On Ability to Autonomously Execute Agent Programswith Sensing

Sebastian Sardifia*
Dept. of Computer Science

Giuseppe De Giacomo
Dip. Informatica e Sistemistica

University of Toronto Univer. di Roma “La Sapienza”

Toronto, Canada Roma, Italy

ssardina@cs.toronto.edu degiacomo@dis.uniromal.it

Abstract

Most existing work in agent programming assumes an
execution model where an agent has a knowledge base (KB)
about the current state of the world, and makes decisions
about what to do in terms of what is entailed or consistent
with this KB. We show that in the presence of sensing, such
a model does not always work properly, and propose an al-
ternative that does. We then discuss how this affects agent
programming language design/semantics.

1. Introduction

There has been considerable work on formal models of
deliberation/planning under incomplete information, where
an agent can perform sensing actions to acquire additional
information. This problem is very important in agent ap-
plications such as web information retrieval/management.
However, much of the previous work on formal models
of deliberation—i.e., models of knowing how, ability, epis-
temic feasibility, executabiliy, etc. such as [14, 3, 9, 11, 6]—
has been set in epistemic logic-based frameworks and is
hard to relate to work on agent programming languages (e.g.
3APL [8], AgentSpeak(L) [17]). In this paper, we develop
new non-epistemic formalizations of deliberation that are
much closer and easier to relate to standard agent program-
ming language semantics based on transition systems.

When doing deliberation/planning under incomplete in-
formation, one typically searches over a set of states, each of
which is associated with a knowledge base (KB) or theory
that represents what is known in the state. To evaluate tests
in the program and to determine what transitions/actions are
possible, one looks at what is entailed by the current KB.
To allow for future sensing results, one looks at which of
these are consistent with the current KB. We call this type
of approach to deliberation “entailment and consistency-
based” (EC-based). In this paper, we argue that EC-based

* First author is a student.

Yves Lespérance
Dept. of Computer Science

Hector J. Levesque
Dept. of Computer Science

York University University of Toronto

Toronto, Canada Toronto, Canada

lesperan@cs.yorku.ca hector@cs.toronto.edu

approaches do not always work, and propose an alterna-
tive. Our accounts are formalized within the situation calcu-
lus and use a simple programming language based on Con-
Golog [5] to specify agent programs as described in Sec-
tion 2, but we claim that the results generalize to most pro-
posed agent programming languages/frameworks. We point
out that this paper is mainly concerned with the semantics
of the deliberation process and not much with the actual al-
gorithms implementing such process.

We initially focus on deterministic programs/plans and
how to formalize when an agent knows how to execute
them. For such deterministic programs, what this amounts
to is ensuring that the agent will always know what the next
step to perform is, and no matter what sensing results are
obtained, the agent will eventually get to the point where it
knows it can terminate. In Sections 3 and 4, we develop a
simple EC-based account of knowing how (KHowg¢). We
show that this account gives the wrong results on a sim-
ple example involving indefinite iteration. Then, we show
that whenever this account says that a deliberation/planning
problem is solvable, there is a conditional plan (a finite tree
program without loops) that is a solution. It follows that
this account is limited to problems where the total number
of steps needed can be bounded in advance. We claim that
this limitation is not specific to the simple account and ap-
plies to all EC-based accounts of deliberation.

The source of the problem with the EC-based account is
the use of local consistency checks to determine which sens-
ing results are possible. This does not correctly distinguish
between the models that satisfy the overall domain specifi-
cation (for which the plan must work) and those that do not.
To get a correct account of deliberation, one must take into
account what is true in different models of the domain to-
gether with what is true in all of them (what is entailed). In
Section 5, we develop such an entailment and truth-based
account (KHowg), argue that it intuitively does the right
thing, and show how it correctly handles our test examples.

Following this, we consider richer notions of delibera-
tion/planning, how they can be formalized, and how they

can be exploited in an agent programming language. In Sec-
tion 6, we discuss the notion of ability to achieve a goal,
and show how it can be defined in terms of our notions of
knowing how to execute a deterministic program. We ob-
serve that an EC-based definition of ability inherits the lim-
itations of the EC-based definition of knowing how. Then
in Section 7, we examine knowing how to execute a nonde-
terministic program. We consider two ways of interpreting
this: one (angelic knowing how) where the agent does plan-
ning/lookahead to make the right choices, and another (de-
monic knowing how) where the agent makes choices arbi-
trarily. We discuss EC-based and ET-based formalizations
of these notions. Finally in Section 8, we show how an-
gelic knowing how can be used to specify a powerful plan-
ning construct in the IndiGolog agent programming lan-
guage. We end by reviewing the paper’s contributions, dis-
cussing the lessons for agent programming language design,
and discussing future work.
All proofs can be found at the following address:

http://www.cs.toronto.edu/~ssardina/papers/paamas04.pdf

2. The Situation Calculusand IndiGolog

The technical machinery we use to define program exe-
cution in the presence of sensing is based on that of [7, 5].
The starting point in the definition is the situation calcu-
lus [12]. We will not go over the language here except to
note the following components: there is a special constant
So used to denote the initial situation, namely that situa-
tion in which no actions have yet occurred; there is a distin-
guished binary function symbol do where do(a, s) denotes
the successor situation to s resulting from performing the
action a; relations whose truth values vary from situation to
situation are called (relational) fluents, and are denoted by
predicate symbols taking a situation term as their last argu-
ment. There is a special predicate Poss(a, s) used to state
that action « is executable in situation s. We assume that
actions return binary sensing results, and we use the predi-
cate SF'(a, s) to characterize what the action tells the agent
about its environment. For example, the axiom

SF(senseDoor(d), s) = Open(d, s)
states that the action senseDoor(d) tells the agent whether
the door is open in situation s. For actions with no useful
sensing information, we write SF'(a, s) = True.

Within this language, we can formulate domain theories
which describe how the world changes as the result of the
available actions. Here, we use basic action theories [18] of
the following form:

e A set of foundational, domain independent axioms for
situations X as in [18].

e Axioms describing the initial situation, Sp.

e Action precondition axioms, one for each primitive ac-
tion a, characterizing Poss(a, s).

e Successor state axioms for fluents of the form
F(Z,do(a,s)) =~(Z,a,s)
providing the usual solution to the frame problem.
e Sensed fluent axioms, as described above, of the form
SF(A(Z),s) = ¢(Z,)
e Unigue names axioms for the primitive actions.

To describe a run of a program which includes both ac-
tions and their sensing results, we use the notion of a his-
tory, i.e., a sequence of pairs (a,) where a is a primi-
tive action and g is 1 or 0, a sensing result. Intuitively,
the history o = (a1, p1) - ... - (an, pn) is one where ac-
tions a, ..., a, happen starting in some initial situation,
and each action a; returns sensing value ;. We use end|o]
to denote the situation term corresponding to the history o,
and Sensed[o] to denote the formula of the situation calcu-
lus stating all sensing results of the history o. Formally,

end[e] = Sp, where € is the empty history; and
end[o - (a, n)] = do(a, end[o]).

Sensedle] = True;

Sensed[o - (a,1)] = Sensed[o] A SF(a,end|o]);
Sensed[o - (a,0)] = Sensed[o] A ~SF(a, end[o]).

