
IBIS: Data Integration at Work
(extended abstract)

Andrea Cal̀ı1, Diego Calvanese1, Giuseppe De Giacomo1, Maurizio Lenzerini1,
Paolo Naggar2, Fabio Vernacotola2

1Università di Roma “La Sapienza”
Dip. di Informatica e Sistemistica

via Salaria 113, I-00198 Roma, Italy
lastname@dis.uniroma1.it

2CM Sistemi
via N. Sauro 1, I-00195 Roma, Italy
firstname.lastname@gruppocm.it

Abstract. We present IBIS (Internet-Based Information System), a sys-
tem for the semantic integration of heterogeneous data sources. IBIS
adopts innovative and state-of-the-art solutions to deal with all aspects
of a complex data-integration environment, including source wrapping,
limitations on source access, and query answering under integrity con-
straints.

1 Introduction

The goal of a Data Integration system is to provide a uniform access to a set of
heterogeneous data sources, freeing the user from the knowledge about the data
sources themselves. In this paper we present IBIS (Internet-Based Information

System), a system for the semantic integration of heterogeneous data sources,
studied and developed in the context of a collaboration between the University of
Rome “La Sapienza” and CM Sistemi.

The problem of designing effective data integration systems has been addressed
by several research and development projects in the last years. Most of the data
integration systems described in the literature [7, 12, 16, 15, 8, 6, 1], are based on
a unified view of data, called mediated or global schema, and on a software mod-
ule, called mediator that collects and combines data extracted from the sources,
according to the structure of the mediated schema. A crucial aspect in the de-
sign and the realization of mediators is the specification of the relation between
the sources and the mediated schema. Two basic approaches have been proposed
in the literature [14]. The first approach, called global-as-view (or simply GAV),
focuses on the elements of the mediated schema, and associates to each of them
a view over the sources. On the contrary, in the second approach, called local-as-

view (or simply LAV), the focus is on the sources, in the sense that a view over
the global schema is associated to each of them. Indeed, most data integration
systems adopt the GAV approach. This is, for example, the case of TSIMMIS [7],
Garlic [13], COIN [6], Squirrel [17, 16], and MOMIS [1].

IBIS adopts innovative and state-of-the-art solutions to deal with all aspects of
a complex data integration environment, including source wrapping, limitations
on source access, and query answering under integrity constraints. IBIS follows
the GAV approach, using a relational mediated schema to query the data at the
sources. The system is able to cope with a variety of heterogeneous data sources,



including data sources on the Web, relational databases, and legacy sources. Each
non relational source is wrapped to provide a relational view on it. Also, each
source is considered incomplete, in the sense that its data contribute to the data
integration system. A key issue is that the system allows the specification of
integrity constraints in the global schema, derived from the domain of interest, and
not from the sources. Since sources are autonomous and incomplete, the extracted
data in general do not satisfy the constraints. To deal with this characteristic,
IBIS adapts the information extracted from the sources, so as to answer queries
at best with the data available. In this way, answers are obtained that would
not be provided by the standard unfolding strategy associated with GAV data
integration systems. Indeed, GAV data integration systems, such as the above
mentioned ones, answer a query posed over the global schema by unfolding each
atom of the query using the corresponding view [14]. The reason why unfolding
is sufficient in those system is that the GAV mapping essentially specifies a single
database conforming to the global schema. Since no integrity constraint is defined
in the schema, such a database is always legal for the schema.

IBIS also deals with limitations in accessing data sources, e.g., those requiring
filling at least one field in a Web form, and exploits techniques developed for
querying sources with binding patterns in order to retrieve the maximum set
of answers [11, 5, 9, 10]. Since such extraction process is expensive, new types of
optimizations are performed, taking into account integrity constraints holding on
the sources.

2 Modeling in IBIS

The modeling of a data integration application in IBIS is based on the relational
model with integrity constraints. As usual, a relational schema is constituted by
a set of relation symbols, each one with an associated arity, denoting the number
of its attributes, and a set of integrity constraints. In IBIS, we deal with four kind
of constraints (the notion of satisfaction for these types of constraints is the usual
one): Key constraints: Given a relation r in the schema, a key constraint over r is
expressed in the form key(r) = X, where X is a set of attributes of r. Foreign key

constraints: We express a foreign key constraint in the form r1[X] ⊆ r2[Y], where
r1, r2 are relations, X is a sequence of distinct attributes of r1, and Y is a sequence
formed by the distinct attributes forming the key of r2. Functional dependencies:

A functional dependency over a source s has the form s : A → B, where A and
B are subsets of the set of attributes of s. Full inclusion dependencies: A full
incusion dependency between two sources s1 and s2 is denoted by s1 ⊆ s2.

