Chapter 1

TWO APPROACHES TO EFFICIENT
OPEN-WORLD REASONING

Giuseppe De Giacomo

Dipartimento di Informatica e Sistemistica
Universita di Roma “La Sapienza”

Via Salaria 113, 00198 Rome, Italy

degiacomo@dis.uniromal.it

Hector Levesque

Department of Computer Science
University of Toronto

Toronto, Canada M5S 3H5

hector@cs.toronto.edu

Abstract We show how a simple but efficient evaluation procedure that is logically
correct only for closed-world knowledge bases can nonetheless be used in
certain contexts with open-world ones. We discuss two cases, one based
on restricting queries to be in a certain normal form, and the other,

arising in reasoning about actions, based on having sensing information
at the right time so as to dynamically reduce open-word reasoning to

closed-word reasoning.

1. INTRODUCTION

From the very beginnings of Al, the dream of getting a machine to

exhibit common sense was linked to deductive reasoning:

We shall therefore say that a program has common sense if it auto-
matically deduces for itself a sufficiently wide class of immediate conse-

quences of anything it is told and what it already knows.

— John McCarthy in (McCarthy, 1968)

Since then, the enthusiasm for deduction has been tempered somewhat
by what has been discovered about its computational difficulty. Regard-

1

2

less of how one feels about the relevance of complexity and computability
theory to Al for knowledge bases (KBs) large enough to hold what is pre-
sumed to be necessary for human-level common sense, deduction would
have to be extremely efficient. Recent local search based methods like
GSAT (Selman et al., 1992) do show some promise on large KBs, but so
far (1) they are restricted to constraint satisfaction tasks not deductive
ones, and (2) they work only on problems that can be formulated in a
propositional language.!

To the best of our knowledge, there is so far only one logically correct
(sound and complete) deductive technique efficient enough to be feasible
on KBs of this size: the deduction underlying database query answer-
ing. In KR terms, this amounts to what was called wvivid reasoning in
(Levesque, 1986). In logical terms, the requirements for this form of
reasoning are clear: every relevant atomic formula must be known to
be true or known to be false. That is, the KB must be equivalent to a
maximally consistent set of literals. In addition, this set of literals must
be readily computable. In the propositional case, one obvious way of
ensuring this is to store the positive ones in a database and infer the
negative ones using negation as failure. With every atom known true or
known false, it then follows that every formula can be “efficiently” (in
a sense to be discussed later) determined to be true or to be false by
evaluating it, that is, by calculating its truth value as a function of the
truth values of its constituent atoms.

But this requirement for complete knowledge is very strict. It would
certainly be desirable to allow some atomic formulas to be unknown,
with the understanding that other formulas would need to be unknown
as well. Allowing arbitrary disjunctions (or existential quantifications) in
the KB would obviously require a very different method of reasoning. A
less radical move, which still allows incomplete knowledge, is to consider
a KB that is equivalent to a finite consistent set of literals, not necessarily
maximal. Unfortunately, although this is a trivial extension to the above,
we can already see that it will not work: for the special case of a KB
equivalent to the empty set of literals, the formulas that would need to
be known are precisely the valid ones. Computing these is co-NP hard
in the propositional case, and even if we accept the argument that it
may still be feasible in practice (perhaps because the query will always
be small, or for reasons like those discussed in (Hogg et al., 1996)), there
is no escaping the fact that it would be undecidable in the first-order
case.

So it appears that even a seemingly insignificant increase in expressive
power, allowing for the most basic form of incompleteness in the KB,
already makes deduction too hard. Despite this, it is precisely this form

Two Approaches to EfficientOpen-World Reasoning 3

of incomplete knowledge that we will consider in this paper, suitably
generalized to deal with quantifiers and equality. We refer to the sort of
reasoning required as open-world reasoning, to distinguish it from closed-
world reasoning where every formula is known to be true or known to
be false on the one hand, and fully general reasoning, which allows for
the presence of disjunctions, existentials etc., on the other.?

What we will argue is that open-world reasoning is a middle ground
that can be dealt with effectively (sometimes) using two complementary
approaches:

= by restricting the class of queries to a special normal form (NF),
a simple evaluation procedure provides inference that is both log-
ically sound and complete;

®m by assuming that we have sensing information, ¢.e., information
coming from outside the system, available at the right time, we
can reduce an otherwise open-world reasoning problem to a closed-
world one, and again use the simple evaluation procedure.

Here we describe the two approaches and state the main theorems with-
out proof. Further technical details on the two approaches can be found
in (Levesque, 1998) and (De Giacomo and Levesque, 1999) respectively.

2. EVALUATION-BASED REASONING

The reasoning procedure we have in mind (for KBs with both complete
and incomplete knowledge) is one that decides whether a formula is true
or false by evaluating it, reducing knowledge of complex formulas to
knowledge of the ground atomic formulas, A.3 Throughout, we will use
0 to mean “known to be false,” 1 to mean “known to be true,” and % to
mean “unknown.”?

Given an assignment V € [A — {0,1,1}] telling us which atoms are
known, we extend the assignment to all boolean formulas in the obvious
way:

1. V[ma] =1-V]a].

2. Ve A 5] = min{V]a], V[F]}.

Disjunctions, implications, and equivalences can be handled as abbre-
viations. We will sometimes also use the logical constant TRUF, with
V[TRUFE] = 1.

To handle quantification, assume we are given a finite set H of con-

stants (intuitively, those names mentioned in some KB), and we define

3. V[Va.a] = crgglJr{V[af]}

4

Here o is the result of replacing free z by ¢ in «, and H™ is the union
of the constants in H, those mentioned in «, and one new one outside of
H and not mentioned in . Thus, to evaluate Vz.a, we evaluate a finite
set of its instances where the x ranges over the constants in the given
H, over the constants mentioned in «, and over one new constant that
is neither in H nor in «. We handle existentials as abbreviations.

