(a)

ρ, u
a
→ v |= to(N) iff ρ, v |= N

ρ, u
a
→ v |= ¬E iff ρ, u

a
→ v 6|= E

ρ, u
a
→ v |= E1 ∧ E2 iff (ρ, u

a
→ v |= E1) ∧ (ρ, u

a
→ v |= E2)

Observe that for closed (wrt node variables) node formulae,satisfaction is independent
of the valuation, and we denote it simply byu |= N .

Note that it is possible to specify node formulae which express the existence of
paths that are characterized by regular expressions over edge formulae. In particular,
we consider∃path (P) to (N), whereP is a regular expression over edge formulae,
andN is a node formula, as an abbreviation for the node formula defined inductively
over the structure ofP as follows:

∃path (E) to (N)
.
= ∃edge (E ∧ to(N))

∃path (P1 ∪ P2) to (N)
.
= ∃path (P1) to (N) ∨ ∃path (P2) to (N)

∃path (P1 ◦ P2) to (N)
.
= ∃path (P1) to (∃path (P2) to (N))

∃path (P ∗) to (N)
.
= µX.(N ∨ ∃path (P) to (X))

We use the abbreviation∀path (P) to (N) for ¬∃path (P) to (¬N).

4This is the usual syntactic monotonicity constraint typicalof fixpoint logics, that guarantees the mono-
tonicity of the fixpoint operator.

Modeling and Querying Semi-Structured Data267

Definition 18 Given a graphG (either a ground graph or a schema) and a closed
node formulaN , we say thatG satisfiesN , in notationG ⊑ N , if for every ground
graphg conforming toG, root(g) |= N .

It is easy to see that ifg is a ground graph andN is a node formula, theng ⊑ N if and
only if root(g) |= N .

Definition 19 A graph selection query (gs-query)Q is a closed node formula. The
evaluation ofQ over a databaseDB returns the setQ(DB) of all consistent graphs
G ∈ DB such thatG ⊑ Q.

Example 20 The gs-query

∀edge (Title ⊃ to(µX.∀path (Section ∪ (Text ◦ Section)) to (X)))

selects all graphs representing papers with a finite depth ofnesting of sections, and
such that at each nesting level, the number of sections is finite. In particular, papers
containing a loop between sections, i.e. sections that are followed either directly or
indirectly by themselves are not selected by the query.

Definition 21 A gs-queryQ is satisfiable if there exists a databaseDB such that
Q(DB) is non-empty. Given two gs-queriesQ1 andQ2, Q1 is contained inQ2 if for
every databaseDB , Q1(DB) ⊆ Q2(DB), andQ1 is disjoint fromQ2 if for every
databaseDB ,Q(DB) ∩Q2(DB) = ∅.

Theorem 22 Checking a gs-query for satisfiability and checking containment and dis-
jointness between two gs-queries are EXPTIME-complete problems.

Proof. Since containment betweenQ1 andQ2 can be verified by simply checking the
formulaQ1 ∧ ¬Q2 for unsatisfiability, and disjointness can be verified by checking
the formulaQ1 ∧Q2 for unsatisfiability, we focus on satisfiability only.

It is easy to see that a query is satisfiable if and only if thereis a ground graph
g such thatg ⊑ Q. In fact, if there is a databaseDB such thatQ(DB) contains a
schemaS, then there exists also a databaseDB ′ = DB ∪ {g}, whereg is a ground
graph conforming toS. Henceg is contained inQ(DB ′).

To show the EXPTIME upper bound we exploit a polynomial reduction of satis-
fiability of a gs-query to satisfiability inµALCQ. We check whetherQ is satisfiable,
by encoding the problem into satisfiability of aµALCQ conceptCQ in a µALCQ
knowledge baseK.

In encodingQ we exploit reification of edges, as used in [BUN 97]. Intuitively,
we split each labeled edgeu

a
→ v of a ground graph into two edgesu

e

→ euv
e

→ v, by
introducing an intermediate nodeeuv labeled bya and making use of a special relation
e (which is the only relation used in the encoding).