Next we turn to programs. We consider a very simple deter-
ministic language with the following constructs:

a, primitive action
01; 02, sequence
if ¢ then §; else d5 endlf, conditional
while ¢ do 6 endWhile, while loop

This is a small subset of ConGolog [5] and we use its single
step transition semantics in the style of [16]. This seman-
tics introduces two special predicates T'rans and Final are
introduced: Trans(d, s, d’, s") means that by executing pro-
gram ¢ in situation s, one can get to situation s’ in one ele-
mentary step with the program §’ remaining to be executed;
Final (6, s) means that program 6 may successfully termi-
nate in situation s.

Offline executions of programs, which are the kind of
executions originally proposed for Golog and ConGolog
[10, 5], are characterized using the Do(d, s, s") predicate,
which means that there is an execution of program § that
starts in situation s and terminates in situation s’. This holds
if there is a sequence of legal transitions from the initial con-
figuration up to a final configuration:

Do(6,s,s") £ 38" Trans*(8,s,0',s') A Final(§',s"),

where Trans* is the reflexive transitive clo-
sure of Trans. An offline execution of ¢ from
s is a sequence of actions a, ...,a, such that:
D UC E Do(d,s,do(an,...,do(a1,s)...)), where D is
an action theory as mentioned above, and C is a set of ax-
ioms defining the predicates Trans and Final and the
encoding of programs as first-order terms [5].

Observe that an offline executor has no access to sens-
ing results, available only at runtime. IndiGolog, an exten-
sion of ConGolog to deal with online executions with sens-
ing, is proposed in [7]. The semantics defines an online exe-
cution of a program ¢ starting from a history o. We say that
a configuration (d, o) may evolve to configuration (¢§’,¢")
w.r.t. a model M (relative to an underlying theory of action
D) iff 1 (i) M is amodel of D U C U {Sensed|c]}, and (ii)

DUC U{Sensed[o;]} E Trans(d, end[s],d’, end[o'])
and (iii)

o-(a,1) if endlo’] = do(a,end[o])
and M = SF(a,end[o])
o' =1¢ o-(a,0) if end[o’] = do(a,end|s])
and M = SF(a,end[o]).
o if end[o’] = end|o],

The model M above is only used to represent a possible en-
vironment and, hence, it is just used to generate the sens-
ing results of the corresponding environment. Finally, we
say that a configuration (4, o) is final whenever

DUC U {Sensed|o]} = Final(d, end[o]).

Using these two concepts of configuration evolution and
final configurations, one can define various notions of on-
line, incremental, executions of programs as a sequence of
legal configuration evolutions, possibly terminating in a fi-
nal configuration.

3. Ddiberation: EC-based Account

Perhaps the first approach to come to mind for defining
when an agent knows how/is able to execute a deterministic
program ¢ in a history o goes as follows: the agent must al-
ways know what the next action prescribed by the program
is and be able to perform it such that no matter what sens-
ing output is obtained as a result of doing the action, she
can continue this process with what remains of the program
and, eventually, reach a configuration where she knows she
can legally terminate. We can formalize this idea as follows.

We say that a configuration (4, 0) may evolve to con-
figuration (¢, o’) w.r.t. a (background) theory D if and only
(6,0) may evolve to (§’,) w.r.t. some model M (relative
to D). Note that we now have two notions of “configura-
tion evolution,” one w.r.t. a particular model (cf. Section 2)
and one w.r.t. a theory. Again, the model is used only to ob-
tain the sensing values corresponding to some possible en-
vironment and not determine the truth values of formulas.
An important point is that this alternative version of config-
uration evolution appeals to consistency in that it considers

1 Thisdéfi nition is more general than the onein [7], where the sensing
results were assumed to come from the actual environment rather than
fromamodel (amodel can represent any possible environment). Also,
here we deal with non-terminating, i.e., infi nite executions.

all evolutions of a configuration in which the sensing out-
come (i.e., the environment response) is consistent with the
underlying theory.

We define KHowgc(d,0) to be the smallest relation
R(6,) such that:

(E1) if (9, 0) is final, then R (9, 0);

(E2) if (4, 0) may evolve to configurations (&', 0 - (a, p;))
w.r.t. theory D with ¢ = 1..k for some k£ > 1, and
R(d',0 - (a,ui)) holds for all i = 1..k, then R(9, o).

The first condition states that every terminating configura-
tion is in the relation KHowgc.

The second condition states that if a configuration per-
forms an action transition and for every consistent sensing
result, the resulting configuration is in KHow g, then this
configuration is also in KHowgc.

Note that, here, the agent’s lack of complete knowl-
edge in a history o is modeled by the theory D U C U
{Sensed|c]} being incomplete and having many different
models. KHowgc uses entailment to ensure that the in-
formation available is sufficient to determine which tran-
sition should be performed next. For instance, for a con-
ditional program involving different primitive actions a;
and ao in the “then” and “else” branches (i.e., such that
D [a1 # as), the agent must know whether the test holds
and know how to execute the appropriate branch:

KHowgc (if ¢ then ay else as endlf, o) iff

D UC U {Sensed|o]} = ¢(end[o]) and KHowgc (a1, o)
or

D UC U {Sensed|o]} = —¢(end[o]) and KHowgc (az, o).

KHow g uses consistency to determine which sensing
results can occur, for which the agent needs to have a sub-
plan that leads to a final configuration. Due to this, we say
that KHow g is an entailment and consistency-based (EC-
based) account of knowing how.

This EC-based account of knowing how seems quite in-
tuitive and attractive. However it has a fundamental limita-
tion: it fails on programs involving indefinite iteration. The
following simple example from [9] shows the problem.

Consider a situation in which an agent wants to cut down
a tree. Assume that the agent has a primitive action chop to
chop at the tree, and also assume that she can always find
out whether the tree is down by doing the (binary) sens-
ing action look. If the sensing result is 1, then the tree is
down; otherwise the tree remains up. There is also a flu-
ent RemainingChops(s), which we assume ranges over
the natural numbers N and whose value is unknown to the
agent, and which is meant to represent how many chop ac-
tions are still required in s to bring the tree down. The
agent’s goal is to bring the tree down, i.e., bringing about
a situation s such that Down(s) holds, where

Down(s) £ RemainingChops(s) = 0

The action theory D, is the union of:

1. The foundational axioms for situations X.
2. Duna = {chop # look}.
3. D, contains the following successor state axiom:

RemainingChops(do(a,s)) =n =
(a = chop A RemainingChops(s) =n+1) V
(a # chop A RemainingChops(s) = n).

4. D,,, contains the following two precondition axioms:

Poss(chop, s) = (RemainingChops > 0),
Poss(look, s) = True.

5. Ds, = {RemainingChops(Sy) # 0}.
6. D,y contains the following two sensing axioms:

SF(chop, s) = True,
SF(look, s) = (RemainingChops(s) = 0).

Notice that sentence 3n.RemainingChop(Sy) = n
(where the variable n ranges over N) is entailed by
this theory so “infinitely” hard tree trunks are ruled
out. Nonetheless, the theory does not entail the sen-
tence RemainingChop(Sy) < k for any constant k € N.
Hence, there exists some n € N, though unknown and un-
bounded, such that the tree will fall after n chops. Be-
cause of this, intuitively, we should have that the agent
can bring the tree down, since if the agent keeps chop-
ping, the tree will eventually come down, and the agent can
find out whether it has come down by looking. Thus, for
the program

d+c = While =Down do chop; look endWhile

we should have that KHow g (d¢., €) (note that d;. is deter-
ministic). However, this is not the case:

Theorem 3.1 Let §;. be the above program to bring the
tree down. Then, for all & € N, KHowgc (d¢c, [(chop, 1) -
(look,0)]*) does not hold. In particular, when k = 0,
KHowgc (d:., €) does not hold.