Finally to handle equality formulas, we use the simplest possible
scheme (for ground atomic ones):

4. V[t =t'] = 1if t is identical to t', and 0 otherwise.

So all that is left to completely determine a V' function is the set H
and the value of V on atomic formulas. We will show how to get these
from a given KB in Section 3.3. Then, using these four rules, we can
evaluate any closed formula, that is, compute what is known about the
formula as a function of what is known about instances of its atoms.

Of course it remains to be seen in what contexts this 3-valued eval-
uation scheme can be used. This is what is addressed in Sections 3.4
and 3.5.

We should be clear about what we mean by correctness. We will want
to talk about making deductions from a set of formulas S (the KB), and
getting the correct answer (0, 1, or 3) for a class of formulas T (the
potential queries):

Definition 1 Let S,T C £, and let f € [L — {0,1,1}]. Then

n [is logically sound wrt S for T iff for every a € T, if fla] = 1
then S = o, and if fla] =0 then S |E —a;

n f is logically complete wrt S for T iff for every a € T, if S |E «
then fla] =1, and if S |E -« then fla] = 0;

[is logically correct wrt S for T iff it is both sound and complete.

We will see below (after we establish some properties of quantifiers and
equality) that whenever we begin with an evaluation function that is
logically sound for atomic formulas, it will end up logically sound for
all formulas. But this will not be the case for logical completeness: it
is a well known property of multi-valued logics (Urquhart, 1986) that
classically correct answers for atoms do not guarantee correctness for all
formulas.

Observe, for example, that we would want V[pV —p] to be 1 even
when V[p] = %, contrary to what we have above. This has suggested to
some authors that perhaps tautologies and their negations need to be
filtered out separately in the evaluation (as in (Vassiliou, 1980) and in
supervaluations (Van Fraasen, 1966)).

Two Approaches to EfficientOpen-World Reasoning 5

But the problem is not merely with tautologies. Suppose we have that
Vip] =1, Vigl =1 and V[r] = 0 (where e.g. KB = {q,~r}). Let a be
the formula

(g A (=r Ap))V (mp A (=1 Ag)).

Then, we get V[a] = %, whereas completeness requires a value of 1 (since
KB |= «). There is, however, a tautology hidden here: if we convert «

to CNF, we get
[g A= A (pV =),

which gives a value of 1, after we filter out the tautologous clause.

But consider the dual of a: [(—gV rV p) A (=g V rV =p)]. For logi-
cal completeness, this should get value 0, although again V returns %
Moreover, the formula here is in CNF, and there are no hidden tautol-
ogous clauses to remove.> However, observe that the clause (—q V r) is
derivable from these two by Resolution, and if we were to conjoin this
new clause to the formula, logical equivalence would be preserved and
V would now return the correct answer, 0. This is the idea behind the
normal form we will introduce later.

A few words on the efficiency of the above treatment of knowledge.
If the query does not use quantifiers, V will ask for the value of an
atom a linear (in the size of the query) number of times. So non-
quantified queries are handled efficiently, assuming atoms are. But
for quantified queries, the situation is less clear. Consider one like
dzy -z, (p1 A+ A py), where the p; are atoms whose arguments are
among the z;. Even if we imagine a KB that is a simple database (a
finite set of ground atoms) that uses k constants, the obvious way of han-
dling this requires looking at all k™ vectors of constants, clearly infeasible
for the sort of large k& we are considering.® In actual database systems,
queries like this can be formulated, but they are handled in practice using
a number of optimizations such as sort restrictions on variables (so that
not all constants need be considered for every variable), and sophisti-
cated implementations of relational operations (e.g, join, selections) and
careful subgoal (join) ordering and selection placement. These types of
optimizations will be available to us as well, and coupled with an as-
sumption that n is very small, we take it that quantified queries can be
handled efficiently (or as efficiently as can be expected), assuming again
that atomic queries are.

3. A FIRST APPROACH

The first approach which will allow us to use the above evaluation
procedure requires queries to be in a certain normal form. But first
we must be clear about the sorts of KBs we will be using. For the

6

purposes of this section, we start with a standard first-order language
L with no function symbols other than constants and a distinguished
equality predicate. We assume a countably infinite set of constants C =
{¢1, €2, ...} for which we will be making a unique-name assumption.

3.1 QUANTIFIERS AND EQUALITY

Because we will be considering KBs and queries that use equality, we
will end up wanting to compute the entailments not just of the KB, but
of £ U KB, where we have:

Definition 2 The set £ is the axzioms of equality (reflexitivity, symme-
try, transitivity, substitution of equals for equals) and the (infinite) set

of formulas {(¢; # ¢;) |t # j}.

Note that because we are making a unique-name assumption for in-
finitely many constants, we will not be able to finitely “propositionalize”
first-order KBs, despite the lack of function symbols. We will use 8 to
range over substitutions of all variables by constants, and write a8 as
the result of applying the substitutions to «. We will use p to range over
atoms (other than equalities) whose arguments are distinct variables, so
that p# ranges over ground atoms. We will use Vo to mean the universal
closure of «. When S is finite, AS stands for the conjunction of its ele-
ments (and the logical constant TRUFE, when S is empty). Finally, we
will use e to range over ewffs, by which we mean quantifier-free formulas
whose only predicate is equality.

Before discussing KBs and queries, we need to establish how the quan-
tifiers and substitution behave. First we define the notion of a standard
interpretation:

Definition 3 A standard interpretation of L is one where = is inter-
preted as identity, and the denotation relation between C and the domain
of discourse is bijective.

We get the following theorem:

Theorem 1 Suppose S is any set of closed wffs, and that there is an
infinite set of constants that do not appear in S. Then EUS is satisfiable
iff it has a standard model.

