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ABSTRACT
Dealing with inconsistencies is one the main challenges in
data integration systems, where data stored in the local
sources may violate integrity constraints specified at the
global level. Recently, declarative approaches have been pro-
posed to deal with such a problem. Existing declarative pro-
posals do not take into account preference assertions speci-
fied between sources when trying to solve inconsistency. On
the other hand, the designer of an integration system may
often include in the specification preference rules indicating
the quality of data sources. In this paper, we consider Local-
As-View integration systems, and propose a method that
allows one to assign formal semantics to a data integration
system whose declarative specification includes information
on source preferences. To the best of our knowledge, our
approach is the first one to consider in a declarative way
information on source quality for dealing with inconsistent
data in Local-As-View integration systems.
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1. INTRODUCTION
Dealing with inconsistencies is one the main challenges in

data integration [18]. The data integration systems we are
interested in this work are characterized by an architecture
based on a global schema and a set of sources. The sources
contain the real data, while the global schema provides a
reconciled, integrated, and virtual view of the underlying
sources. A mapping relates data sources with the elements
of the global schema. Classical approaches to specifying
the mapping are the Global-As-View (GAV) approach, in
which each global element is associated with a view over the
sources, and the Local-As-View (LAV) approach, in which,
conversely, to each source element is associated a view over
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the global schema. Inconsistency may arise because the
global schema generally contains integrity constraints, and
sources may contain data that, combined with other sources,
may contradict constraints. Since one of the main goals of a
data integration system is to answer queries posed in terms
of the global schema, and since the answer to a query is
based on the data stored in the sources, it is immediate to
verify that inconsistency dramatically affects the ability of
the system of providing meaningful answers to queries.

Roughly speaking, there are two approaches to deal with
inconsistent data in information integration. The first ap-
proach is procedural in nature, and is based on domain-
specific transformation and cleaning [6] procedures applied
to the data retrieved from the sources.

The second approach is declarative. Indeed, several pa-
pers present techniques for providing informative answers
even in the case of a database that does not satisfy its in-
tegrity constraints (see, for example, [2, 3, 14]). Although
interesting, such results are not specifically tailored to the
case of different consistent data sources that are mutually
inconsistent, that is the case of interest in data integration.
This case is addressed in [21], where the authors propose an
operator for merging databases under constraints. Such op-
erator allows one to obtain a maximal amount of information
from each database by means of a majority criterion used in
case of conflict. However, also the approach described in [21]
does not take explicitly into account the notion of mapping
between sources and global schema as introduced in most
declarative data integration settings. Intuitively, in such
settings the problem of dealing with inconsistency is partic-
ularly challenging, since integrity constraints are specified at
the global level, and inconsistency may arise only because
of the way source data are related with global elements by
means of the mapping. Only recently, some papers [5, 10,
7, 12] have tackled data inconsistency in declarative data
integration settings. Such papers get rid of inconsistency
by suitably “repairing” data retrieved from the sources, ac-
cording to some minimality criteria. Basically, such papers
extend the studies on a single inconsistent database [2, 14]
to the case of data integration.

We point out that none of the above mentioned ap-
proaches takes into account preference criteria when trying
to solve inconsistencies among data sources. On the other
hand, we believe that, when specifying a data integration
system, the designer may often include in the specification
information on sources’ quality (e.g., reliability, availabil-



ity, etc.). Obviously, “best” sources should be preferred to
the others when solving inconsistencies. Note that the idea
of taking sources’ quality into account in data integration
is not new. For example, in [23], aspects related to differ-
ent source quality parameters are incorporated in the query
planner. However, quality information is not exploited for
dealing with inconsistent source data. In [26], an approach
is described in which users can indicate in their queries the
quality degree of the answer that they want to get. These
indications are taken into account in case of conflicting data.
However, no information on the quality of the data sources
is considered when computing the answers to the query.
In [24], “reliability degrees” of the sources can be taken into
account in the mapping definition: mapping views indicate
how to resolve possible inconsistency, i.e., which source has
to be favored in case of conflict. Also, in [1] an inconsis-
tency resolution methodology is described which computes
answers to user queries by applying pre-defined conflict reso-
lution policies based on the quality of data at the sources and
further quality parameters provided by the user. The latter
two mentioned approaches are clearly procedural. Further-
more, they consider only GAV or limited forms of mappings.