Thus, the simple EC-based formalization of know-
ing how gives the wrong result for this example. Why
is this so? Intuitively, it is easy to check that if the
agent knows how (to execute) the initial configura-
tion, i.e,, KHowgc(d:c,€) holds, then she knows-how
(to execute) every possible finite evolution of it, i.e.,
forall j € N, KHowgc (8te, [(chop, 1) - (look,0)]7) and
KHowgc ((look; 6:c), [(chop, 1) - (look,0)}? - (chop,1)).
Now consider the hypothetical scenario in which an
agent keeps chopping and looking forever, always see-
ing that the tree is not down. There is no model of D,
where §,. yields this scenario, as the tree is guaran-
teed to come down after a finite number of chops. However,

by the above, we see that KHowgc is, in some way, tak-
ing this case into account in determining whether the agent
knows how to execute d;.. This happens because every fi-
nite prefix of this never-ending execution is indeed consis-
tent with D;.. The problem is that the set of all of them
together is not. This is why KHow g fails. In the next sec-
tion, we show that KHowg¢’s failure on the tree chop-
ping example is due to a general limitation of the KHow g
formalization. Note that Moore’s original account of abil-
ity [14] is closely related to KHow g and also fails on the
tree chopping example [9].

4. KHowge Only Handles Bounded Problems

In this section, we show that whenever KHow g (9, o)
holds for some program ¢ and history o, there is simple
kind of conditional plan, what we call a TREE program,
that can be followed to execute ¢ in o. Since for TREE
programs (and conditional plans), the number of steps they
perform can be bounded in advance (there are no loops), it
follows that KHow g will never be satisfied for programs
whose execution cannot be bounded in advance. Since there
are many such programs (for instance, the one for the tree
chopping example), it follows that KHow g is fundamen-
tally limited as a formalization of knowing how and can
only be used in contexts where attention can be restricted to
bounded strategies. As in [6], we define the class of (sense-
branch) tree programs TR EFE with the following BNF rule:

dpt ::=nil | a; dpty |sensey;if ¢ then dpt, elsedpts

where a is any non-sensing action, and dpt; and dpt. are
tree programs.

This class includes conditional programs where one can
only test a condition that has just been sensed. Thus as
shown in [6], whenever a TREE program is executable,
it is also epistemically feasible, i.e., the agent can execute
it without ever getting stuck not knowing what transition to
perform next. TREFE programs are clearly deterministic.

Let us define a relation KHowByy~ : Program x
History x TREE. The relation is intended to associate
a program § and history o for which KHow g holds with
some TREE program(s) that can be used as a strategy for
successfully executing ¢ in o.

We define KHowBY (8, o, 6'7) to be the least relation
R (8, 0, %) such that:

(A) if (6, 0) isfinal, then R (6, o, nil);

(B) if (6,0) may evolve to configurations (&', 0 - (a, i;))
wrt theory D, 1 < ¢ < 2, and there ex-
ist 6 such that R(6',o - (a,pu;),8"), then
R(6, 0, (a;if ¢ then 61 else 657 endIf)) where ¢ is the
condition on the right hand side of the sensed fluent ax-

iom for a, and 67 is nil if DUCU{Sensed[o-(a, j1:)]}
is inconsistent, and 57 is 57" otherwise.

It is possible to show that whenever KHowBY (4, o, §'P)
holds, then KHow g (9, o) and KHow g (697, o) hold, and
the TREE program §% is guaranteed to terminate in a
Final situation of the given program ¢ (in all models).

Theorem 4.1 For all programs 4, histories o, and pro-
grams 67, if KHowBY (4, o, §'7) then we have that

e KHowgc(d,0) and KHow g (6%, o) hold; and
DUCU{Sensed[o]} =
Js.Do(6%, end[o], s) A Do(d, end|c], s).

In addition, every configuration captured in KHowg¢
can be executed using a TREE program.

Theorem 4.2 For all programs ¢ and histories o, if
KHowgc (4, o), then there exists a program 6% such that
KHowBYy ;. (4, o, §'7).

Since the number of steps a TREFE program performs can
be bounded in advance, it follows that KHow ¢ will never
hold for programs/problems that are solvable, but whose ex-
ecutions require a number of steps that cannot be bounded
in advance, as it is the case with the program in the tree
chopping example. Thus KHow g is severely restricted as
an account of knowing how; it can only be complete when
all possible strategies are bounded.

5. Ddliberation: ET-based Account

We saw in Section 3 that the reason KHow g failed on
the tree chopping example was that it required the agent
to have a choice of action that guaranteed reaching a fi-
nal configuration even for histories that were inconsistent
with the domain specification such us the infinite history
corresponding to the hypothetical scenario described at the
end of Section 3. There was a branch in the configuration
tree that corresponded to that history. This occurred because
“local consistency” was used to construct the configuration
tree. The consistency check kept switching which model of
D U C (which may be thought as representing the environ-
ment) was used to generate the next sensing result, postpon-
ing the observation that the tree had come down forever. But
in the real world, sensing results come from a fixed environ-
ment (even if we don’t know which environment this is). It
seems reasonable that we could correct the problem by fix-
ing the model of D U C used in generating possible config-
urations in our formalization of knowing how. This is what
we will now do.

We define when an agent knows how to execute a pro-
gram § in a history o and a model M (which represents the
environment), KHowInM(4, o, M), as the smallest relation
R(4,0) such that:

(T1) if (4, 0) is final, then R (9, 0);
(T2) if (6,0) may evolve to (¢',0 -
R, 0 (a,n)), then R(d,0);

(a,pn)) wrt. M and

The only difference between this and KHow g is that
the sensing results come from the fixed model M. Given
this, we obtain the following formalization of when an agent
knows how to execute a program § in a history o

KHow g (8, o) iff for every model M such that
M EDUCU{Sensed|o]}, KHowInM(d, o, M).

We call this type of formalization entailment and truth-
based, since it uses entailment to ensure that the agent
knows what transitions she can do, and truth in a model
to obtain possible sensing results.

We claim that KHow g is actually correct for programs
0 that are deterministic. For instance, it handles the tree
chopping example correctly:

Proposition 5.1 KHow g7 (d¢., €) holds w.r.t. theory D;..

Furthermore, KHowgp is strictly more general than
KHowgc. Formally,

Theorem 5.2 For any background theory D and any
configuration (4,0), if KHowgc(d,0) holds, then
KHowgr (6, o). Moreover, there is a background theory D*
and a configuration (6*,0*) such that KHowpgr(6*, 0*)
holds, but KHow g (6%, 0*) does not.