This is like Herbrand’s Theorem (with C being like the Herbrand Uni-
verse) except that S is not required to be in prenex form, can contain
arbitrary alternations of quantifiers (which would otherwise introduce
Skolem functions), etc. Note that this is not simply a variant of the
Skolem-Lowenheim Theorem either, since our theorem does not hold

Two Approaches to EfficientOpen-World Reasoning 7

when S mentions every constant, as in the set {Jz.P(z)} U {=P(c)|ce
C}. This is an example of a satisfiable set that has no standard model.
The second theorem concerns substitutions by constants:

Theorem 2 Let S be a set of closed wffs, let o be a wff with a single
free variable x, and let HT be a set of constants containing those in S,

those in «, and at least one constant in neither. Then for every constant
d € C, there is a constant ¢ € HY such that EUS | oF iff EUS |E o.

It is this theorem that will allow us to restrict our attention a finite set of
constants in I+ when we do substitutions, as we will show below. Note
that the theorem is false if H* contains just the constants in S and «.
For example, let o be P(z), and S be {Vz(z # a D P(2))}. In this case,
the only constant in .S or ais @, and EU S al, but EUS | af. The
theorem is also false if HT does not contain the constants in «. For
example, let a be R(z,b), and S be {Vy.Vz.(y = z) DO R(y,z)}. Here,
EUS = af, but for every other constant ¢, &€ U S HF ar.

3.2 KNOWLEDGE BASES

Since we are considering a KB containing equality, variables, and uni-
versal quantifiers, we will not be able to do simple retrieval to find out
what is known about the atoms. For example, let 5 be the formula

VaVyVz. (e £y AN z=1y) D R(z, z,y).

If a KB contains 3 then we want R(b,a,a) to be known. So we must
first be clear about the form of KB we will be using;:

Definition 4 We call a set S of formulas proper if €U S is consistent
and S is a finite set of formulas of the form ¥(e D p) or V(e D —p),
where e is an ewff, and p is an atom as above.

We will be interested in KBs that are proper. Observe that as a special
case, we can represent any finite consistent set of literals as a proper
KB: simply replace pf (or its complement) by V(e D p) where e is of
the form A(z; = ¢;). We can also represent a variety of infinite sets of
literals, as the formula 5 does above. We are free to characterize some
of the positive instances of p by using V(e D p), and leave the status of
the rest open. We can do the same for negative instances. We can also
make a closed world assumption about a predicate if we so choose, by
using both V(e D p) and V(—e D —p), for some e and p.

It might appear that proper KBs are overly restrictive, and ought to
be easy to reason with. It is worth remembering that deciding whether a
proper KB entails a formula is recursively unsolvable, unless the formula
is restricted in some way, as we intend to do.

Although proper sets are not the same as sets of literals, they can be
used to represent them in the following way:

Definition 5 Let S be any finite set of V(e D «) formulas as above, but
not necessarily consistent. Define

Lits(S)={af|V(e D a) € S, £ = eb}.
Then we get the following:

Theorem 3 Let S be a finite set of formulas of the above form, and let
M be any standard interpretation. Then

MES iff ME Lits(S)

So S and Lits(S) are satisfied by the same standard interpretations (al-
though there will be non-standard interpretations where they diverge).

3.3 ATOMIC QUERIES

Now we want to define how atomic queries will be handled for proper
KBs. We will use the fact that V has already been defined for closed
ewffs, and (by a simple induction argument) satisfies the following:

Lemma 4 For any ewffe, Ve8] =1 iff £ = €b.
This establishes that V is logically correct for ewffs.

Definition 6 For any proper KB, the atomic evaluation associated with
KB is the function V' where the H (for handling quantifiers) is the set
of constants mentioned in KB, and such that for any ground atom pf

1 if there is aV(e D p) € KB
such that Vef] =1
V[pd] =« 0 if there is a V(e D —p) € KB
such that Vef] =1
% otherwise
This function is well-defined: if there were formulas ¥(e; D p),V(ez2 D
—p) € KB such that V]e;0] = V[ez0] = 1, we would have by Lemma 4
that £ = e10 A ey, and so EU KB = pf A —pb, violating the consistency
of EU KB.

Furthermore, the function (as a procedure) runs in time that is no
worse than linear in the size of the KB. Given the considerations dis-
cussed in the previous section, this settles the efficiency question as far
as we are concerned: using the evaluation V associated with a KB, ar-
bitrary closed queries can be answered efficiently.

We now turn to the correctness of V.

Two Approaches to EfficientOpen-World Reasoning 9

3.4 SOUNDNESS OF QUERY EVALUATION

We begin by showing that the evaluation associated with a KB always
returns logically correct answers for atomic queries.

Theorem 5 For any proper KB, the evaluation associated with KB is
logically correct for ground atomic queries wrt £ U KB.

Next we show that the evaluation associated with a proper KB always
returns logically sound answers for any query:

Theorem 6 Suppose KB is proper. Then the evaluation associated with
KB is logically sound for any closed formula wrt £ U KB.

However, as we already argued, we cannot expect to have logical cor-
rectness when knowledge is incomplete. In the next section, we show
that we do get it for the special case of queries in normal form.

3.5 NORMAL FORM
This is the normal form we will be using:

Definition 7 A set S of closed formulas is logically separable iff for
every consistent set of ground literals L, if L U {a} is consistent for
every o € S, then L US has a standard model.

Definition 8 The normal form formulas NF is the least set such that
1. if @ is a ground atom or ewff, then o € NF;
2. if « € NF, then —a € NF;
3. if S C NF, S is logically separable, and S is finite, then NS € NF;

4. if S CNF, S is logically separable, and for some o, S = {a” | c €
C}, then Vo.ao € NF.

Before explaining how the definition works, we state the main theorem:

Theorem 7 Suppose KB is proper. Then the evaluation associated with
KB is logically complete for any normal form formula wrt £ U KB.