In this paper, we address the issue of dealing with in-
consistencies in LAV data integration systems specified in
a declarative way, and we present a method that exploits
information on source preferences. We concentrate our at-
tention on the specification of the semantics of our approach.
In other words, we propose a method that allows one to as-
sign formal semantics to a data integration system whose
declarative specification includes information about source
preferences. We focus our attention on LAV systems, which
have been shown superior to other approaches in supporting
extensibility and flexibility. To the best of our knowledge,
the semantics proposed in this paper is the first semantics
for LAV data integration systems that take into account in-
formation on sources’ quality for dealing with inconsistent
data.

The paper is organized as follows. In Section 2 we provide
a means to declaratively specify a data integration system.
In Section 3 we discuss the first-order logic semantics of
LAV data integration systems, and we point out its draw-
backs in dealing with inconsistencies. In Section 4, we define
the maximally-sound semantics (originally presented in [17,
10] with the name of loosely-sound semantics, although re-
stricted to the GAV setting), and we show how it allows to
overcome some of the drawbacks of the FOL semantics. In
Section 5, we propose a new semantics, that combines the
power of the maximally-sound semantics with information
on sources’ quality. Finally, Section 6 concludes the paper.

2. FRAMEWORK
In this section we define a general formal framework for

data integration. Informally, a data integration system con-
sists of a (virtual) global schema, which specifies the global
elements exposed to the user, a source schema, which de-
scribes the structure of the sources in the system, and a map-
ping, which specifies the relationship between the sources
and the global schema. User queries are posed on the global
schema, and the system provides the answers to such queries
by exploiting the information supplied by the mapping and
accessing the sources that contain relevant data. Thus, from
the syntactic viewpoint, the specification of an integration
system depends on the following parameters:

• The form of the global schema, i.e., the formalism
used for expressing global elements and relationships
between global elements, e.g., integrity constraints
expressed over a database schema. Several settings
have been considered in the literature, where, for in-
stance, the global schema can be relational [13], object-
oriented [4], semi-structured [22], based on Description
Logics [16, 11], etc..

• The form of the source schema, i.e., the formalism used
for expressing data at the sources (as presented by
wrappers) and relationships between such data. In
principle, the formalisms commonly adopted for the
source schema are the same as those mentioned for
the global schema.

• The form of the mapping. As already said, two ba-
sic approaches have been proposed in the literature,
called respectively global-as-view (GAV) and local-as-
view (LAV) [20, 25]. The GAV approach requires
that the global schema is defined in terms of the data
sources: more precisely, every element of the global
schema is associated with a view, i.e., a query, over
the sources, so that its meaning is specified in terms
of the data residing at the sources. Conversely, in the
LAV approach, the meaning of the sources is specified
in terms of the elements of the global schema: more
precisely, the mapping between the sources and the
global schema is provided in terms of a set of views
over the global schema, one for each source element.

• The language of the mapping, i.e., the query language
used to express views in the mapping.

• The language of the user queries, i.e., the query lan-
guage adopted by users to issue queries on the global
schema.

Let us now turn our attention on the semantics. Accord-
ing to [18], the semantics of a data integration system is
given in terms of instances of the global schema (e.g., one
set of tuples for each global relation if the global schema
is relational, one set of objects for each global class if it
is object-oriented, etc.). Such instances have to satisfy (i)
the knowledge expressed by the global schema, and (ii) the
mapping specified between the global and the source schema.
Roughly speaking, the satisfaction of the mapping depends
on the data stored at the sources, and the semantic inter-
pretation of the views in the mapping (see below for more
details). Observe that the specification of preferences on
source data, if available, contributes to such a notion of sat-
isfaction.