6. Ability and Planning

Using our two notions of knowing how, we can define re-
lated notions of ability to achieve a goal [9, 14, 3]. For both
KHow g and KHow g1, we formally specify when an agent
can achieve a goal ¢ in a history o, Canx (¢4, o) (where
X = EC or X = ET) iff there exists a deterministic pro-
gram §¢ such that K Howx (6¢, o) and

D UC U {Sensed[o]} | 3s.Do(6%, end[a], s) A ¢(s)

i.e., the agent knows how to execute the program and the
program (always) terminates in a situation where the goal
has been achieved. For the tree chopping problem we have
that Cangr(Down,Sp) holds, but Cangc(Down,Sp)
does not. Based on Theorem 5.2, we can also show
that Cangr is a strictly more general account of abil-
ity than Cangc.

One can easily use this to define a new construct
achieve(¢) that does planning to achieve a goal and
add it to an agent programming language. But gener-
ally, one also want to be able to specify constraints on the
search for a plan to achieve the goal, constraints on what
sort of plan should be considered. One way to do this is to
specify the task as that of executing a nondeterministic pro-
gram, which we now turn to.

7. Nondeterministic Programs

When it comes to nondeterministic programs, the notion
of knowing how needs to be extended. In particular there
are two main notions of nondeterministic program execu-
tion of interest for agents. The first notion states that choices
at program choice points are under the control of the agent,
and hence can involve reasoning on part of the agent. In
this case, an agent knows how to execute a nondeterminis-
tic program if she is able to make choices along the execu-
tion of the program so that, at each step, the action chosen is
known to be executable and such that no matter what sens-
ing output is obtained as a result of doing the action, she can
continue this process and eventually terminate successfully.
This assumes that the agent does some planning/lookahead
to find a strategy for executing the nondeterministic pro-
gram such that this strategy is guaranteed to succeed.

The second notion of nondeterministic program execu-
tion states that choices at its choice points are not under
the control of the agent. Hence, no reasoning, planning or
lookahead, is involved in choosing the next step, and all
choices must be accepted and dealt with by the agent. In
this case, the agent knows how to execute a nondeterminis-
tic program if every possible way she may execute it would
eventually terminate successfully.

Suppose that we enlarge our programming language with
the following nondeterministic constructs:

@?, wait for a condition
01 | da, nondeterministic branch
mx.6(x), nondeterministic choice of argument
0%, nondeterministic iteration
91 || 02, (interleaved) concurrency

The first wait/test construct blocks until its condition be-
comes true and it is still a deterministic construct which
produces transitions involving no action. Such a construct is
useful with nondeterministic programs and can be easily ac-
commodated into the already given definitions of KHow g
and KHowgr by just adding one extra condition to their
corresponding definitions:

(E3) if (6,0) may evolve to (¢',0) w.rt. theory D and
R(d,0), then R(4, o) (for KHowgc)

(T3) if (4, 0) may evolve to (¢',0) w.r.t. M and R(d', o),
then R (9, o) (for KHowgr)

Let us first focus on knowing how for nondeterministic pro-
grams where choices are under the control of the agent, i.e.,
angelic knowing how. We can define EC/ET versions of
this notion. We can take KHow 29 to be just KHow ¢ as-
suming (E3) is included. This works just fine for nondeter-
ministic programs, though, it still fails to capture (good)
programs with an unbounded number of steps. On the
other hand, KHow g, as defined and assuming (T3) is in-

cluded, is too weak. Consider the following example. There

is a treasure behind one of two doors but the agent does not
know which. We want to know if she knows how to exe-
cute the program dy,cqs:

[(openl;look) | (open2;look)]; AtTreasure?
Intuitively, the agent does not know how to execute dy,cqs
because she does not know which door to open to get
to the treasure. However, KHow g7 (d¢reas, €) holds. In-
deed in a model M; where the treasure is behind door 1,
the agent can pick the openl action, and then we have
KHowInM((look; AtTreasure?), [(openl,1)], My), and
thus KHowInM(64cas, €, M7). Similarly, in a model M,
where the treasure is behind door 2, she can pick open?2,
and thus KHowInM(J¢r-cas, €, M2).

The problem with KHowgz for nondeterministic pro-
grams is that the action chosen need not be the same in dif-
ferent models even if they have generated the same sens-
ing results up to that point and are indistinguishable for the
agent. We can solve this problem by requiring that the agent
have a common strategy for all models/environments, i.e.,
that she has a deterministic program 6¢ that she knows how
to execute (in all models of the theory) and knows 6¢ will
terminate in a final situation of the given program o:

KHow 7 (3,) iff there is a deterministic program 4%

such that KHow g7 (54, o) and

DUCU{Sensed[o]} E
35.Do(6%, end[o], s) A Do(8, end[a], 5).

We do not think that it is possible to obtain a much sim-
pler general formalization of knowing how and to avoid
the existential quantification over deterministic pro-
grams/strategies.

Proposition 7.1 For any background theory D and any
configuration (3,0), if KHowpef ,(d,0) holds, then
KHowan? (5,0). Also, there is a background theory D*
and a configuration (6%, o*) such that KHow ¢ (6%, 0*)
holds, but KHowa7¢ (5%, o*) does not.

An interesting point is that, now, ability to achieve a goal,
as defined in the previous section, can be seen as a special
case of knowing how to execute a (nondeterministic) pro-
gram. Indeed, we (re)define Can x (¢, end|c]), as follows:

Canx (¢, o) iff K Howy"? (while ¢ do (ra.a) end, o),

i.e., the agent knows how to execute the program that in-
volves repeatedly choosing and executing some action until
the goal has been achieved.

Next, we turn our attention to knowing how for nonde-
terministic programs where choices are not under the con-
trol of the agent, i.e., demonic knowing how. We start by
defining a relation between a program d,, and another pro-

gram J; that simulates it:
def

Simulates(dq, O, $) =

3R.(V51,52,S.R(51,52,S) D ...)/\ R(éa,5b,s)

where the ellipsis stands for the conjunction of:
Final(61,s) D Final(d2, s)

—Final(01,8) AV, s Trans(1,s,01,8") D
364. Trans(d2, s,05,8") A R(51, 5, s)

For instance, if § = ((a;0) | (a;¢)) and &' = (a; (b |
¢)), then Simulates(d, ', s) holds, but Simulates(d’, d, s)
does not (provided all actions are possible from situation s).

We say that an agent knows how to execute a hondeter-
ministic program in the demonic sense whenever she knows
how to execute every possible deterministic simulation of it:

KHowE24™ (8, o) iff KHow 1 (¢, o) holds for every deter-
ministic program ¢¢ such that

D UC U {Sensed|o]} | Simulates(5%, 5, end[o])

This account of knowing how can be seen as a specifica-
tion of nondeterministic programs when choices at choice
points are not under the control of the agent. This is relevant
for agent programming languages in which nondeterminis-
tic programs are used to represent the agent behavior but an
online/reactive account of execution of these programs is
used (3APL [8], AgentSpeak(L) [17], etc). In those frame-
works, the nondeterministic program must work no matter
how choice points are resolved.

8. Ddliberation in IndiGolog

We can use our formalization of knowing how to pro-
vide a better semantics for search/deliberation in agent pro-
gramming languages. Let’s show how this is done for In-
diGolog [7]. In IndiGolog, the programmer controls when
deliberation occurs. By default, there is no deliberation or
lookahead; the interpreter arbitrarily selects a transition and
performs it on-line, until it gets to a final configuration. To
perform deliberation/lookahead, the programmer uses the
search operator X(9), where ¢ is the part of the program that
needs to be deliberated over. The idea is that this X only al-
lows a transition for § if there exists a sequence of further
transitions that would allow ¢ to terminate successfully. The
original definition for the search operator in [7] failed to en-
sure that the plan was epistemically feasible, i.e., allowed
cases where a sequence of transitions must exist, but where
the agent cannot determine what the sequence is; our pro-
posal here corrects this.