A data integration application in IBIS is modeled through a triple I =
〈G,S,M〉, where S is the source schema, G is the global schema, and M is the
mapping between the two. The global schema G is expressed as a relational schema
with key and foreign key constraints. The source schema S is a relational schema
with full inclusion and functional dependencies. The mapping is of type GAV: to
each relation r in the global schema, M associates a query ρ(r) over the source
schemas. Each query is a union of conjunctive queries (UCQ) plus a part, de-
noted in logic programming notation, which specifies an additional processing to
be carried out on the data retrieved by the UCQ associated to ρ(r) in order not to



violate the key constraint of r. In the following, we will not delve into the detail of
this part: we will assume that the key constraint of each relation in G is satisfied.
Finally, queries over the global schema are also union of conjunctive queries.

In order to assign semantics to a data integration application I = 〈G,S,M〉,
we start with the data at the sources, and specify which data satisfy the global
schema. A source database D for I is a relational database constituted by one
relation r

D for each source r in S. A source database is said to be legal for S if it
satisfies all the constraints in S. A global database B for I, or simply database for
I, is a database for G. Given a legal source database D for S, a global database B
is said to be legal for I with respect to D if: B satisfies the integrity constraints of
G, and B satisfies the mapping M, that is, for each relation r in G, we have that
the set of tuples r

B that B assigns to r contains the set of tuples ρ(r)D that the
query corresponding to r retrieves from the source database D, i.e., ρ(r)D ⊆ r

B.
Observe that the previous assertion amounts to consider any view ρ(r) over S as
sound, i.e., the tuples provided by ρ(r) are sound but not necessarily complete.

Given a data integration application I = 〈G,S,M〉 and a legal source database
D, the semantics of I is the set of global databases that are legal for I wrt D. If
such a set is not empty, the source database D is said to be consistent with I.

The fact that the semantics of a data integration application needs to be
defined in terms of a set of databases rather than a single one has a deep influence
on the nature of query answering in IBIS. Given a query q over the global schema
of a data integration application I, and a legal source database D, the certain

answers q
I,D of q to I wrt D are the tuples that satisfy the query in every database

that belongs to the semantics of I, i.e., in every global database that is legal for
I wrt D. It follows that query processing in IBIS aims at computing the certain
answers of the query.

3 Architecture of IBIS

CORE

Configuration


User Interface


DataStore


Core Session


Unfolder


Plan

Executor


Static

Optimizer


Extractor


WEB Server


Expander


Metadata

Repository


Dynamic

Optimizer


IBIS Application Interface


Configuration

Manager


Wrapping

Wrapper

Manager


Type Specific

Wrapper
 Source Specific


Wrapper


Fig. 1. Architecture of IBIS

The system architecture of
IBIS is shown in Figure 1.
Four subsystems can be identified:
Wrapping Subsystem: Its task is to
provide a uniform layer in which all
data stored at the sources are pre-
sented in the relational model. The
wrappers in IBIS also take into ac-
count the limitations in accessing
the sources. Configuration Subsys-

tem: It supports system manage-
ment and configuration of all the
meta-data, which are stored in a
repository according to a propri-
etary information model. The main
design tool of IBIS is the Config-
uration Manager. Through it, the



designer is able to perform various configuration tasks, including schema design
and the possibility to define properties of data sources. IBIS Core: It implements
the actual data integration algorithms and controls all the parts of the system,
taking care at runtime of all the aspects of query processing. User queries are
issued to the IBIS core by the application interface; the core performs evaluation
of a query by extracting data from the sources and executing the query over such
extracted data. Data extraction and query processing, which are the main tasks
of the IBIS Core, will be described in Sections 4 and 5, respectively. User Inter-

face: Users of IBIS interact with the system by means of a Web interface. The
Web Server dynamically generates HTML and XML documents by invoking the
services provided by the application interface. The application interface provides
functionalities such as authentication, browsing of the catalog of queries, setup of
parametric queries, submitting a query etc., according to the information stored
in the repository.