This theorem shows that as long as the query is in normal form, we
have an “efficient” deductive reasoning procedure for first-order KBs
with incomplete knowledge that is guaranteed to be logically correct. In
other words, we can evaluate a query to determine if it or its negation
is entailed, and always get answers that are logically correct.
Moreover, we can prove that in the propositional sublanguage, the
restriction to normal form is without loss of expressive power:

10

Theorem 8 In the propositional sublanguage, for every o € L, there is

o' € NF such that = (= o).

This is not suggest that a good general query procedure would be to
first convert a formula into normal form, and then apply the evaluation
procedure; such an o could be exponentially larger than the original
a. The formula o/ € NF used in the proof of this theorem is in what
is called Blake Canonical Form (BCF) (Blake, 1938). Using later ter-
minology (due to Quine), it is the conjunction of the non-tautologous
prime implicates of a. Note, however, that while NF includes BCF, it
goes beyond it, in that it is closed under negation and has formulas of
arbitrary alternations of A and V. As a very simple example, suppose
that o and g are in BCF and share no atoms. Then it is easy to show
that {—a, =3} is logically separable, and so (V) € NF.

We have as yet been unable to prove or disprove that every first-order
formula has an equivalent normal form variant. However, it is useful
to consider some special cases guaranteed to be in normal form. For
example, we have

Theorem 9 If S is proper, then NS € NF.
Another special case is as follows:

Definition 9 Two literals are conflict-free iff either they have the same
polarity, or they use different predicates, or they use different constants
at some argument position.

Theorem 10 If all the literals in o are conflict-free, then oo € NF.”

Roughly speaking, this means that if we have a query where nothing can
be inferred using the query alone (because none of its literals conflict),
then we can use the evaluation procedure. As a further special case, if
we have a query where every predicate letter appears only positively or
only negatively, we are guaranteed to be in normal form, and so to get
logically correct answers.

4. A SECOND APPROACH

The second approach to open-world reasoning which will allow us to
use the evaluation procedure of Section 2 requires sensing, i.e., getting
knowledge from outside the system, to fill in details about otherwise
unknown atoms. This approach is most meaningful in a context where
we are reasoning about actions and their effects.

Two Approaches to EfficientOpen-World Reasoning 11

4.1 PROJECTION

One of the most fundamental tasks concerned with reasoning about
actions is the projection task: determining whether a fluent® does or does
not hold after performing a sequence of actions. In the usual formulation,
we are given a characterization of the initial state of the world and
some sort of specification of what each action does. The projection
task requires us to determine the cumulative effects (and non-effects) of
sequences of actions.

Projection is clearly a prerequisite to planning: we cannot figure out if
a given goal is achieved by a sequence of actions if we cannot determine
what holds after doing the sequence. Similarly, the high-level program
execution task (Levesque et al., 1997), which is that of finding a sequence
of actions constituting a legal execution of a high-level program, also
requires projection: to execute a program like “while there is a block
on the table, pick up a block and put it away,” one needs to be able to
determine after various sequences of actions if there is still a block on
the table. For these reasons being able to solve the projection problem
efficiently is a clear desiderata.

Reiter (Reiter, 1991) proposed action theories of a very special form in
the language of the situation calculus (McCarthy and Hayes, 1969). Such
theories, called basic action theories, have a notable characteristic that
allows us to base projection on special form of evaluation (regression)
plus inference about the initial situation. This allows for a very efficient
way of reasoning when we have complete information about the initial
situation. Reiter’s basic action theories are the starting point of our
discussion.

4.2 BASIC ACTION THEORIES

The basic action theories account of action and change is formulated
in the language of the situation calculus (McCarthy and Hayes, 1969; Re-
iter, 2000). We will not go over the language here except to note the
following components: there is a special constant Sy used to denote the
initial situation, namely the one in which no actions have yet occurred;
there is a distinguished binary function symbol do where do(a, s) denotes
the successor situation to s resulting from performing action «; relations
whose truth values vary from situation to situation, are called (rela-
tional) fluents, and are denoted by predicate symbols taking a situation
term as their last argument; and there is a special predicate Poss(a, s)
used to state that action a is executable in situation s.

12

Within this language, we can formulate action theories that describe
how the world changes as the result of the available actions. In particu-
lar, basic action theories have the following form (Reiter, 1991):

m Some foundational, domain independent axioms.
m Unique names axioms for the primitive actions.
m Axioms describing the initial situation Sp.

m Action precondition axioms, one for each primitive action a, char-
acterizing Poss(a, s).

m Successor state axioms, one for each fluent F, of the following
form:®
F(# do(a, 5)) = 7(7,a, 5

which state under what conditions F'(#, do(a, s)) holds as function
of what holds in situation s. These take the place of the so-called
effect axioms, but also provide a solution to the frame problem
(Reiter, 1991).

We will focus mainly on successor state axioms in the following.

Example 11 For example, the successor state axiom:

Broken(z,do(a, s)) =
a = drop(z) A Fragile(z)
vV 3b [a = explode(b) A Bomb(b) A Near(z,b, s)]
V a # repair(z) A Broken(z, s)

states that an object x is broken after doing action « if « is dropping it
and z is fragile, a is exploding a bomb near it, or it was already broken,
and a is not the action of repairing it. "

In this setting the projection problem amounts to checking if

S ¢(do(A, S0))

where 3 is the basic action theory describing the domain of interest,
A is a sequence of actions to perform, do(A,Sp) is the situation that

results from performing the sequence of actions A starting in the initial
situation Sy, and ¢ is a formula with a single situation term, a free
variable ranging over situations. If the logical implication holds then we
know that ¢ holds after performing A starting from Sg.

