
Composition of Services with
Nondeterministic Observable Behavior

Daniela Berardi1, Diego Calvanese2,
Giuseppe De Giacomo1, and Massimo Mecella1

1Universit̀a di Roma “La Sapienza”, Italy
lastname @dis.uniroma1.it

2Free University of Bozen-Bolzano, Italy
calvanese@inf.unibz.it

Abstract. In [3] we started studying an advanced form of service composition
where available services were modeled as deterministic finite transition systems,
describing the possible conversations they can have with clients, and where the
client request was itself expressed as a (virtual) service making use of the same
alphabet of actions. In [4] we extended our studies by considering the case in
which the client request was loosen by allowing don’t care nondeterminism in
expressing the required target service. In the present paper we complete such a
line of investigation, by considering the case in which the available services are
only partially controllable and must be modeled as nondeterministic finite transi-
tion systems, possibly because of our lack of information on their exact behavior.
Notably such services display a “devilish” form of nondeterminism, since we
want to model the inability of the orchestrator to actually choose between differ-
ent executions of the same action. We investigate how to automatically perform
the synthesis of the composition under these circumstances.

1 Introduction

Service Oriented Computing (SOC) [1] is the computing paradigm that utilizes Web
services (also callede-Services or, simply, services) as fundamental elements for re-
alizing distributed applications/solutions. In particular, when no available service can
satisfy client needs, (parts of) available services can be composed and orchestrated in
order to satisfy such a request. In recent research [7, 8, 10, 15, 6, 9] a notion of “seman-
tic service integration” is arising, especially to facilitateautomatic service composition
(but also discovery, etc.).

Among the various proposals, the one in [3, 4] distinguishes itself by considering
also the process of the services. Specifically, the client is offered a set of virtual building
blocks so that he can design complex services of interest in terms of these. The building
blocks areactionsdescribed in an abstract and formal fashion; by making use of such
virtual blocks the client can write its own service as a sort of high-level program, i.e.,
abstractly represented as adeterministic finite transition system(i.e., deterministic finite
state machine)1. The virtual blocks are not be implemented directly, but made available
through the system: the actual services that are available to the system are themselves
be formally described in terms of deterministic finite transition systems built out of

1 Transition systems here are used to formalize the possible conversations that a service can have
with its clients – including the orchestrator in the case the service is involved in a composition
– describing the possible interactions of the service.



such virtual blocks. Such a description can be considered as a sort of mapping from the
concrete service to the virtual blocks of the integration system. The idea is to exploit
the reverse of such a mapping to automatically get the client service request. In [3, 4],
however, available services are modeled as deterministic transition systems because it
is assumed that they are fully controllable by the orchestrator through action requests:
an available service, by performing an action in a state, reaches exactly a single state.

In this paper we extend the approach of [3, 4] so as to address automatic composition
synthesis when available services are not not fully controllable by the orchestrator. We
model such a partial controllability by associating to available services (finite) transition
systems that arenondeterministic(in a “devilish” sense, see later). Using nondetermin-
ism we can naturally model services in which the result of each interaction with its
client can not be foreseen. Just as an example, consider a service allowing to buy items
by credit card; after invoking the operation, the service can be in a statepayment OK,
accepting a payment, or in a different statepayment refused , if, e.g., the credit
card is not valid. Considering that the transition system of the available service is in
fact a mapping that describes the real service in terms of the actions of the community,
it is natural to assume that although the orchestrator does not have full control on the
available services, it has full observability: after executing the operation, it can observe
the status in which the service is and therefore understand which transition, among the
ones that are nondeterministically possible in the previous state, has been undertaken
by the service2. The main contribution of our work is to show how one can synthesize
a composition in this setting.

2 Services with Partially Controllable Behavior

Formally, we consider eachavailable serviceas anondeterministic3 finite transition
systemS = (Σ, S, s0, δ, F ) whereΣ is a common alphabet of actions shared by all
available services of a community,S is a finite set of states,s0 ∈ S is the single initial
state,δ ⊆ S×Σ×S is the transition relation4, andF ⊆ S is the set of final states (i.e.,
states in which the computation may stop, but does not necessarily have to – see [3, 4]).

The client service request, as in [3], is expressed as atarget service, which repre-
sents the service the client would like to interact with. Such a service is again modeled
as finite transition system over the alphabet of the community, but this time adetermin-
istic one, i.e., the transition relation is actually functional (there cannot be two distinct
transitions with the same starting state and action). Notice that the target service is obvi-
ously deterministic because we assume that the client has full control on how to execute
the service that he/she requires5.

2 The reader should observe that also the standard proposal WSDL 2.0 has a similar point of
view: the same operation can have multiple output messages (theout message and various
outfault messages ), and the client observes how the service behaved by receiving a
specific output message.

3 Note that this kind of nondeterminism is of adevilishnature, so as to capture the idea that the
orchestrator cannot fully control the available services.