The knowledge baseK is the union ofK0 ⊓ KT , whereK0 andKT are as fol-
lows:

— K0, which enforces the general structure of graphs, has the form

⊤ ⊑ Node ⊔ Edge

Node ⊑ ¬Edge

268 Networking and Information Systems Journal. Volume 2 - no 2/1999

Node ⊑ ∀e.Edge

Edge ⊑ (= 1 e.⊤) ⊓ ∀e.Node

with Node andEdge new atomic concepts. Intuitively, this part ofK partitions the
interpretation domain into objects denoting nodes (Node) and objects denoting edges
(Edge), and specifies the correct links for them.

— KT , which reflects the properties of the theoryT , is formed by the axioms

Edge ≡ Oa1
⊔ · · · ⊔Oan

wherea1, . . . , an are all the constants inT , and
Oai

⊑ ¬Oaj
for each pair of constantsai, aj

whereOa is a new atomic concept associated witha. In addition, for each unary
conceptp in Q and for each constanta, ΦT contains an axiom

Oa ⊑ Ap if T |= p(a)
Oa ⊑ ¬Ap if T |= ¬p(a)

whereAp is a new atomic concept associated top.

The conceptCQ has the formNode ⊓ψ(Q), whereψ(Q) is defined inductively as
follows:

ψ(X) = X
ψ(∃≥nedge (E)) = (≥ n e.ψ(E))

ψ(¬N) = ¬ψ(N)
ψ(N1 ∧N2) = ψ(N1) ⊓ ψ(N2)
ψ(µX.N) = µX.ψ(N)

ψ(p) = Ap

ψ(to(N)) = ∀e.ψ(N)
ψ(¬E) = ¬ψ(E)

ψ(E1 ∧ E2) = ψ(E1) ⊓ ψ(E2)

It can be shown that each ground graph satisfyingQ can be mapped to a model of
K satisfyingCQ and vice-versa, that each model ofK satisfyingCQ can be mapped
to a ground graph satisfyingQ.

To get the EXPTIME upper bound it suffices to observe thatK does not depend
on the query and hence has a constant size, while the size ofCQ is linearly bound by
the size of the query.

The EXPTIME hardness is a consequence of the EXPTIME hardness of satisfia-
bility of a µALCQ concept. It is easy to show that given a conceptC one can build a
conceptC ′ (the “reified” version ofC) such that every model ofC corresponds to a
model of the knowledge baseK satisfyingC ′, and vice-versa.C ′ corresponds directly
(by inverting the mappingψ) to a gs-query.

5. Evaluating Graph Selection Queries

We describe now a method for evaluating a gs-query over a graph (either a schema
or a ground graph), and over a database.

Modeling and Querying Semi-Structured Data269

5.1. Evaluating Queries over Graphs

Given a ground graphg and a gs-queryQ, we can verify in polynomial time in the
size ofg (and in exponential time in the size ofg andQ) whetherroot(g) |= Q. This
follows from the fact thatQ can be easily translated into a formula of first-order logic
plus fixpoints [ABI 95], and thatg can be transformed into a first-order structure. Thus
checking whetherg is part of the answer set ofQ can be reduced to model checking
in first-order logic plus fixpoints, which has polynomial data complexity. Therefore,
the method verifies in polynomial time in the size ofg whetherg ⊑ Q.

We now turn our attention to checking whether a schema satisfies a gs-query. To
this purpose, we exploit the fact that each schemaS can be transformed into a gs-
queryQS that is equivalent toS, in the sense that the ground graphs conforming toS
are exactly those that satisfyQS . We callQS the characteristic query of the schema
S.