The special form of the successor state axioms allows us to regress
fluents in the sense that whether or not they hold after performing an

Two Approaches to EfficientOpen-World Reasoning 13

Formula regression (Formula ¢, Situation S)

while (5 # So) {
assume S is do(A, S');
for each F(t_: $) in ¢, simultaneously do {
assume the SSA for Fis F(Z,do(a,s)) = v(Z,a,s);
replace F(t_’7 s) by 'y(t_’7 A, s);

}

set S =5";
}
return ¢;

}

Figure 1.1 Regression procedure for basic action theories

action can be determined by considering the action in question and what
was true just before. By applying regression steps several times, we can
regress each fluent in a formula ¢ all the way back to the initial situa-
tion. Intuitively we just have to use the regression procedure sketched
in Figure 1.1 (see (Reiter, 1991) for the formal definition of regression).
Observe that in the procedure, we use the pseudo-instruction assume
S is do(A,S'); to make explicit the form of 9, similarly for the SSA.
Observe also that we do not instantiate the situation argument in ®. It
is the variable S that keeps track of the current situation. The formula
returned is then to be evaluated in the initial situation, by substituting
So as the situation argument. For a formal definition of regression see
(Reiter, 1991).

Note that using regression we are able to reduce a projection problem
efficiently to an inference to be done in the initial situation. Now if we
have complete information about the initial situation, then we just have
to evaluate the formula obtained (using a variant of the procedure in
Section 2) instead of making use of full logical inference. In other words,
by using regression and making a closed-world assumption about the
initial situation we get an efficient evaluation procedure for the entire
projection task.

Of course, without this closed-world assumption, we cannot use evalu-
ation (unless we restrict queries as we did in Section 3). In addition, ba-
sic action theories, by adopting this form of successor state axioms, also
require a strong completeness assumption: after specifying the (perhaps
conditional) effects of the given actions on fluents, and then allowing for
possible ramifications of these actions (e.g., (Lin and Reiter, 1994)), it
is then assumed that a fluent changes only if it has been affected in one

14

of these ways. What is not allowed, in other words, are cases where the
value of a fluent does not depend only on the previous situation. This
can arise in at least two ways. First, a fluent might change as the result
of an action that is exogenous to the system. If a robot opens a door in
a building, then when nobody else is around, it is justified in concluding
that the door remains open until the robot closes it. But in a building
with other occupants, doors will be opened and closed unpredictably.
Secondly, the robot might have incomplete knowledge of the fluent in
question. For example, a robot normally would not be able to infer the
current temperature outdoors, since this is the result of a large number
of unknown events and properties.

In cases such as these, the only way we can expect a robot to be able
to perform the projection task for arbitrary queries using evaluation is if
it has some sensing capabilities in order to determine the current value
of certain fluents in the world. In (Levesque, 1996), sensing is modeled
as an action performed by a robot that returns a binary measurement.
The robot then uses so-called sensed fluent axioms to correlate the value
returned with the state of various fluents. However, in this account, no
attempt is made to be precise about the exact relation between sensing
and regression. Moreover, there is no possibility of saying when regres-
sion should be used, and when sensing should be used.

In (De Giacomo and Levesque, 1999) a formal specification of a chang-
ing world is proposed which generalizes Reiter’s solution to the frame
problem to allow conditional successor state axioms, and generalizes
the treatment of sensors by Levesque and others (e.g., (Baral and Son,
1997; Golden and Weld, 1996; Poole, 1995; Weld et al., 1998)) to allow
conditional sensing axioms. The specification is sufficiently general that
in some cases, there is simply not enough information to perform the
projection task even with sensing. However, in many cases, it allows
for solving projection efficiently, by using an evaluation procedure that
combines sensing and regression. In the following, we analyze such a
proposal in greater detail.

4.3 GUARDED ACTION THEORIES

We assume that a robot has a number of onboard sensors that provide
sensing readings at any time. Formally, we introduce a finite number of
sensing functions, which are unary functions whose only argument is a
situation. For example, thermometer(s), sonar(s), depthGauge(s), might all
be real-valued sensing functions.'®

We then define a sensor-fluent formula to be a formula of the language
(without Poss, for simplicity) that uses at most one situation term, which

Two Approaches to EfficientOpen-World Reasoning 15

is a variable, and that this term only appears as the final argument
of a fluent or sensor function. We write ¢(Z,s) when ¢ is a sensor-
fluent formula with free variables among the & and s, and (b(t_; ts) for the
formula that results after the substitution of & by the vector of terms i
and s by the situation term t,. A fluent formula is one that mentions
no sensor functions. A sensor formula is a sensor-fluent formula that
mentions sensor function, but does not mention fluents, and is assumed
to be easily evaluable given the values of the sensors.

A guarded action theory is like a basic action theory except that
for each fluent, instead of a single successor state axiom, it contains
any number of guarded successor state axioms and guarded sensed fluent
axioms.

» A guarded successor state axiom (GSSA) is a formula of the form
a(Z,a,s) O [F(Z,do(a, 5)) = (T, a, 5)]

where « is a sensor-fluent formula called the guard of the axiom,
Fis a relational fluent, and ~ is a fluent formula.

» A guarded sensed fluent aziom (GSFA) is a formula of the form
a(#,5) > [F(7,5) = p(,)]

where « is a sensor-fluent formula called the guard of the axiom,
Fis a relational fluent, and p is a sensor formula.

The following examples show what a guarded action theories can ex-
press.

Example 12 The outdoor temperature is unpredictable from state to
state. However, when the robot is outdoors, its onboard thermometer
measures that temperature.