We can specify the semantics of this operator by extend-
ing our earlier notions of configuration evolution and final-
ness, used in defining online executions:

A configuration (X(4), o) is final if and only if the con-
figuration (4, 0) is final. A configuration (3(¢),0) may
evolve to a configuration (§’,0’) w.r.t. a model M if and
only if there exists a deterministic program §¢ such that:

o KHow29(5%, o) holds;

e DUCU {Sensedlo]} =
3s.Do(6, end[o],s) A Do(§,end[a], s)
(i.e. 6% must terminate in a Final situation of the
given program §);
e (6%, 0) may evolve to (6¢', ") w.rt. M;
e the program that remains afterwards is &’ = $(6¢).

This semantic is metatheoretic and provides a rather sim-
pler alternative to that proposed in [6], which is based on an
epistemic version of the situation calculus.

9. Discussion and Conclusion

In this paper, we have looked at how to formalize when
an agent knows how to execute a program, which in the
general case, when the program is nondeterministic and the
agent does lookahead and reasons about possible execu-
tion strategies, subsumes ability to achieve a goal. First, we
have shown that an intuitively reasonable entailment and
consistency-based approach to formalizing knowing how,
KHow g, fails on examples like our tree chopping case and
that, in fact, KHow g can only handle problems that can be
solved in a bounded number of steps, i.e. without indefinite
iteration. Then, we developed an alternative entailment and
truth-based formalization, KHow g7, that handles indefinite
iteration examples correctly. Finally, we proposed accounts
of ability and knowing how for nondeterministic programs.
The problems of accounts like KHow g when they are for-
malized in epistemic logic, such as Moore’s [14], had been
pointed out before, for instance in [9]. However, the rea-
sons for the problems were not well understood. The re-
sults we have presented clarify the source of the problems
and show what is needed for their solution. A simple meta-
theoretic approach to knowing how fails; one needs to take
entailment and truth into account together. (Even if we use
a more powerful logical language with an knowledge oper-
ator, knowledge and truth must be considered together.)

Our non-epistemic accounts of knowing how are eas-
ily related to models of agent programming language se-
mantics and our results have important implications for this
area. While most work on agent programming languages
(e.g. 3APL [8], AgentSpeak(L) [17], etc.) has focused on
reactive execution, sensing is acknowledged to be impor-
tant and there has been interest in providing mechanisms
for run-time planning/deliberation. The semantics of such
languages are usually specified as a transition system. For
instance in 3APL, configurations are pairs involving a pro-
gram and a belief base, and a transition relation over such
pairs is defined by a set of rules. Evaluating program tests
is done by checking whether they are entailed by the be-
lief base. Checking action preconditions is done by query-
ing the agent’s belief base update relation, which would typ-
ically involve determining entailments over the belief base
— the 3APL semantics abstracts over the details of this.

Sensing is not dealt with explicitly, although one can sup-
pose that it could be handled by simply updating the belief
base (AgentSpeak(L) has events for this kind of thing).

As mentioned, most work in the area only deals with
on-line reactive execution, where no deliberation/lookahead
is performed; this type of execution just involves repeat-
edly selecting some transition allowed in the current con-
figuration and performing it. However, one natural view is
that deliberation can simply be taken as a different control
regime involving search over the agent program’s transi-
tion tree. In this view, a deliberating interpreter could first
lookahead and search the program’s transition tree to find a
sequence of transitions that leads to successful termination
and later execute this sequence. This assumes that the agent
can chose among all alternative transitions. Clearly, in the
presence of sensing, this idea needs to be refined. One must
find more than just a path to a final configuration in the tran-
sition tree; one needs to find some sort of conditional plan or
subtree where the agent has chosen some transition among
those allowed, but must have branches for all possible sens-
ing results. The natural way of determining which sensing
results are possible is checking their consistency with the
current belief base. Thus, what is considered here is essen-
tially an EC-based approach.

Also in work on planning under incomplete information,
e.g. [2, 15, 4], a similar sort of setting is typically used, and
finding a plan involves searching a (finite) space of knowl-
edge states that are compatible with the planner’s knowl-
edge. The underlying models of all these planners are meant
to represent only the current possible states of the environ-
ment, which, in turn, are updated upon the hypothetical exe-
cution of an action at planning time. We use models that are
dynamic in the sense that they represent the potential re-
sponses of the environment for any future state. In that way,
then, what the above planners are doing is deliberation in
the style of KHowg.

Our results show that this view of deliberation is funda-
mentally flawed when sensing is present. It produces an ac-
count that only handles problems that can be solved in a
bounded number of actions. As an approach to implement-
ing deliberation, this may be perfectly fine. But as a seman-
tics or specification, it is wrong. What is required is a much
different kind of account, like our ET-based one.

One might argue that results concerning the indistin-
guishability of unbounded nondeterminism [13, 1] (e.g., a*b
being observationally indistinguishable from a*b + a*) are
a problem for our approach, but this is not the case because
we are assuming that agents can reason about all possible
program executions/futures.

Finally, we believe that there is a close relationship be-
tween KHow g7, Some of the earlier epistemic accounts of
knowing how and ability [14, 3, 9, 11, 6]. We hope to get
some correspondence results on this soon.

References

[1] K. Aptand E. Olderog. Verifi cation of Sequential and Con-
current Programs. Springer-Verlag, 1997.

[2] P. Bertoli, A. Cimatti, M. Roveri, and P. Traverso. Planning
in nondeterministic domains under partial observability via
symbolic model checking. In Proc. of IJCAI-01, pages 473—
478, 2001.

[3] E. Davis. Knowledge preconditions for plans. Journal of
Logic and Computation, 4(5):721-766, 1994.

[4] G. De Giaccomo, L. locchi, D. Nardi, and R. Rosati. Plan-
ning with sensing for a mobile robot. In Proc, of ECP-97,
pages 156-168, 1997.

[5] G. De Giacomo, Y. Lespérance, and H. J. Levesque. Con-
Golog, a concurrent programming language based on the sit-
uation calculus. Artifi cial Intelligence, 121:109-169, 2000.

[6] G. De Giacomo, Y. Lespérance, H. J. Levesque, and
S. Sardifia. On the semantics of deliberation in IndiGolog:
From theory to implementation. In Proc. of KR-02, pages
603-614, 2002.

[7]1 G. De Giacomo and H. J. Levesque. An incremental in-
terpreter for high-level programs with sensing. In H. J.
Levesque and F. Pirri, editors, Logical Foundations for Cog-
nitive Agents, pages 86—102. Springer-Verlag, 1999.

[8] K. V. Hindriks, F. S. de Boer, W. van der Hoek, and J. J. C.
Meyer. A formal semantics for an abstract agent program-
ming language. In Proc. of ATAL-97, pages 215-229, 1998.

[9] Y. Lespérance, H. J. Levesque, F. Lin, and R. B. Scherl. Abil-
ity and knowing how in the situation calculus. Studia Log-
ica, 66(1):165-186, 2000.

[10] H. Levesque, R. Reiter, Y. Lesperance, F. Lin, and R. Scherl.
GOLOG: A logic programming language for dynamic do-
mains. Journal of Logic Programming, 31:59-84, 1997.