In the following, we give a precise characterization of the
concepts informally explained above. In particular, in the
line of [18], we provide a logical formal framework which
captures all the syntactic and semantic aspects of data in-
tegration applications. Here, we consider languages for the
specification of the global and the source schema, the map-
ping and the user queries that rely on First-Order Logic
(FOL). Actually, the expressive power of FOL allows us
to capture most of the approaches to data integration pro-
posed in the literature. Moreover, in this paper we focus on
LAV mappings, which are often considered more appropri-
ate when data sources are autonomous, and may be dynam-
ically changed, added or removed from the data integration
system [18].



2.1 Syntax
A data integration system I is a triple 〈G,S,M〉, where:

• G is the global schema, which is specified in some sub-
set of FOL on an alphabet formed by a set AG of rela-
tion names (or predicates) with associated arity, and
a (denumerable) set of constant symbols Γ(we do not
consider functions);

• S is the source schema, composed by the schemas of
the various sources. We assume that the source schema
is simply a set of relation names (with associated arity)
of an alphabet AS . In other words, we do not allow
for the specification of FOL assertions establishing in-
tegrity constraints over data sources. This implies that
data stored at the sources are always considered locally
consistent. This is a common assumption in data in-
tegration, because sources are in general autonomous
and external to the integration system, which is not in
charge to analyze their consistency;

• M is the mapping between G and S. It is consti-
tuted by a set of LAV assertions in which, intuitively,
views, i.e., queries, expressed over G are put in corre-
spondence to source relations in S. We assume that
queries in the mapping are conjunctive queries, i.e.,
open formulas of the form

{x1, . . . , xn | ∃y1, . . . , ym.conj (x1, . . . , xn, y1, . . . , ym)}
where conj is a conjunction of atoms, whose predicate
symbols are relation names in AG , x1, . . . , xn is the
sequence of free variables of the query, and n is the
arity of the query. We omit ∃y1, . . . , ym, when clear
from the context. More precisely, a mapping assertion
assumes the form

s ; qg

where s is a relation name of S and qg is a conjunctive
query over AG of the same arity of s.

Finally, we consider user queries posed to a data integra-
tion system I, and define their syntax. Each such query q
is an open formula that specifies which data to extract from
the integration system, i.e., q is intended to extract a set of
elements of the domain of interpretation (see below). We
assume that user queries are conjunctive queries over the
alphabet AG of the global schema G.

Example 2.1 Consider a data integration system
I0 = 〈G0,S0,M0〉, where the global schema alphabet
AG0 comprises the three binary predicates CourseRoom,
RoomCapacity and SeminarRoom, which respectively indi-
cate rooms with courses taught there in, how many seats are
in the rooms, and rooms in which seminars are scheduled.
Assume that the following FOL sentences are specified over
the alphabet AG0 :

∀x, y1, y2.CourseRoom(x, y1)∧
CourseRoom(x, y2) ⊃ y1 = y2

∀x1, y1, x2, y2.CourseRoom(x1, y1)∧
SeminarRoom(x2, y2) ⊃ y1 6= y2

∀x, y.CourseRoom(x, y) ⊃ ∃z.RoomCapacity(y, z)

which state respectively that a course is taught in exactly
one room, that seminars and courses are assigned to different

rooms, and that the number of seats for each room in which
courses are taught is known.

Consider now the source schema S0, and assume that its
alphabet AS0 comprises the ternary relation name s1 and
the two binary relation names s2 and s3 which provide re-
spectively courses with the room in which they are taught
and its capacity, rooms in which courses are taught (but not
the capacity of the room), and rooms in which seminars are
scheduled.