Outdoors(s) D
OutdoorTemp(n, s) = thermometer(s) = n

Note that when the guard is false, i.e., when the robot is indoors, nothing
can be concluded regarding the outdoor temperature. "

Example 13 The indoor temperature is constant when the climate con-
trol is active, and otherwise unpredictable. However, when the robot is
indoors, its onboard thermometer measures that temperature:

Indoors(s) D
IndoorTemp(n, s) = thermometer(s) = n

ClimateControl(s) D
IndoorTemp(n, do(a, s)) = IndoorTemp(n, s)

16

Note that in this case, if the climate control remains active, then a
robot that goes first indoors and then outdoors will still be able to infer
the current indoor temperature using both sensing and regressing. To
our knowledge, no other representation for reasoning about actions can
accommodate this combination. "

Example 14 If the robot is alone in the building, the state of the door
is completely determined by the robot’s open and close actions. Either
way, any time the robot is in front of the door, its onboard door sensor
correctly determines the state of the door.

Alone(s) D
DoorOpen(z, do(a, s)) =
a = open(x)
V a # close(x) N\ DoorOpen(z, s)

InFrontOf(z,s) D
DoorOpen(x, s) = doorSensor(s) = 1

One intriguing possibility offered by this example is that on closing a
door, and later coming back in front of the door to find it open, a
security guard robot would be able to infer that —Alone. "

Observe that guarded action theories are indeed an extension of basic
action theories. We can handle a universally applicable successor state
axiom like the one for Broken above by using the guard TRUF. Similarly,
we can handle the case where nothing is known either about how to
regress a fluent or how to sense its value (or both) by dropping GSSAs
and GSFAs for the fluent all together.

Histories and the projection task. Once sensors are introduced,
to determine if a fluent holds at some point, it is no longer sufficient
to know the actions that have occurred; we also need to know the
readings of the sensors along the way (i.e., initially, and after each
action). Consequently, we define a history as a sequence of the form
(f0) - (A1, 1) - - (Ap, piz) where A; (1 <7< n)is aground action term
and i = (@i, -5 tim) (0 <7 < n) is a vector of values, with p;; under-
stood as the reading of the j-th sensor after the ¢-th action. If A is such
a history, we then recursively define a ground situation term end[A] by
end[(fi0)] = So and end[A - (A, [i)] = do(A,t) where t = end[A]. We also
define a ground sensor formula Sensed[A] as Ai_g A\Jy 2 (end[\;]) = pi;
where A; is the subhistory up to action 7, (ig) - - - (A, /i), and h; is the
Jj-th sensor function. So end[A] is the situation that results from doing

Two Approaches to EfficientOpen-World Reasoning 17

the actions in A and Sensed[A] is the formula that states that the sensors
had the values specified by A.!1

The projection task, becomes as follows: given an action theory X as
above, a history A, and a formula ¢(s), where s is the situation argument,
determine whether or not

Y U Sensed[A] = ¢(end[A]).

Example 15 As an example, assume we have a robot with a single
sensor that measures the temperature. One possible history then is as
follows:

— (267).

(goIndoors,20°) -
(turnOnC'limateControl, 19°) -
(getGlardenShears, 19°) -
(goOutdoors,27°) -
(trimHedge, 28°)

This history tells us the robot initially sensed temperature 26°, then it
went indoors and sensed 20°, then it turned the climate control on and
sensed 19°, then it took the garden shears, still sensing 19°, then it went
outdoors and started doing some gardening.

Let X be a guarded action theory for the robot that implies that all
actions have the expected effect and moreover, that includes the GSSAs
and GSFAs of Examples 12 and 13. Then we can infer the following
projection:

Y U Sensed[A] = IndoorTemp(19°, end[A]).

That is although the robot is outdoors and hence cannot sense the tem-
perature, it can infer that the temperature indoors is still 19°, since at
one point in the history it was indoors and turned on the climate control
when the temperature it was sensing was 19°, and the climate control
remains on, keeping the indoor temperature constant. "

4.4 GENERALIZED REGRESSION

In principle, the projection task as formulated can be solved using a
general first-order theorem-prover. But our goal here is to keep the logi-
cal framework, but show that in common cases projection can be reduced
using some form of regression plus inference about the initial situation,
as done for basic action theories. In (De Giacomo and Levesque, 1999)
a generalized form of regression that is a sensible compromise between

18

Formula generalized-regression (Formula ¢, History A)

{
repeat {
for each F(t_’7 s)in ¢ {
nondeterministically choose a GSFA
a(Z,s) D[F(Z,s) = p(Z, 9)]
such that ¥ U Sensed[\] = Va(f, end[\]);
replace F(t_’7 s) by p(t_: s\
}
if A= X (A7) then {
for each F(t_’7 s)in ¢, simultaneously do {
nondeterministically choose a GSSA
a(Z,a,s) D [F(Z,do(a, s)) = ~(Z,a,s)]
such that ¥ U Sensed[\'] |= Ya(t, A, end[\]);
replace F(t_’7 s) by 'y(t_’7 A, s);
}
}
set A =)\;
} until (no F(t_: s)in ¢) or (A = (10));
return ¢;

}

Figure 1.2 Regression procedure for generalized action theories

syntactic transformations and logical inference is proposed. Specifically,
logical inference is required only in evaluating the guards to decide which
GSFAs and GSSAs to apply. This implies that the regression technique
proposed is effective in cases where the guards are easily evaluable.

One can get an intuitive idea of how generalized regression works by
looking at the nondeterministic procedure sketched in Figure 1.2, where
3 is a guarded action theory, A is a history, ¢ is a sensor-fluent formula,
and the notation ¢\A stands for formula that results from replacing ev-
ery sensor function h;(s) in ¢ by the j-th component of the final sensor
reading in A. Observe that the procedure never instantiates the situa-
tion argument. It is the history A that keeps track of current situation
(i.e., end[A]). For a more formal definition of generalized regression, see
(De Giacomo and Levesque, 1999).

Generalized regression is always sound, so to perform the projection
task, it is sufficient to regress the formula and check whether the re-
gressed formula holds in the initial situation. Unfortunately, regression
in general cannot be complete. To see why, suppose nothing is known
about fluent F’; then a formula like (F'(s) V —=F(s)) will not regress even
though it will be entailed by any history.