In addition to these subsystems, a data store is used to store temporary data
which are used during query processing, and cached data extracted from the
sources during the processing of previous queries.

4 Data Extraction

The extraction of the data from the sources is a key process in IBIS, and is
complicated by the fact that limitations exist in accessing the sources. This is
typical of Web data sources that are accessible through forms: usually a certain
set of fields has to be filled with values in order to query the underlying database.
Also, very often legacy databases have a limitation of this kind.

An interesting feature of IBIS is that the extraction process is decoupled from
query processing. IBIS processes a query q by first expanding it to a query q

′′,
and then obtains a query q

′ by unfolding q
′′. The resulting query q

′ is issued to
the extractor. The extractor builds the so called retrieved source database Dq for
q by retrieving all the tuples that may be used to answer q. Then, the query q

′ is
evaluated over Dq, providing the set of certain answers q

I,D to q.

4.1 Dealing with Access Limitations

In the presence of access limitations on the sources, simple unfolding is in gen-
eral not sufficient to extract all obtainable answers from the sources [11, 5, 9, 10].
IBIS exploits techniques developed specifically for dealing with access limitations
in the GAV approach, and extends the algorithm presented in [9] with suitable
optimization techniques. The extraction of data according to this algorithm is
performed as follows: starting from the set of initial values in the query, IBIS
accesses as many sources as possible, according to their access limitations. The
new values in the tuples obtained (if any), are used to access the sources again,
getting new tuples, and so on, until there is no way of doing accesses with new
values. At each step, the values obtained so far are stored.

The algorithm extracts all tuples obtainable respecting the access limitations,
but there may be tuples in the sources that could contribute to the answer, but



cannot be retrieved due to the access limitations. Although the extraction algo-
rithm is straightforward, in order to make it efficient in practice, its implementa-
tion requires to take into account several technological aspects.

To avoid wrappers to be overloaded with a number of access requests that
exceeds the capacity of the wrappers, they are fed with batches of requests that
do not exceed a prefixed maximum size. For each wrapper, according to its ca-
pabilities, the system manager assigns the maximum dimension of the batches it
can accept.

Furthermore, the extraction strategy of IBIS tries to keep working as many
wrappers as possible. In order to do so, the IBIS Core constructs the requests to
be sent to the wrappers independently from the order in which the values have
been delivered to the retrieved source database. In doing so, it tries to generate
the same amount of requests for each wrapper.

Also the new values in the tuples that are stored in the retrieved source
database are not used to generate accesses immediately, but gradually and uni-
formly among sources. This strategy deals also with the problem of the large
number of values extracted from sources without access limitations.

The limitations in accessing the sources make the issue of data extraction
inherently complex and costly. Our experimentation have shown that the time
needed for the extraction of all obtainable tuples can be quite long. On the other
hand, the strategy of data extraction of IBIS, based on a concept of proximity

of values to the tuples constituting the answer to the query, leads the system to
retrieve tuples (and values) that are significant for the answer in a time that is
usually very short, compared to the total extraction time. Since the results are
presented to the user as soon as they are found, the user can decide that he is
satisfied by the answers he has received so far, and stop the query answering
process.

4.2 Static Optimization

Before starting the construction of the retrieved source database for a query, IBIS
is capable of excluding from the extraction process those sources that are not
useful for answering the query. In fact, in general not all sources are useful in the
extraction process, in the sense that they can provide either tuples that contribute
to the answer, or values used for the extraction of tuples that contribute to the
answer. Moreover, some useless source may additionally degrade performance by
providing values which generate bindings that cause more useless accesses. Tech-
niques for selecting relevant sources have been proposed [9], however they are
not applicable to IBIS because they cannot deal with the query language IBIS
adopts, which is union of conjunctive queries. Instead, IBIS performs the following
optimizations on the data extraction process.

First of all, IBIS checks whether the query that has to be issued to the sources
is such that each of the values appearing in each atom covers all the attributes
that have to be bound to a value in the corresponding source. In this case, the
query can be answered without any complex extraction process, just as if there
were no limitations in accessing the sources.