According to the above description of the sources, we de-
fine the mapping M0 with the following three assertions:

s1 ; {x, y, z | CourseRoom(x, y) ∧ RoomCapacity(y, z)}
s2 ; {x, y | CourseRoom(x, y)}
s3 ; {x, y | SeminarRoom(x, y)}

Finally, we consider the following query issued on the global
schema

{x | RoomCapacity(x, y)},
that asks for the all rooms for which we know the capacity.

2.2 Semantics
We assume that the domain of interpretation is a fixed

denumerable set of elements ∆, and that every such element
is denoted uniquely by a constant symbol in Γ. In this way,
constants in Γ act as standard names [19].

Intuitively, to specify the semantics of a data integration
system, we have to start with a set of data at the sources,
and we have to specify which are the data that satisfy the
global schema with respect to such data at the sources.
Thus, in order to assign the semantics to a data integra-
tion system I = 〈G,S,M〉, we start by considering a source
model for I, i.e., a model D for the source schema S.

Based on D, we specify the information content of the
global schema G. We call any interpretation over ∆ of the
symbols in AG a global interpretation for I.

Definition 2.1. Let I = 〈G,S,M〉 be a data integration
system, let D be a source model for I, a global interpretation
B for I is a model for I w.r.t. D if the following conditions
hold:

1. B is a model of G, i.e., B |= G;

2. B satisfies the mapping M wrt D.

Roughly speaking, the notion of satisfying a LAV mapping
depends on

(a) criteria adopted to deal with inconsistency, and

(b) criteria used to interpret source preferences, if avail-
able.

We will use the symbol X to specify a certain semantic
criterion characterizing both point (a) and (b) above.

Definition 2.2. Let I = 〈G,S,M〉 be a data integration
system, let D be a source model for I, and let X be a seman-
tic criterion. The set of all models for I w.r.t. D, denoted
by semX(I,D), is called the semantics of I w.r.t. D under
X.



In the following, in place of X we will use a different
subscript for each criterion which we consider in this paper.

Let us now turn our attention to queries. In order to define
the semantics of a query q over a data integration system I,
we have to take into account all the interpretations of G in
the semantics of I with respect to D.

Definition 2.3. Let I = 〈G,S,M〉 be a data integration
system, let D be a source model for I, let X be a semantic
criterion, and let q be a user query of arity n over I. The
set of certain answers of q with respect to I and D under
X, denoted by ansX(q, I,D), is defined as follows:

ansX(q, I,D) = {〈c1, . . . , cn〉 | for each

B ∈ semX(I,D), 〈c1, . . . , cn〉 ∈ qB }
where qB denotes the result of evaluating q in the interpre-
tation B, i.e., the set of n-tuples of elements of ∆ associated
to the free variables of q (recall that the interpretation of
constants, i.e., standard names, is the same in every inter-
pretation).

Such a notion of answers, corresponding to skeptical entail-
ment, is the most used in data integration [15, 18]; however
the notion of possible answers, corresponding to credulous
entailment, can also be defined.

3. FOL SEMANTICS
In this section, we consider the case in which no prefer-

ences are specified over the sources, and adopt a classical
FOL interpretation of the mapping. According to such an
interpretation, the mapping can be exploited in order to in-
fer extensions of the global schema starting from the data
stored at the sources. In other words, data at the sources
form a partial specification of the intended models of the
theory provided by the integration system. In this situa-
tion, computing the certain answers to a user query is an
inference process similar to query answering in the presence
of incomplete information.

Definition 3.1. Let I = 〈G,S,M〉 be an integration sys-
tem, let D be a source model for I, and let B be a global
interpretation for I. Then, B satisfies (the FOL interpreta-
tion of) M with respect to D if, for each assertion in M of
the form s ; qg, it holds

sD ⊆ qBg ,

where sD denotes the evaluation of s in D, i.e., the set of
tuples of elements of ∆ (i.e., standard names) assigned to s
by D, and qBg denotes the evaluation of qg over B. In other
words, an assertion of the form s ; qg is satisfied if each
tuple in sD is also a tuple of qBg .