Two Approaches to EfficientOpen-World Reasoning 19

The other drawback of generalized regression is that we need to eval-
uate guards. However, evaluating a guard is just a sub-projection task,
and so for certain “well structured” action theories, in which guards
of the GSFAs for a fluent F' do not depend circularly on F' itself, we
can again apply regression. Such theories are called acyclic generalized
action theories.

4.5 JIT-HISTORIES

As noted above, we cannot expect to use generalized regression to
evaluate sensor-fluent formulas in general: a tautology might be entailed
even though nothing is entailed about the component fluents. However,
in a practical setting, we can imagine never asking the robot to evaluate
a formula unless the history is such that it knows enough about the com-
ponent fluents, using the given GSSAs and GSFAs, and their component
fluents. In general, we call a history just-in-time (JIT) for a formula,
if the actions and sensing readings it contains are enough to guarantee
that suitable formulas (including guards) can be evaluated at appropri-
ate points to determine the truth value of all the fluents in the formula
(see (De Giacomo and Levesque, 1999) for the formal definition).

Example 16 For example consider the history of the Example 15:
A= (26°)-

golndoors, 20°) -

turnOnC'limateControl, 19°) -

getGardenShears, 19°) -

goOutdoors, 27°) -

trimHedge, 28°)

[P

It is easy to see that A is a JIT history for IndoorTemp(19°, end[A]).
Indeed at the end of A the climate control is on, so we know that the
indoors temperature is as it was in the previous situation. Thus we
can regress the formula until we arrive to a point in the history where
the robot was indoors, where the sensor readings measured the indoor
temperature and the climate control is on. Observe that we do not need
to require the robot to know whether the climate control was on before
then, or even whether the robot is indoors now. "

Although guarded action theories are assumed to be open-world, a
JIT-history provides a sort of dynamic closed world assumption in that
it ensures that the truth value of any fluent will be known whenever it is
part of a formula whose truth value we need to determine. This allows

20

us to evaluate complex formulas as we would if we had a normal closed
world assumption, again using a variant of the procedure in Section 2
In (De Giacomo and Levesque, 1999) a procedure that evaluates a for-
mula by generalized regression exploiting the notion of JIT-histories is
presented.

5. CONCLUSION

In this paper, we have shown how a simple but efficient evaluation
procedure that is logically correct only for closed-world knowledge bases
could nonetheless be used in certain contexts with open-world ones. In
the first case, we restrict queries to be in a certain normal form which,
we conjecture, is without loss of expressive power; in the second case,
we restrict queries to be for JIT-histories, where enough sensing infor-
mation has been acquired to determine the truth values of the fluents
in the query. For further discussion and directions for future work, see
(Levesque, 1998) and (De Giacomo and Levesque, 1999).

Notes

1. Converting first-order reasoning problems into propositional ones remains a possibility
(as done in Kautz et al., 1996, for example), but consider that for KBs with (say) 10® unique
names, even a single binary predicate would generate far too many atomic propositions.
Recent work on satisfiability with restricted first-order formulas may help here (Parkes, 1999).

2. It is interesting to observe that open-world reasoning has attracted interest of the
database community as well (e.g., Imielinski and Jr., 1984; Reiter, 1984; Vardi, 1985). More
recently, researchers have looked at the problem of answering queries using materialized
views, i.e., answering queries using only a given set of materialized views (e.g., Abiteboul
and Duschka, 1998; Grahne and Mendelzon, 1999). This also is a form of reasoning with
incomplete information.

3. Unless otherwise specified, by an atom, we do not include equality formulas. These
are handled separately below.

4. If we were to allow for inconsistent KBs as well, we would have a fourth truth value,
as in Belnap, 1977; Cadoli and Schaerf, 1992; Dunn, 1976; Ginsberg, 1988; Lakemeyer, 1990;
Levesque, 1984; Patel-Schneider, 1985, among many others. From an efficiency point of view,
nothing is gained by this move, so we forego it for simplicity.

5. We could convert the formula to DNF and remove the complement of tautologous
clauses, and that would work here, but not in the first-order case. See below.

6. Although it is not an issue here, the worst case complexity of this problem does not
look good. Namely evaluating formulas of the form above, which are essentially conjunctive
queries in databases, is polynomial in the size of the database, but NP-complete in the size of
the formula (see Chandra and Merlin, 1977). Evaluating general first-order formulas is again
polynomial in the size of the database, but PSPACE-complete in the size of the formula (see
again Chandra and Merlin, 1977).

7. A literal appears in « if the corresponding atom appears within the scope of an ap-
propriate number (odd or even) of negation operators.

8. By a fluent, we mean a property of the world that changes as the result of performing
actions.

9. Here and below, formulas should be read as universally quantified from the outside.

Two Approaches to EfficientOpen-World Reasoning 21

10. Syntactically, these look like functional fluents, so to avoid confusion, we only deal
with relational fluents in this paper.

11.Obviously interesting histories A have to satisfy certain legality criteria such as consis-
tency of ¥ U Sensed[)\] and conformance to Poss.

References

Abiteboul, S. and Duschka, O. (1998). Complexity of answering queries
using materialized views. In Proc. of the 17th ACM SIGACT SIG-
MOD SIGART Sym. on Principles of Database Systems (PODS’98),
pages 254-265.

Baral, C. and Son, T. (1997). Approximate reasoning about actions in
presence of sensing and incomplete information. In Proc. of the 1997
Int. Logic Programming Symposium (ILPS’97), pages 387-401.

Belnap, N. (1977). A useful four-valued logic. In Dunn, J. and Epstein,
G., editors, Modern uses of multiple-valued logic, pages 8-37. Reidel
Publishing Company.

Blake, A. (1938). Canonical expressions in Boolean algebra. PhD thesis,
University of Chicago.