[11] F. Lin and H. J. Levesque. What robots can do: Robot
programs and effective achievability. Artifi cial Intelligence,
101:201-226, 1998.

[12] J. McCarthy and P. Hayes. Some philosophical problems
from the standpoint of artificial intellig ence. In B. Meltzer
and D. Michie, editors, Machine Intelligence, volume 4,
pages 463-502. Edinburgh University Press, 1979.

[13] R. Milner. Communication and Concurrency. Prentice Hall,
1989.

[14] R. C. Moore. A formal theory of knowledge and action. In
J. R. Hobbs and R. C. Moore, editors, Formal Theories of the
Common Sense World, pages 319-358. 1985.

[15] R. Petrick and F. Bacchus. A knowledge-based approach to
planning with incomplete information and sensing. In Proc.
of AIPS-02, pages 212-221, 2002.

[16] G. Plotkin. A structural approach to operational semantics.
Technical Report DAIMI-FN-19, Computer Science Dept.,
Aarhus University, Denmark, 1981.

[17] A. S. Rao. AgentSpeak(L): BDI agents speak out in a log-
ica computable language. In W. V. Velde and J. W. Perram,
editors, Agents Breaking Away (LNAI), volume 1038, pages
42-55. Springer-Verlag, 1996.

[18] R. Reiter. Knowledge in Action: Logical Foundations for
Soecifying and Implementing Dynamical Systems. MIT
Press, 2001.

A. PROOFS

PROOF OF THEOREM 3.1:
Let R be the smallest relation defining KHow . Then, R is the smallest relation satisfying conditions (E1)-(E3).

Assume, by the contrary, that R (s, [chop, (look, 0)]™) for some m > 0. By Lemma A.1, there exists a binary rela-
tion R’ C R such that R’ (6., [chop, (look, 0)]¥) does not holds for any £ > 0 and such that R’ satisfies (E1)-(E3).
This means that R’ (d;., [chop, (look,0)]™) does not hold and, therefore, R' C R (i.e., R’ is a proper subset of R.) There-
fore, R is not the smallest relation satisfying (E1)-(E3) which contradicts the initial assumption.

Then, —R(d, [chop, (look,0)]F) for all k > 0 and the relation KHowpc does not contain the pair
(8¢, [chop, (look, 0)]F). In particular, (5., €) is not in the KHow g relation when we take k = 0.

LemmaA.l
Let &, be the program to bring the tree down. This Lemma will prove a more general version of the result by showing that
KHow (8., o) does not hold. It is obvious to see that KHow ¢ is always a subset of KHow/ar? .

Let R be a set of pairs program-history (4, o) satisfying conditions (E1)-(E3) of the definition of KHow’ggid. Then, there
exists a set R C ‘R such that R’ satisfies conditions (E1), (E2) and (E3), and such that R’ (d;.., [chop, (look, 0)]*) does not
hold for any & > 0.

PROOF:

Intuitively, we will prove that we can ““safely”” remove all program-history pairs of the form (6., [chop, (look, 0)]¥) from
the set R. To do that, let us define R’ = R — 3, where:

B = {(0¢e,0) : 0 = [chop, (look,0)]" Ak > 0} U {((look;), 0) : 0 = [chop, (look,0)]* - chop A k > 0}

Clearly, R’ € R and =R/ (6., €). It remains to show that relation R’ does indeed satisfy conditions (E1), (E2), and (E3).

The set R’ satisfies (E1)

This is trivial since all configurations for which 5 holds are not final. In concrete, if (d, o) is final, then R(d, o) and
-3(6, o). Therefore, R’ (5, o).

The set R’ satisfies (E2)

Let 0 be any program and o be any history. Let us consider the following three exhaustive and exclusive cases depending
on the form of the history o

1. o # [chop, (look,0)]* and o # [chop, (look,0)]* - chop.
First, note that, because of the form of o, —3(d, o) is true. Assume then that there exist configurations (d;, o - (a, 1)),
i > 1, such that (4, o) may evolve to w.r.t. theory D;. and such that R'(d;, o - (a, u;)) apply.
Since R’ C R, then R(d’, 0 - (a, 1)) holds, and, given that R does satisfy condition (E2), R(d, o) is true. Due to the
fact that =3(d,), R'(d, o) holds as well.

2. o = [chop, (look, 0)]¥, for some k > 0.
Assume that there exist configurations (d;, 0 - (a, i1;)), ¢ > 1, such that (8, o) may evolve to w.r.t. theory D;.. Let us
now consider the following two exhaustive and exclusive cases:

(@) 6 # dic, i.e., & # while ~Down do chop;look endWhile.
Suppose that R’ (;, o - (a, ;) apply, for all i > i. Hence, R(8’, o - (a, ;1)) holds because R’ C R; and R (6, o)
holds since R does satisfy (E3). Moreover, because of the form of both ¢ and o, it is easy to check that —=3(d, o).
Thus, R'(6, o) holds.
(b) 6 = Iy, i.e., 6 = while ~Down do chop;look endWhile.
In this case, there could only be one possible configuration (6’, o’) to which (§,) may evolve to w.r.t. theory
D, namely, &' = (look; 6;.) and o’ = o - chop. Since o’ = [chop, (look, 0)]¥ - chop, B(&', o) holds, and, therefore,
-R'(8', ") applies. Thus, condition (E3) is trivially satisfied by R'.

3. 0 = [chop, (look,0)]* - chop, for some k > 0.
Here, let us consider the following two exhaustive and exclusive cases depending on the form of the program 4:

(@) 6 # (look; dye), i.e., 6 # (look; while ~Down do chop; look endWhile).
Suppose that R’ (;, o - (a, ;) apply, for all i > i. Hence, R(8’, o - (a, ;1)) holds because R’ C R; and R (6, o)
holds since R does satisfy (E3). Moreover, because of the form of both ¢ and o, it is easy to check that —=3(d, o).
Thus, R’ (4, o) holds.

(b) 6 = (look; b¢..), .., & = (look;while =Down do chop; look endWhile).

Finally, the most interesting case. We can easily verify that (0, o) may evolve to (d;., o’) w.r.t. theory D, where
o’ = o - (look,0). Informally, there is always a possible evolution of the configuration for which the tree was just
sensed to be still up. Technically, there is always a model M of D U C U {Sensed|o - (look,0)]}.

Next, we observe that ¢’ = [chop, (look, 0)]**+1, and, therefore, 3(5;., o) holds. Thus, by the way we defined
R’ interms of R and 3, =R/ (6., o - (look, 0)) applies and the condition (E3) is trivially satisfied in this case.

In words, there is always a possible and consistent sensing outcome for the only legal action-transition (i.e., a
chopping action) such that the resulting configuration is not on the smallest set. Recall that in order to include the
original configuration into the smallest set, we require that no matter how sensing turns out to be, the resulting
configuration should be on the smallest set.