Then IBIS excludes a priori from the construction of the optimized query plan.
all sources that are not queryable. A source is said to be queryable if it can be
accessed at least once for at least one instance of at least one source database,
starting from the values in the query. It can be shown that the method to calculate
the queryable sources presented in [9] is still applicable in IBIS.

Finally, in order to exclude sources that are not useful for query processing,
IBIS performs an optimization by exploiting its knowledge about which sources
can provide values to which other sources. It starts from the sources appearing
in the query, and, by using a dependency graph, it tracks back such information
to identify the set of sources that potentially can provide values for the sources
appearing in the query.

4.3 Dynamic Optimization

IBIS is capable of avoiding useless accesses to the sources by exploiting already
extracted tuples and integrity constraints on the sources. Dynamic optimization
based on integrity constraints comes into play when a data source is accessible
in several ways, i.e., the same underlying data can be accessed with different
limitations. The most relevant case is that of Web sources, where the same form
can be submitted by filling in different sets of fields, but not by leaving all fields
empty. The different access patterns for a source s are represented in IBIS as
different sources s1, . . . , sn with different access limitations. To capture the fact
that the sources s1, . . . , sn have the same extension, full inclusion dependencies
s1 ⊆ s2, s2 ⊆ s3, . . . , sn−1 ⊆ sn, sn ⊆ s1 are used. More generally, the situation
in which the extension of a source s is contained in that of another source s

′ is
captured by the full inclusion dependency s ⊆ s

′. Note that the abstract domains
of s and s

′ must match.
Full inclusion dependencies, together with functional dependencies (which cap-

ture also key constraints), allow IBIS to performs runtime optimization dur-
ing data extraction, taking into account the tuples already extracted from the
sources [2].

5 Query Processing

Query processing in IBIS is separated in three phases: (1) the query is expanded

to take into account the integrity constraints in the global schema; (2) the atoms
in the expanded query are unfolded according to their definition in terms of the
mapping, obtaining a query expressed over the sources; (3) the expanded and
unfolded query is executed over the retrieved source databases, to produce the
answer to the original query (see Section 4).

Query unfolding and execution are the standard steps of query processing in
GAV data integration systems, while the expansion phase is the distinguishing
feature of the IBIS query processing method. Indeed, to the best of our knowl-
edge, no GAV data integration system exploits integrity constraints in order to
overcome incompleteness of data at the sources. IBIS instead takes into account
the integrity constraints over the global schema, which reflect the semantics of



the application domain, and allows for the retrieving of data that could not be
obtained in traditional data integration systems. This is done by encoding infor-
mation about integrity constraints in the expanded query, so that the answers
provided by evaluating the preprocessed queries are the best possible ones that
can be obtained, given the available information.

In the following, let I be a data integration system and D a source database.
In order to show how integrity constraints in the global schema can be taken into
account, we make use of the notion of retrieved global database for a query q. Such a
database is obtained by populating each relation r in the global schema according
to the retrieved source database Dq for q and the mapping, i.e., by populating
r with the tuples obtained by evaluating the associated query ρ(r) on Dq. Note
that integrity constraints are not taken into account in such a construction.

In general, integrity constraints may be violated in the retrieved global
database. Regarding key constraints, IBIS assumes, as mentioned before, that
the query that the mapping associates to a global schema relation r is such that
the data retrieved for r do not violate the key constraint of r. In other words, the
management of key constraints is left to the designer.

On the other hand, the management of foreign key constraints cannot be left
to the designer, since it is strongly related to the incompleteness of the sources.
Moreover, since foreign keys are interrelation constraints, they cannot be dealt
with in the GAV mapping, which, by definition, works on each global relation in
isolation. Indeed, IBIS provides full support for handling foreign key constraints,
which we now explain in detail.

The assumption of sound views asserts that the tuples retrieved for a relation
r are a subset of the tuples that the system assigns to r; therefore, we may think
of completing the retrieved global database by suitably adding tuples in order
to satisfy foreign key constraints, while still conforming to the mapping. When
a foreign key constraint is violated, there are several ways of adding tuples to
the retrieved global database to satisfy such a constraint. In other words, in the
presence of foreign key constraints in the global schema, the semantics of a data
integration system must be formulated in terms of a set of databases, instead of
a single one.