To defineQS , we first consider the set of mutual recursive equations:

Xu1
= C(u1) ∧ ∀edge (

∨

u1

p
→v

(p ∧ to(Xv)))

· · ·
Xuh

= C(uh) ∧ ∀edge (
∨

uh

p
→v

(p ∧ to(Xv)))

one for each nodeui in Nodes(S) = {u1, . . . , uh}.
Then we eliminate, one at the time, each of the above equations, except the one for

Xroot(S) as follows: eliminate the equationXuj
= Nj and substitute each occurrence

ofXuj
in the remaining equations withνXuj

.Nj . LetXroot(S) = NS be the resulting
equation. The characteristic queryQS of S is νXroot(S).NS

5.
Theorem 23 If S is a schema andQS is its characteristic query, then, for every
ground graphg, g conforms toS if and only ifg satisfiesQS .
Proof. “⇐” Let ρν be the valuation assigning the greatest extension to eachXui

while satisfying the equations

Xu1
= C(u1) ∧ ∀edge (

∨

u1

p
→v

(p ∧ to(Xv)))

· · ·
Xuh

= C(uh) ∧ ∀edge (
∨

uh

p
→v

(p ∧ to(Xv)))

We define

R = {(u, u′) ∈ Nodes(g) × Nodes(S) | ρν , u |= Xu′}

We show thatR is a simulation fromg to S, i.e. for eachu, u′, if (u, u′) ∈ R then
(1) u |= C(u′), and (2) for each edgeu

a
→ v ∈ Edges(g), there exists an edge

u′
p
→ v′ ∈ Edges(S) such thatT |= p(a) and(v, v′) ∈ R. Indeed,ρν , u |= Xu′

impliesρν , u |= C(u′) ∧ ∀edge (
∨

u′
p
→v′

(p ∧ to(Xv′))). Hence

5This construction is analogous to the one used in Process Algebra for defining a characteristic formula
of a process [STE 94], i.e. a formula which is satisfied by exactly all processes that are equivalent to the
process under bisimulation. Similarly,QS characterizes exactly all databases that conform toS.

270 Networking and Information Systems Journal. Volume 2 - no 2/1999

(1) ρν , u |= C(u′)

(2) for eachu
a
→ v ∈ Edges(g), there exists an edgeu′

p
→ v′ ∈ Edges(S) such

thatT |= p(a) andρν , v |= Xv′ i.e. (v, v′) ∈ R.

It remains to show that(root(g), root(S)) ∈ R. The construction applied to build
the characteristic formulaQS

6 guarantees thatu |= QS iff ρν , u |= Xroot(S). Hence,
sinceg ⊑ QS , i.e.root(g) |= QS , we have thatρν , root(g) |= Xroot(S).

“⇒” Let � ∈ Nodes(g)×Nodes(S) be the greatest simulation relation such that
u � u′ implies that (1)u satisfiesC(u′), and (2) for each edgeu

a
→ v ∈ Edges(g),

there exists an edgeu′
p
→ v′ such thatT |= p(a) andv � v′. Let ρc be a valuation

such thatρc(Xu′) = {u | u � u′}. It is easy to verify that

ρc, u |= Xu′ impliesρc, u |= C(u′) ∧ ∀edge (
∨

u′
p
→v′

p ∧ to(Xv′))

Now the valuationρν defined above is also the valuation assigning the greatest ex-
tension to eachXui

that satisfies these implications7. This implies thatρc(Xu′) ⊆
ρν(Xu′) and thus, sinceu |= QS iff ρν , u |= Xroot(S), we get thatroot(g) |= QS , i.e.
g ⊑ QS .

Theorem 24 If S is a schema andQ is a gs-query, then checking whetherS ⊑ Q is
EXPTIME-hard and decidable in timeO(2p(|QS |+|Q|)).
Proof. It suffices to verify the unsatisfiability of the gs-queryQS ∧ ¬Q.

Observe that|QS | may be exponential with respect to|S|. Therefore checking
whether a schema satisfies a gs-query can be done in worst casedeterministic double
exponential time with respect to the size of the schema (and deterministic exponential
time with respect to the size of the gs-query).

5.2. Evaluating Queries over a Database

We sketch now how to exploit schemas and subsumption and disjointness relations
between graphs in order to evaluate gs-queries over databases. We remind the reader
that evaluating a gs-query over a database means selecting all graphs in the database
that satisfy the query. Without loss of generality we assumethat the database does not
contain equivalent graphs.