The above interpretation of the mapping is also called
sound interpretation in the literature [18], and is commonly
adopted in data integration, for being it able to capture
the incomplete nature of data sources w.r.t. the intended
extension of the global schema, which is a common setting
in data integration.

With this notion in place we can provide the FOL seman-
tics of data integration system I = 〈G,S,M〉 w.r.t. a source
model D for I, denoted semFOL(I,D), which, according to
Definition 2.2, is the set of global interpretations B for I
such that

1. B |= G;

2. B satisfies the FOL interpretation of the mapping M
wrt D.

Analogously, by applying definition 2.3 to the FOL seman-
tics, we characterize the certain answers to a user query q
under semFOL, which we denote by ansFOL(q, I,D).

Example 2.1 (contd.) Assume now that the do-
main ∆ contains, among others, the elements
Analysis, Geometry, A1, A2, A3, Data Quality, 215, and let
D0 be a source model for I0 such that the set of facts that
hold in D0 is as follows:

{s1(Analysis, A1, 215), s2(Geometry, A2), s3(Data Quality, A3)}.
Consider the following set B0 of facts

{CourseRoom(Analysis, A1),RoomCapacity(A1, 215),
CourseRoom(Geometry, A2),SeminarRoom(Data Quality, A1),
RoomCapacity(A2, α)}.

where α is a constant of the domain ∆.
It is easy to see that B0 |= G0, and that, modulo the choice

of α from ∆, the above set of facts holds for all FOL models
of I0 with respect to D0, i.e., semFOL = {B | B |= G and B ⊇
B0}. Hence, for the query q = {x | RoomCapacity(x, y)} we
have that ansFOL(q, I0,D0) = {A1, A2}.

4. MAXIMALLY-SOUND SEMANTICS
According to the semantics semFOL(I,D), it may be the

case that the data retrieved from the sources cannot be rec-
onciled in the global schema in such a way that both the
knowledge in the global schema and the mapping are sat-
isfied [17]. This is in general caused by mutual inconsis-
tencies in the data coming from different sources. In such
cases, semFOL(I,D) = ∅, therefore, by Definition 2.3, ev-
ery n-tuple is in the answer set of every query of arity n.
This is not an acceptable way of handling inconsistency: as
motivated by the studies in consistent query answering in
inconsistent databases [8, 2, 14], it could be possible to de-
rive significant answers to queries even in the presence of
inconsistency.

Example 2.1 (contd.) Suppose now to have a different
source model D1 such that the following set of facts hold:

{s1(Analysis, A1, 215), s2(Analysis, A2), s3(Data Quality, A2)}.
It should be easy to see that in this case sem(I0,D1) =
∅. Indeed, according to the mapping assertions, for each
global interpretation that satisfies M0, both the facts
CourseRoom(Analysis, A1) and CourseRoom(Analysis, A2)
hold. On the other hand, such facts together violate the
assertion of G0 stating that a course is taught only in a
room. Furthermore, from data stored in s3 we also infer on
the global schema the fact SeminarRoom(Data Quality, A2),
which together with the fact CourseRoom(Analysis, A2) vi-
olates the assertion stating that rooms assigned to courses
and seminars have to be different.

Hence the system I0 is inconsistent with respect to the
source model D1, and the certain answers to each query of
arity n are all the n-tuples of elements of ∆. Nonetheless,
in each interpretation that satisfies M0 w.r.t. D1 we have
that Analysis is a course. Intuitively, we would preserve this



knowledge even in the presence of inconsistencies that do not
directly contradict the fact that Analysis is a course. Con-
sider for example the user query {x | CourseRoom(x, y)}:
is reasonable to assume that the set of “significant” certain
answers to this query is the set {Analysis}, rather than the
entire domain ∆.