Since we are interested in the certain answers q
I,D to a query q, i.e., the tu-

ples that satisfy q in all global databases that are legal for I wrt D, the existence
of several such databases complicates the task of query answering. To deal with
this problem, IBIS expands the query q by taking into account the foreign key
constraints on the global relations appearing in the atoms. For the details of the
expansion process we refer to [4, 3]. The expansion expG(q) of q is a union of con-
junctive queries, and it is possible to show that the evaluation of expG(q) over the
retrieved source database produces exactly the set of certain answers of q to I
wrt D [4]. As the construction of the retrieved global database is computationally
costly, the IBIS Expander module does not construct it explicitly. Instead, it un-
folds expG(q) and evaluates the unfolded query unf M(expG(q)) over the retrieved
source database, whose data are extracted by the Extractor module. As shown
in [4], this produces exactly the same results.



6 Conclusions

To the best of our knowledge, IBIS is the only system for the semantic integration
of heterogeneous data sources capable of exploiting integrity constraints over the
global schema and the sources to improve query answering. IBIS has been released
as a beta version and is under active development. We are working on extending
the system in various directions, from the theoretical point of view and for the
implementation.

References

1. S. Bergamaschi, S. Castano, M. Vincini, and D. Beneventano. Semantic integration
of heterogeneous information sources. Data and Knowledge Engineering, 36(3):215–
249, 2001.

2. A. Cal̀ı and D. Calvanese. Run-time optimization of query planning with limited
source capabilities. In Proc. of SEBD 2001, pages 33–44, 2001.

3. A. Cal̀ı, D. Calvanese, G. De Giacomo, and M. Lenzerini. Accessing data integration
systems through conceptual schemas (extended abstract). In Proc. of SEBD 2002,
2002.

4. A. Cal̀ı, D. Calvanese, G. De Giacomo, and M. Lenzerini. Data integration under
integrity constraints. In Proc. of CAiSE 2002, 2002.

5. D. Florescu, A. Y. Levy, I. Manolescu, and D. Suciu. Query optimization in the
presence of limited access patterns. In Proc. of ACM SIGMOD, pages 311–322,
1999.

6. C. H. Goh, S. Bressan, S. E. Madnick, and M. D. Siegel. Context interchange: New
features and formalisms for the intelligent integration of information. ACM Trans.

on Information Systems, 17(3):270–293, 1999.
7. J. Hammer, H. Garcia-Molina, J. Widom, W. Labio, and Y. Zhuge. The Stanford

data warehousing project. IEEE Bull. on Data Engineering, 18(2):41–48, 1995.
8. M. Jarke, M. Lenzerini, Y. Vassiliou, and P. Vassiliadis, editors. Fundamentals of

Data Warehouses. Springer, 1999.
9. C. Li and E. Chang. Query planning with limited source capabilities. In Proc. of

ICDE 2000, pages 401–412, 2000.
10. C. Li and E. Chang. On answering queries in the presence of limited access patterns.

In Proc. of ICDT 2001, pages 219–233, 2001.
11. C. Li, R. Yerneni, V. Vassalos, H. Garcia-Molina, Y. Papakonstantinou, J. D. Ull-

man, and M. Valiveti. Capability based mediation in TSIMMIS. In Proc. of ACM

SIGMOD, pages 564–566, 1998.
12. Y. Papakonstantinou, H. Garcia-Molina, and J. Widom. Object exchange across

heterogeneous information sources. In Proc. of ICDE’95, pages 251–260, 1995.
13. M. Tork Roth, M. Arya, L. M. Haas, M. J. Carey, W. F. Cody, R. Fagin, P. M.

Schwarz, J. T. II, and E. L. Wimmers. The Garlic project. In Proc. of ACM

SIGMOD, page 557, 1996.
14. J. D. Ullman. Information integration using logical views. In Proc. of ICDT’97,

volume 1186 of LNCS, pages 19–40. Springer, 1997.
15. J. Widom (ed.). Special issue on materialized views and data warehousing. IEEE

Bull. on Data Engineering, 18(2), 1995.
16. G. Zhou, R. Hull, R. King, and J.-C. Franchitti. Data integration and warehousing

using H20. IEEE Bull. on Data Engineering, 18(2):29–40, 1995.
17. G. Zhou, R. Hull, R. King, and J.-C. Franchitti. Using object matching and mate-

rialization to integrate heterogeneous databases. In Proc. of CoopIS’95, pages 4–18,
1995.