When the database is constituted by a flat set of ground graphs,evaluating a gs-
queryQ amounts simply to check for each ground graph separately whether it satis-
fiesQ. On the contrary, when the databaseDB is constituted by ground graphs and
schemas, and when for each pair of such graphs one knows whether one is subsumed
by the other or whether they are disjoint, then the evaluation of Q on DB can take
advantage of this information by proceeding as follows.

6Note that this construction is exactly the one used e.g. in [BAK 80] to eliminate mutual fixpoints.
7This is a direct consequence of Tarski-Knaster’s fixpoint theorem [TAR 55].

Modeling and Querying Semi-Structured Data271

Let G be equal toDB . While G is not empty, repeatedly select a graphG from G
such that no graph inG subsumesG, and do the following:

1. If G is equivalent toQ, then letQ(DB) be all graphs inG subsumed byG and
stop.

2. If G satisfiesQ, then move all graphs that are subsumed byG from G to
Q(DB), and continue.

3. If Q is contained inQG, then remove fromG the graphG and all graphs that
are disjoint fromG and continue.

4. If QG is disjoint fromQ, then remove fromG all graphs that are subsumed by
G, and continue.

5. Otherwise, removeG from G and continue.

Observe that in this way schemas act as semantic indexes on graphs in the
database and help in improving performance of query evaluation with respect to the
brute approach of evaluating graphs one by one, similarly toDataGuides proposed
in [GOL 97]. Therefore, the addition of schemas to a databaseconstituted by ground
graphs only allows for a more effective query evaluation process. Obviously, because
of the high complexity of comparing schemas and queries, onehas to carefully choose
the size of schemas to be small (e.g. logarithmic) with respect to the size of the con-
forming ground graphs in the database.

6. Conclusions

In this paper we have extended theBDFS framework by adding constraints to the
nodes of the schema, and have devised polynomial time algorithms for checking con-
formance and subsumption in the case of local constraints. We have also shown that
even simple forms of non-local constraints lead to intractability. In addition we have
introduced a basic form of queries over schemas with constraints, for which query
satisfiability and query containment in our setting are EXPTIME complete. We have
discussed how to exploit the semantic information in the schemas for query evaluation.

We are currently working on various aspects. First, we are working to extend
the polynomial time algorithm for schema subsumption to other forms of constraints,
including cardinality constraints. Second, we are investigating the possibility of avoid-
ing the worst case exponential blowup in the encoding of a schema into a query. Fi-
nally, we are considering a more general query language thatuses graph selection
queries as building blocks, and we are devising techniques for query containment in
such a language, along the line of [CAL 98].

Acknowledgments

This work was partly supported by MURST, ESPRIT LTR Project No. 22469
DWQ (Foundations of Data Warehouse Quality), and the ItalianSpace Agency (ASI)
under project “Integrazione ed Accesso a Basi di Dati Eterogenee”.

272 Networking and Information Systems Journal. Volume 2 - no 2/1999

Bibliographie

[ABI 95] A BITEBOUL S., HULL R. and VIANU V., Foundations of Databases. Addison Wes-
ley Publ. Co., Reading, Massachussetts, 1995.

[ABI 97a] ABITEBOUL S., « Querying Semi-Structured Data ». InProc. of ICDT-97, p. 1–18,
1997.

[ABI 97b] A BITEBOUL S., CLUET S., CHRISTOPHIDES V., M ILO T. and GUIDO MO-
ERKOTTE J. S., « Querying Documents in Object Databases ».Int. J. on Digital Libraries,
vol. 1, n. 1, p. 5–19, 1997.

[ABI 97c] A BITEBOUL S., QUASS D., MCHUGH J., WIDOM J. and WIENER J. L., « The
Lorel Query Language for Semistructured Data ».Int. J. on Digital Libraries, vol. 1, n. 1,
p. 68–88, 1997.

[BAK 80] DE BAKKER J.,Mathematical Theory of Program Correctness. Prentice-Hall, 1980.
[BUN 96] BUNEMAN P., DAVIDSON S., HILLEBRAND G. and SUCIU D., « A Query Lan-

guage and Optimization Technique for Unstructured Data ». InProc. of ACM SIGMOD,
p. 505–516, 1996.