To the aim of overcoming the problems illustrated above,
we introduce a different notion of mapping satisfaction,
which can be intuitively seen as a relaxation of the FOL
interpretation discussed in Section 3. In other words, we
adopt a different criterion to deal with inconsistent data1.
More precisely, global interpretations of a data integration
system I = 〈G,S,M〉 that now we are looking for, are those
interpretations that satisfy G and that satisfy as much as
possible the (FOL interpretation of the) mapping assertions
in M w.r.t. a source model D for I. In other words, in
our approach, the knowledge expressed by G is considered
more reliable than the knowledge represented by the infor-
mation retrieved at the data sources through the mapping
assertions.

In order to determine the precise meaning of “satisfying
as much as possible” the mapping with respect to a source
model D, we define preference orders over the models of G.
Informally, we consider as intended models of the integration
system those models of G that satisfy as much as possible
a set of first-order sentences that constitutes the “image of
the mapping assertions” with respect to D.

To formalize the above ideas, we first define the notions
of “image” of the mapping M with respect to a model D of
the sources as a set of first-order sentences. In the following
definition, q(t) indicates the FOL sentence obtained from
the open formula q by replacing its free variables with the
constants in t, i.e., if t = {t1, . . . , tn} and {x1, . . . , xn} are
the free variables of q, xi = ti for each 1 ≤ i ≤ n.

Definition 4.1. Let I = 〈G,S,M〉 be a data integration
system, and D a source model for I, we define the following
set of FOL sentences Image(M,D):

Image(M,D) = {qg(t) | s ; qg ∈M and t ∈ sD}.

Roughly speaking, Image(M,D) contains all the FOL sen-
tences that are implied by the source model D and the map-
ping assertions in M. In other words, Image(M,D) is the
minimal set of FOL sentences that hold at the global level
for a source model D.

Example 2.1 (contd.) In our ongoing example, we have

Image(M0,D1) = {
CourseRoom(Analysis, A1) ∧ RoomCapacity(A1, 215),

CourseRoom(Analysis, A2),

SeminarRoom(Data Quality, A2)}.

Then, given an interpretation W of the global schema G,
we define SatImage(W,M,D) as the portion of the image
of M with respect to D satisfied by W. More precisely:

1Note that also in this section we do not consider preferences
specified on data sources.

Definition 4.2. let I = 〈G,S,M〉 be a data integration
system, let D be a source model for I, and let W be a global
interpretation of I. We define:

SatImage(W,M,D) =

{ϕ | ϕ ∈ Image(M,D) and W |= ϕ}.
Based on the above notions of image of the mapping with

respect to a source model, we now define a partial order
(based on set containment) over the interpretations of the
global schema.

Definition 4.3. Let I = 〈G,S,M〉 be a data inte-
gration system, let D be a source model for I, and let
W,W ′ be two global interpretations of I. We say that
W ′ is (M,D)-preferred to W if SatImage(W ′,M,D) ⊃
SatImage(W,M,D).

Then, we are ready to generalize Definition 3.1 and give
a new notion of global models that satisfies the mapping,
which corresponds to the notion of maximal element in the
partial order defined above.

Definition 4.4. Let I = 〈G,S,M〉 be a data integration
system, let D be a source model for I, and let W be a model
of G. We say that W maximally satisfies M if for each
model W ′ of G, W ′ is not (M,D)-preferred to W.

It is easy now to define the maximally-sound semantics
of a data integration system I = 〈G,S,M〉 w.r.t. a source
model D for I, denoted semMS (I,D), which is actually the
set of global interpretations W for I such that

1. W |= G;

2. W maximally satisfies M wrt D.

The certain answers to a user query q under the maximally-
sound semantics are denoted by ansMS (q, I,D).