The set R’ satisfies (E3)

Let ¢ be any program and o be any history. Let us consider the following two exhaustive and exclusive cases depend-
ing on the form of the program §:
(@) 6 # ;e and 0 # look; 0y
First, note that, due to the form of 6, =3(6, o) is true. Assume then that there exists a program ¢’ such that (4, o)
may evolve to (§’, o) w.rt. Dy, and such that that R'(4’, o) holds. Since R’ C R, then R(&’, o) holds as well.
Given that R satisfies (E3), R(, o). Finally, because —3(4, o), it follows that R’ (4, o) is true.
(b) 6 = dic Or & = look; by
In this case, there is no program ¢’ such that (4, o) may evolve to (¢,) as there can be no transition without
an action, either a look action or a chop one. Therefore, condition (E3) is trivially satisfied.

PROOF OF PROPOSITION 5.1:

Let M be a model of D;. U C. We are to prove that KHowInM(4, e, M). Let k be the number of chops required initially to
get the three down in model M, i.e., M = RemainingChops(So) = k. It is not difficult to see that history o = [(chop, 1) -
(look,1)]* completely executes program d;. in model M. Moreover, we can check the following points:

e (44, 0) is final and hence, by condition (T1), KHowInM(é., o, M) holds;

e ((look; dy..), [(chop, 1)-(look, 0)]F~1-(chop, 1)) may evolveto (4., o). By condition (T2), KHowInM((look; ;..), [(chop, 1)-
(look,0))*=1, M) holds;

e (0¢c, [(chop,1) - (look,0)]*~1) may evolve to ((look; 6:.), [(chop,1) - (look,0)]*~1 - (chop,1)). By condition (T2),
KHowInM((look; 6:.), [(chop, 1) - (look, 0)]*~1, M) holds;

e ((look; bic), (chop, 1)) may evolve to (&;., [(chop, 1)-(look, 0)]!). By condition (T2), KHowInM((look; 6.), (chop, 1), M)
holds;

e (d:c, €) may evolve to ((look; d+.), (chop, 1)). By condition (T2), KHowInM(d,.), €, M) holds.
PROOF OF THEOREM 5.2:
Part (ii) folllows directly from Proposition 5.1 and Theorem 3.1, taking D, as the background theory.

Let us prove part (i). Suppose that (6*,c*) is a configuration such that KHow g (6*, o*) does not hold. We shall prove
that KHow g (6%, o) is not true either.

By hypothesis, there is a model M of D U C U {Sensed[o*]} such that K HowInM (6*,0*, M) is false. We define the
binary relation R as follows: for all programs ¢ and all histories o, R(d, o) iff K HowInM (§, 0, M). We shall prove now
that R satisfies conditions (E1) and (E2) in the definition of KHow ¢

(E1) Suppose that (4, o) is final. Then, by condition (T1) in the definition of KHowInM, K HowSM (8, o, M) is true and
R(4,0) holds.

(E2) Suppose that (6, o) may evolve to configurations (8’, o - (a, 1£;)) W.r.t. theory D with 1 < ¢ < k, and that R(8', o - (a, f4;))

forall1 <i<k.

If o is inconsistent in M (i.e., DUC U {Sensed|c]} is unsatisfiable,) then configuration (, o) is final (in the general
case), K HowETd(d,0, M) holds, and, therefore, R (4, o) holds as well.

Assume then that o is consistent in M. Then, there should be some 1, 1 < j < k, such that (6,) may evolve to
(6,0 (a, pj)) w.rt M. Notice that M = Trans(d, end[o], ', do(a, end[o])) and that p1; = 1 iff M |= SF(a, end[o]).
Since R(¢',0 - (a, ;) holds, so does KHowInM(d’, o - (a, pt;), M). Then, by condition (T3) in the definition of
KHowInM, K HowInM (4, o, M) holds and, by the way we have defined R, it follows that R(d, o) holds.

To generalize the result to KHow . , and KHow ¥ . we just need to add the following case to the above two:

(E3) Suppose that (4, 0) may evolve to (¢, o) w.rt. theory D and that R(¢’, o) holds. Then, since the history remains the
same, it is also true that (4, o) may evolve to (¢’, o) w.r.t. model M (the configuration evolution does not depend on the
environment). Moreover, by the way R was defined, K HowSM (6', o, M) holds. By condition (T2) in the definition of
KHowInM, it follows that K HowSM (4, o, M) and, therefore, R(4, o) holds as well.

PROOF OF PROPOSITION 7.1:

Assume KHow g (4, o) holds. By Theorem 4.2, there is a program ¢*7 such that KHowBY (4, o, §'7). By Theorem 4.1, 67
is a tree program and, thus, a deterministic one, and D U C U {Sensed|o]} = 3s.Do(6%F, end|o], s) A Do(6, end|a], s). By
Theorem 5.2, KHow g7 (6, o) holds and, putting all together, KHow g1,,4(d, o) applies.

Lemma A .2 (Induction Principlefor KHow 2 |

For all relations T'(6, o) over programs and histories, if T'(9, o) is closed under assertions (E1), (E2), and (E3) of the defini-

tion of KHow 47, ., then for all programs & and histories o, if KHow e, (3, o), then T'(3, o).
PROOF:
As for Theorem 3 of [5].

Lemma A.3 (Induction Principle for KHowBy ;)
For all relations T'(6, o, ") over programs, histories and programs, if 7'(9, o, §’) is closed under assertions (A), (B), and (C)
of the definition of KHowBY 5, then for all programs ¢, delta’, and histories o, if KHowBY (4, 0, 6"), then T'(6, o, 8").

PROOF:
As for Theorem 3 of [5].

PROOF OF THEOREM 4.1:
We shall prove a more general result w.r.t. KHow“"¢ . To that end, we add the following case to the definition of KHowBY

ECnd’
(C) if (8, 0) may evolve to (&', ¢) w.rt. theory D and R(¢', o, 6'7"), then R(6, o, True?; 5'")
In addition we enrich a bit the notion of TREFE programs to include two special test steps:
dpt ::=nil | False? | a;dpty | True?; dpt; | senseq;if ¢ then dpt, else dpts

where a is any non-sensing action, and dpt, and dpt- are tree programs.
The proof goes by induction on KHowBy ;. The property that we have to show is closed under the assertions in the
definition of KHowBy 5~ (and hence be able to apply Lemma A.3) is the following one:

T(6,0,6™) = DUCU{Sensed|o]} = Is.Do(6", end[o], s) A Do(6, end[o], s).

Checking that T'(4, o, 6'7) is closed under assertion (A) of the definition of KHowBY

Assume that (4,0) is a final configuration. Let us show that T'(p, h,nil). By definition of KHOWngnd, we have

KHowg’gjld((S, o). As well, nil is a TREE program, and we have D U C U {Sensed[o]} | Do(nil, end[o], end[c]) A
Do(d, end|o], end[o]). Thus, T'(8, o, nil).

Checking that T'(4, o, 6'7) is closed under assertions (B) of the definition of KHowBY 5,
Assume that (J, o) may evolve to one or more configurations (6’, o - (a, ;)) (for some action a) w.r.t. theory D where
1 < i < 2and that there exists 57 such that T'(&', o - (a, 1;), 67"). This means that:

(a) if DU C U {Sensed[o - (a,1)]} is consistent, then T'(¢", o - (a,/l), 57", ie., KHowans (&0 - (a,1)) and 6" is a
TREE program and D U C U {Sensed[o - (a,1)]} = 3s.Do(6", end[o - (a,1)],s) A Do(8', end[o - (a,1)], s).