[BUN 97] BUNEMAN P., DAVIDSON S., FERNANDEZ M. and SUCIU D., « Adding Structure
to Unstructured Data ». InProc. of ICDT-97, p. 336–350, 1997.

[CAL 98] CALVANESE D., DE GIACOMO G. and LENZERINI M., « On the Decidability of
Query Containment under Constraints ». InProc. of PODS-98, p. 149–158, 1998.

[DEG 97] DE GIACOMO G. and LENZERINI M., « A Uniform Framework for Concept Def-
initions in Description Logics ».J. of Artificial Intelligence Research, vol. 6, p. 87–110,
1997.

[DON 92] DONINI F. M., HOLLUNDER B., LENZERINI M., SPACCAMELA A. M., NARDI

D. and NUTT W., « The Complexity of Existential Quantification in Concept Languages ».
Artif. Intell., vol. 2–3, p. 309–327, 1992.

[EME 96] EMERSON E. A., Automated Temporal Reasoning about Reactive Systems. In
MOLLER F. and BIRTWISTLE G., Eds.,Logics for Concurrency: Structure versus Au-
tomata, vol. 1043 ofLNCS, p. 41–101. Springer-Verlag, 1996.

[FER 97] FERNANDEZ M. F., FLORESCU D., LEVY A. Y. and SUCIU D., « A Query Lan-
guage for a Web-Site Management System ».SIGMOD Record, vol. 26, n. 3, p. 4–11,
1997.

[FER 98] FERNANDEZ M. F., FLORESCUD., KANG J., LEVY A. Y. and SUCIU D., « Catch-
ing the Boat with Strudel: Experiences with a Web-Site Management System ». In Proc.
of ACM SIGMOD, p. 414–425, 1998.

[FLO 98] FLORESCU D., LEVY A. and MENDELZON A., « Database Techniques for the
World-Wide Web: A Survey ».SIGMOD Record, vol. 27, n. 3, p. 59–74, 1998.

[GOL 97] GOLDMAN R. and WIDOM J., « DataGuides: Enabling Query Formulation and
Optimization in Semistructured Databases ». InProc. of VLDB-97, p. 436–445, 1997.

[HOE 95] VAN DER HOEK W. and DE RIJKE M., « Counting Objects ».J. of Log. and Comp.,
vol. 5, n. 3, p. 325–345, 1995.

[KOZ 83] KOZEN D., « Results on the Propositionalµ-Calculus ».Theor. Comp. Sci., vol. 27,
p. 333–354, 1983.

[MEN 97] MENDELZON A., M IHAILA G. A. and MILO T., « Querying the World Wide
Web ». Int. J. on Digital Libraries, vol. 1, n. 1, p. 54–67, 1997.

[QUA 95] QUASS D., RAJARAMAN A., SAGIV I., ULLMAN J. and WIDOM J., « Querying
Semistructured Heterogeneous Information ». InProc. of DOOD-95, p. 319–344. Springer-
Verlag, 1995.

[STE 94] STEFFENB. and INGÓLFSDÓTTIRA., « Characteristic Formulae for Processes with
Divergence ».Information and Computation, vol. 110, p. 149–163, 1994.

[STI 96] STIRLING C., Modal and Temporal Logics for Processes. In MOLLER F. and
BIRTWISTLE G., Eds.,Logics for Concurrency: Structure versus Automata, vol. 1043 of
LNCS, p. 149–237. Springer-Verlag, 1996.

Modeling and Querying Semi-Structured Data273

[STR 89] STREETT R. E. and EMERSONE. A., « An Automata Theoretic Decision Procedure
for the Propositionalµ-Calculus ». Information and Computation, vol. 81, p. 249–264,
1989.

[TAR 55] TARSKI A., « A Lattice-Theoretical Fixpoint Theorem and Its Applications ».Pa-
cific Journal of Mathematics, vol. 5, p. 285–309, 1955.