Example 2.1 (contd.) Let us first enumerate the sen-
tences of Image(M0,D1) as follows:

1. CourseRoom(Analysis, A1) ∧ RoomCapacity(A1, 215);

2. CourseRoom(Analysis, A2);

3. SeminarRoom(Data Quality, A2).

Then, according to the above definitions, we have
that semMS (I0,D1) contains all models W for G
such that they satisfy either sentences 1 and 3
or sentence 2. Indeed, if W satisfied all sen-
tences in Image(M0,D1), as already noticed, the facts
CourseRoom(Analysis, A1) and CourseRoom(Analysis, A2)
would hold in W, thus violating the assertion in
G0 stating that each course is taught exactly in one
room. Analogously, the facts CourseRoom(Analysis, A2) and
SeminarRoom(Data Quality, A2) would violated the asserted
separation between seminar and course rooms. On the other
hand, W cannot satisfy any sentence in Image(M0,D1),
since in such a way it would not be maximal w.r.t. the
(M0,D1)-preference ordering.



We point out that the semantics semMS defined above has
an important property: for each integration system I and
source model D, if semFOL(I,D) 6= ∅ then semMS (I,D) =
semFOL(I,D). In this sense, such semantics can be consid-
ered as a “conservative extension” of the classical semantics
semFOL, since it provides a different meaning to a data in-
tegration system only in the presence of inconsistency (i.e.,
only when semFOL(I,D) = ∅).

5. ADDING SOURCE PREFERENCES
In this section we consider preferences defined over the

sources, and their impact on the notion of mapping sat-
isfaction. Our aim is to provide a generalization of the
maximally-sound semantics that allows us to select, among
the maximally-sound models, only those that “trust” the
best sources. Let us first formally define the notion of pref-
erence between two source relations.

Definition 5.1. Let I = 〈G,S,M〉 be a data integration
system, a preference assertion over S is an expression of the
form

si > sj

where si, sj are relation names in AS .

The intuitive meaning of preference assertions is that the
quality degree of the source relation si is higher than that
of the source sj . Notice that, since each source is associ-
ated with a mapping assertion, preferences between sources
correspond to preferences between mapping assertions, i.e.,
if mi = si ; qgi and mj = si ; qgj belong to M, the
assertion si > sj implies that mi is preferred to mj .

Then, a data integration system with preference assertions
is a four-tuple of the form 〈G,S,M,P〉, where G, S, M are
as before and P is a set of preference assertions over S.

In the following, we denote by P∗ the set of assertions
representing the transitive closure of the binary relation >
in P, i.e., P∗ is the least set of assertions such that: (i)
P∗ ⊇ P; (ii) if s1 > s2 ∈ P∗ and s2 > s3 ∈ P∗, then
s1 > s3 ∈ P∗.

Definition 5.2. Let I = 〈G,S,M,P〉 be a data in-
tegration system with preference assertions, let D be a
source model for I, and let W,W ′ be two interpreta-
tions of G. Then, we write SatImage(W ′,M,D) >P
SatImage(W,M,D) if

(a) there exists a preference assertion s1 >
s2 ∈ P∗, with s1 ; qg1 ∈ M, s2 ;

qg2 ∈ M, such that there exist qg1(t1) ∈
SatImage(W ′,M,D) − SatImage(W,M,D) and
qg2(t2) ∈ SatImage(W,M,D)− SatImage(W ′,M,D),
and

(a) there exists no preference assertion s0 > s1 ∈ P∗
with s0 ; qg0 ∈ M, such that there exists qg0(t0) ∈
SatImage(W,M,D)− SatImage(W ′,M,D).

If SatImage(W ′,M,D) >P SatImage(W,M,D) does
not hold, then we write SatImage(W ′,M,D) 6>P
SatImage(W,M,D).

Roughly speaking, condition (a) of the above
definition imposes that SatImage(W ′,M,D) con-
tains a sentence (qg1(t1)) that is not contained in

SatImage(W,M,D) and that is preferable to a sen-
tence (qg2(t2)) in SatImage(W,M,D). Furthermore,
condition (b) imposes that there does not exist a sen-
tence (qg0(t0)) in SatImage(W,M,D), and not con-
tained in SatImage(W ′,M,D), that is in turn preferable
to qg1(t1). Intuitively, condition (b) guarantees that
SatImage(W ′,M,D) >P SatImage(W,M,D) only if there
exists a sentence in SatImage(W ′,M,D) that is never
“worse” than a sentence of SatImage(W,M,D).