Cadoli, M. and Schaerf, M. (1992). Approximate reasoning and non-
omniscient agents. In Proc. of the jth Conf. on Theoretical Aspects
of Reasoning about Knowledge (TARK’92), pages 169-183. Morgan
Kaufmann Publishers.

Chandra, A. K. and Merlin, P. M. (1977). Optimal implementation of
conjunctive queries in relational data bases. In Proc. of the 9th ACM
Sym. on Theory of Computing (STOC’77), pages 77-90.

De Giacomo, G. and Levesque, H. (1999). Projection using regression
and sensors. In Proc. of the 16th Int. Joint Conf. on Artificial Intel-
ligence (IJCAI’99), pages 160-165.

Dunn, M. (1976). Intuitive semantics for first-degree entailments and
coupled trees. Philosophical Studies, 29:149-168.

Ginsberg, M. (1988). Multivalued logics: a uniform approach to reason-
ing in artificial intelligence. Computational Intelligence, 4:265-316.
Golden, K. and Weld, D. (1996). Representing sensing actions: the mid-
dle ground revisited. In Proc. of the 5th Int. Conf. on the Principles
of Knowledge Representation and Reasoning (KR’96), pages 174-185.

23

24

Grahne, G. and Mendelzon, A. (1999). Tableau techniques for querying
information sources through global schemas. In Proc. of the 7th Int.
Conf. on Database Theory (ICDT’99), volume 1540 of Lecture Notes
in Computer Science, pages 332-347. Springer-Verlag.

Hogg, T., Huberman, B., and Williams, C. (1996). Frontiers in problem
solving: phase transitions and complexity. Artificial Intelligence, 81(1-
2):1-15.

Imielinski, T. and Jr., W. L. (1984). Incomplete information in relational
databases. Journal of ACM, 31(4):761-791.

Kautz, H., McAllester, D., and Selman, B. (1996). Encoding plans in
propositional logic. In Proc. of the 5th Int. Conf. on the Principles of
Knowledge Representation and Reasoning (KR’96), pages 374-384.

Lakemeyer, G. (1990). Models of belief for decidable reasoning in incom-
plete knowledge bases. PhD thesis, Department of Computer Science,
University of Toronto.

Levesque, H. (1984). A logic of implicit and explicit belief. In Proc. of the
4th Nat. Conf. on Artificial Intelligence (AAAI'84), pages 198-202.
Levesque, H. (1986). Making believers out of computers. Artificial Intel-

ligence, 30:81-108.

Levesque, H. (1996). What is planning in the presence of sensing? In
Proc. of the 13th Nat. Conf. on Artificial Intelligence (AAAI'96),
pages 1139-1146.

Levesque, H. (1998). A completeness result for reasoning with incom-
plete first-order knowledge bases. In Proc. of the 6th Int. Conf. on
the Principles of Knowledge Representation and Reasoning (KR’98),
pages 14-23.

Levesque, H., Reiter, R., Lespérance, Y., Lin, F., and Scherl, R. (1997).
GOLOG: A logic programming language for dynamic domains. Jour-
nal of Logic Programming, 31:59-84.

Lin, F. and Reiter, R. (1994). State constraints revisited. Journal of
Logic and Computation, 4(5):655-678.

McCarthy, J. (1968). Programs with common sense. In Minsky, M., edi-
tor, Semantic Information Processing, pages 403-418. The MIT Press.

McCarthy, J. and Hayes, P. (1969). Some philosophical problems from
the standpoint of artificial intelligence. Machine Intelligence, 4:463—
502.

Parkes, A. (1999). Lifted search engines for satisfiability. PhD thesis,
Dept. of Computer and Information Science, University of Oregon.
Patel-Schneider, P. (1985). A decidable first-order logic for knowledge
representation. In Proc. of the 9th Int. Joint Conf. on Artificial Intel-

ligence (IJCAI'85), pages 455-458.

References 25

Poole, D. (1995). Logic programming for robot control. In Proc. of the
14th Int. Joint Conf. on Artificial Intelligence (IJCAI’95), pages 150~
157.

Reiter, R. (1984). Towards a logical reconstruction of relational database
theory. In Brodie, M. L., Mylopoulos, J., and Schmidt, J. W., editors,
On Conceptual Modelling. Springer-Verlag.

Reiter, R. (1991). The frame problem in the situation calculus: A simple
solution (sometimes) and a completeness result for goal regression.
In Artificial Intelligence and Mathematical Theory of Computation:
Papers in Honor of John McCarthy, pages 359-380. Academic Press.

Reiter, R. (2000). Knowledge in Action: Logical Foundation for Describ-
ing and Implementing Dynamical Systems. Kluwer. In preparation.

Selman, B., Levesque, H., and Mitchell, D. (1992). A new method for
solving hard instances of satisfiability. In Proc. of the 10th Nat. Conf.
on Artificial Intelligence (AAAI'92), pages 440-446.

Urquhart, A. (1986). Many-valued logic. In Gabbay, D. and Guenthner,
F., editors, Handbook of philosophical logic, volume III, pages 71-116.
Reidel Publishing Company.

Van Fraasen, B. (1966). Singular terms, truth-value gaps, and free logic.
Journal of philosophical logic, 63:481-495.

Vardi, M. (1985). Querying logical databases. In Proc. of the jth ACM
SIGACT SIGMOD Sym. on Principles of Database Systems (PODS’85),
pages 57-65.

Vassiliou, Y. (1980). A formal treatment of incomplete information in
database management. PhD thesis, Department of Computer Science,
University of Toronto.

Weld, D., Anderson, C., and Smith, D. (1998). Extending graphplan
to handle uncertainty and sensing actions. In Proc. of the 15th Nat.
Conf. on Artificial Intelligence (AAAI'98), pages 897-904.