(b) if DU C U {Sensed[o - (a,0)]} is consistent, then T(5", o - (a,0),5"), i.e., KHoward (8,0 - (a,0)) and 67" is a
TREE program and D U C U {Sensed[o - (a,0)]} |= Els.Do(cS;p/, end[o - (a,0)],s) A Do(d', end[o - (a,0)], s).
Observe that since (0, o) may evolve to at least one (', o - (a, i) for some sensing outcome ., either D U C U {Sensed|o -

(a,0)]} orDUCU {Sensed[o - (a,1)]} is consistent.

Let us show that T'(d, o, (a;if ¢ then 5?7 else 65’) endlf)) where ¢ is the condition on the right hand side of the sensed
fluent axiom for a, and if DUCU{ Sensed|o- (a, 1)]} is inconsistent then 57 = nil else 57 = 5 and if DUCU{Sensed|o-
(a,0)]} is inconsistent then 6% = nil else 67 = 527",

By the definition of KHow 7. ., we have that KHow yr?, (8, o) holds (again, notice that (d, o) may evolve at least to one

- . ECnd’
configuration of the above form.)

Given the assumptions and the way 6 and 657 are defined, clearly a; if ¢ then 6% else 657 endIf is a TREE program.
It remains to show that

DUC U {Sensed|o]} = 3s.Do((a;if ¢ then 6 else 657 endIf), s) A Do(3, end|o], s).

Pick a model M of DUC U{Sensed|c]}. Suppose M satisfies SF(a, end[c]) and thus DUC U Sensed|o - (a, 1)] is true
in M. Then, due to (a) above, Do(¢’, end[o - (a, 1)], s) must hold for some s in M. In addition, Trans(0, end[c], ', end[o -
(a,1)]) is true in M, and we thus have Do(d, end[o], s) to be true in M. Also since

Do(6% endo - (a,1)],)
Trans(a;if ¢ then 6% dse 5" endIf, end|o], nil; if ¢ then 67 else 5" endlf, end|o - (a, 1)])
¢(end[o - (a,1)])

are all true in M, we must, therefore, have Do(a; if ¢ then 67 else 5?’/ endlf, end[o], s) to holds in M.

Suppose, on the other hand, that M does not satisfy SF'(a, end|o]) and thus DUC U Sensed|o - (a, 0)] is true in M. Then,
due to (b) above, Do(¢’, end[o - (a,0)], s) must hold for some s in M. In addition, Trans(d, end[c],d’, end|o - (a,0)]) is
true in M, and we thus have Do(4, end[o], s) to be true in M. Also since

Do(6%, end|o - (a,0)], s)
Trans(a;if ¢ then 6% dse 5" endIf, end|o], nil; if ¢ then 67 dse 5" endlf, end[o - (a,0)])
~¢(end|o - (a,0)])

are all true in M, we must, therefore, have Do(a; if ¢ then 67 else 5?’/ endlf, end[o], s) to holds in M.
Therefore, T4, o, a; if ¢ then 517 else 557 endIf) applies.

Checking that 7'(d, o, §'7) is closed under assertion (C) of the definition of KHowBY

Assume that (, o) may evolve to (§’, o) w.r.t. the theory and that T'(¢", o, 6*7'), i.e., KHow’éZsz(é’, o)and 0"’ isa TREE
program and D U C U {Sensed[o]} |= 35.Do(5'’, end|o], s) A Do(¢', end[o], s).

Let us show that 7'(4, o, (True?; 57")). By the definition of KHow sy, ., we have KHow e, (8, o). Since 67" isa TREE
program, so must be T'rue?; 5"

It remains to show that D U C U {Sensed[o]} |= Js.Do((True?;6®"), end|o],s) A Do(é',end|o], s). Pick a model
of D U C U {Sensed[o]}. Since in this model Do(¢’, end[o], s) holds for some s and Trans(d, end[o], ', end[c]) holds
too, then we it also holds Do(4,end[o],s) in the model in question. As well, since we have Do(6’, end|o], s)

and Trans((True?;6®"), end[o], nil; 6"’ end[o]), we must also have Do((True?;é®"), end[o],s). Thus
D U C U {Sensed[o]} = 3Is.Do((True?; "), endlo],s) A Do(8,end[o], s). Therefore, T'(8,0, (True?;5")) ap-
plies.

PROOF OF THEOREM 4.2:
We shall prove a more general result w.r.t. KHow’g’égnd. To that end, we add the following case to the definition of KHowBY -

(C) if (6, 0) may evolve to (&', 0) W.rt. theory D and R(¢', o, "), then R(3, o, (True?; 6'7"))
In addition we enrich a bit the notion of TREFE programs to include two special test steps:
dpt ::=nil | False? | a;dpty | True?; dpt; | senseq;if ¢ then dpt, else dpts

where a is any non-sensing action, and dpt; and dpt- are tree programs.

The proof goes by induction on KHow’éZ{ld configurations. The property that we have to show is closed under the asser-

tions in the definition of KHowggﬁld (and hence be able to apply Lemma A.2) is the following one:

T(8,0) = there exists 6*7 such that KHowBY (4, o, §'7) holds.

So we shall prove that 7'(4, o) is closed under (E1)-(E3) (that is, take 7" to be one of the possible R in the definition of

KHow 22 .
Checking that 7'(6, o) is closed under assertion (E1) of the definition of KHowgngd:

Assume (0,0) is final. By definition of KHowBy ., case (A), we have KHowBy (9,0, nil). Thus, T'(4,0) ap-
plies.

Checking that T'(d, o) is closed under assertion (E2) of the definition of KHow /7, :

Assume that (4, o) may evolve to configurations (¢, o - (a, u;)) (for some action a) w.r.t. theory D where 1 < ¢ < 2 and
such that T'(¢', o - (a, u;)) holds. Suppose that ¢ is the condition on the right hand side of the sensed fluent axiom for a, that
is, SF(a,s) = ¢(s) € D. Since (J,) must evolve to at least one configuration (possibly two), then D U C{Sensed|c|} is
consistent and, therefore, either D U C{Sensed|o - (a,0)]} or D U C{Sensed|o - (a,1)]} is consistent.

If (6, 0) may evolve to (6’0 - (a, 1)), then DU C{Sensed[o - (a,1)]} ought to be consistent, and, hence, T'(§’, o - (a, 1)),
i.e., there exists 7" such that KHowBy (&', o - (a, 1), 5%").

Simlarly, if (6, c) may evolve to (§’, 0 - (a,0)), then DUC{Sensed|o - (a, 0)]} ought to be consistent, and, hence, T'(6’, o -
(a,0)), i.e. there exists 67" such that KHOWBY (&', o - (a, 0), 62").

Let 57 = (a;if ¢ then 6% else 57 endlf), and if DUCU{Sensed|o- (a, 1)]} is inconsistent then 67 = nil else 5% = 5"
and if DU C U {Sensed|o - (a,0)]} is inconsistent then 5 = nil else 5 = 67",

By the definition of KHowBY ., case (B), we have that KHowBY (4, o, 6'7). Thus, T'(6, o) applies.

Checking that T'(d, o) is closed under assertion (E3) of the definition of KHow /7, :

Assume that (6, o) may evolve to (¢,) w.r.t. D and that T'(§", o), i.e., there exists 67" such that KHowBY (¢, 7, &).
By the definition of KHowByY 1, case (C), we have KHowBY (8, o, (T'rue?; §'")). Thus, T'(, o) applies taking 67 =
(True?; 5").