With this notion in place, we can define a preference or-
dering between the models of a data integration system.

Definition 5.3. Let I = 〈G,S,M,P〉 be a data integra-
tion system with source preferences, let D be a source model
of I, and let W,W ′ be two interpretations of G such that
W |= G, W ′ |= G. We say that W ′ is (M,D,P)-preferred
to W if at least one of the following conditions holds:

1. SatImage(W ′,M,D) ⊃ SatImage(W,M,D);

2. SatImage(W ′,M,D) >P SatImage(W,M,D) and
SatImage(W,M,D) 6>P SatImage(W ′,M,D).

Then, we say that W maximally satisfies (M,P) w.r.t. D if
W is a model for G, and for each model W ′ for G, W ′ is not
(M,D,P)-preferred to W.

According to the above definition, the preference-based
semantics of a data integration system I = 〈G,S,M,P〉
w.r.t. a source model D for I, denoted semMSP (I,D), is the
set of global interpretations W for I such that

1. W |= G;

2. W maximally satisfies (M,P) w.r.t. D.

The certain answers to a user query q under the preferred
semantics are denoted by ansMSP (I,D).

It is easy to show that, given an integration system
with source preferences I = 〈G,S,M,P〉, if we call I′ =
〈G,S,M〉 the integration system without source preferences
obtained from I, then, for each source model D for S,
semMSP (I,D) ⊆ semMS (I′,D).

Example 2.1 (contd.) Let us recall the mapping M0 of
the integration system I0:

s1 ; {x, y, z | CourseRoom(x, y) ∧ RoomCapacity(y, z)}
s2 ; {x, y | CourseRoom(x, y)}
s3 ; {x, y | SeminarRoom(x, y)}

Then, let P0 be the following set of preferences:

P0 = {s1 > s2, s2 > s3}
which express that the quality of the source relation s1 is
higher than the quality of the source relation s2, which in
turn is preferred to source relation s3. Hence, we easily
obtain P∗0 = P0 ∪ {s1 > s3}.

Let us also recall enumeration of the sentences of
Image(M0,D1) previously introduced:

1. CourseRoom(Analysis, A1) ∧ RoomCapacity(A1, 215);

2. CourseRoom(Analysis, A2);

3. SeminarRoom(Data Quality, A2).



Finally, consider I1 = 〈G0,S0,M0,P0〉. By applying the
above Definition 5.3, we have that semMSP (I1,D1) is consti-
tuted by the models of semMS (I0,D1) that satisfy sentences
1 and 3. Such interpretations are the ones that reflect the
preference ordering over the sources given by the assertions
in P∗0 . Hence, for the query q = {x, y | CourseRoom(x, y)}
we have that ansMSP (q, I1,D1) = {〈Analysis, A1〉}, while
ansMS (q, I0,D1) = ∅,.

6. CONCLUSIONS
In this paper, we have laid the semantic foundations for

a LAV data integration system whose declarative specifi-
cation includes information about source preferences. The
semantics that we propose is the first one to deal both with
information on source reliability and with inconsistent data
in LAV data integration systems.

We believe that the approach presented in this paper may
be extended in several ways. First, we can easily extend
the approach to more expressive forms of (sound) mapping,
e.g., GLAV mapping, a generalization of GAV and LAV [18].
Also, it should be noted that the treatment of preferences
proposed here can be refined to give preferences at the tuple-
level, instead of at the whole source level. This extension
is particularly interesting since in principle it allows to as-
sign context-dependent preferences, where each context is
represented by an appropriate query at the sources.

Finally we mention that the computational aspects of the
framework need to be investigated: sound, complete and ter-
minating techniques for query answering in data integration
systems with source preferences have to be defined. In doing
so, particular attention must be posed to single out those
cases that allow for efficient (i.e., polynomially bounded)
computation on the data.
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