4 As usual, we call theΣ component of such triples, thelabel of the transition.
5 In fact we could have a client request that is expressed as a nondeterministic transition system

as in [4]. In this case, however, the nondeterminism has adon’t-care, akaangelicnature.



s20
S2

display

s20
S2

display

s10 s11

search

display

S1

search

return

s10 s11

search

display

S1

search

s10s10 s11

search

display

S1

search

return

(a) Available Services

s00 s01
search

display

s00 s01
search

display

S0

(b) Target Service

sP0P

sP2

search, 1

display, 1
sP1

s10 
s20

search, 1

s10 
s20

s11 
s20

display, 2

sP0sP0P

sP2

search, 1

display, 1
sP1

s10 
s20

search, 1

s10 
s20

s11 
s20

display, 2

(c) Composition

Fig. 1. Composition of nondeterministic services

Example 1.Figure 1(a) shows a community of services for getting information on
books. The community includes two services:S1 that allows one to repeatedly(i) search
the ISBN of a book given its title (search ) then,(ii) in certain cases (e.g., if the record
with cataloging data is currently accessible), it allows for displaying the cataloging data
(such as editor information, year of publication, authors, copyrights, etc.) of the book
with the selected ISBN (display ), or (iii) simply returns without displaying informa-
tion (return ); S2 allows for repeatedly displaying cataloging data of books given the
ISBN (display ), without allowing researches. Figure 1(b) shows the target service
S0: the client wants to have a service that allows him to search for a book ISBN given
its title (search ), and then display its cataloging data (display ). Note that the client
wants to display the cataloging data in any case and hence he/she can neither directly
exploitS1 norS2.

Next, we need to clarify which are the basic capabilities of the orchestrator. In [3, 4],
the orchestrator had only the ability of selecting one6 of the services, and requiring it to
execute an action. Here, we equip the orchestrator with a further ability: the orchestrator
can query (at runtime) the current state of each available service. Technically such a
capability is calledfull observabilityon the states of the available services. Although
other choices are possible [15, 2], full observability is the natural choice in this context,
since the transition system that each available service exposes to the community is
specific to the community itself (indeed it is expressed using the common alphabet
of actions of the community), and hence there is no reason to make its states partially
unobservable: if details have to be hidden, this can be done directly within the transition
system, possibly making use of nondeterminism.

3 Composition

We are now ready to define composition: an “orchestrator program” (indeed a skele-
ton specification) that the orchestrator has to execute in order to orchestrate the avail-
able services so as to offer to the client the target service. Let the available ser-
vice beS1, . . . ,Sn each withSi = (Σ,Si, si0, δi, Fi), and the target serviceS0 =
(Σ, S0, s00, δ0, F0). A history is an alternating sequence of the formh = (s0

1, . . . , s
0
n) ·

a1 · (s1
1, . . . , s

1
n) · · · a` · (s`

1, . . . , s
`
n) such that the following constraints hold:

6 For simplicity we assume that the orchestrator selects only one service at each step, however
our approach and results easily extend to the case where more services can be selected at each
step.



– s0
i = si0 for i ∈ {1, . . . , n}, i.e., all services start in their initial state;

– at each stepk, for onei we have that(sk, ak+1, sk+1
i ) ∈ δi, while for all j 6= i we

have thatsk+1
j = sk

j , i.e., at each step of the history, only one of the service has
made a transition (according to its transition relation), while the other ones have
remained still.

An orchestrator programis a functionP : H × Σ → {1, . . . , n, u} that, given a
history h ∈ H (whereH is the set of all histories defined as above) and an action
a ∈ Σ to perform, returns the service (actually the service index) that will perform it.
Observe that such a function may also return a special valueu (for “undefined”). This
is a technical convenience to makeP a total function returning values even for histories
that are not of interest or for actions that no service can perform after a given history.

Next, we define when an orchestrator program is a composition that realizes the tar-
get services. First, we observe that, since the target service is a deterministic transition
system its behavior is completely characterized by the set of its traces, i.e., by the set of
infinite sequences of actions that are faithful to its transitions, and of finite sequences
that in addition lead to a final state7. Now, given a tracet = a1 · a2 · · · of the target
service, we say that anorchestrator programP realizes the tracet iff for each non-
negative integer̀ and for each historyh ∈ H`

t , we have thatP (h, a`+1) 6= u andH`+1
t

is nonempty, where the setsH`
t are inductively defined as follows:

– H0
t = {(s10, . . . , sn0)}

– H`+1
t is the set of all histories such that, ifh ∈ H`

t andP (h, a`+1) = i (with
i 6= u), then for all transitions(s`

i , a, s′i) ∈ δi the historyh ·a`+1 ·(s`+1
1 , . . . , s`+1

n ),
with s`+1

i = s′i, ands`+1
j = s`

j for j 6= i, is inH`+1
t .

Moreover, if a trace is finite and ends afterf actions, we have that all histories inHf
t

end with all services in a final state. Finally, we say that anorchestrator programP
realizes the target serviceS0, if it realizes all its traces.

In order to understand the above definitions, let us observe that intuitively the or-
chestrator program realizes a trace if it can choose at every step an available service to
perform the requested action. However, since when an available service executes an ac-
tion it nondeterministically chooses what transition to actually perform, the orchestrator
program has to play on the safe side and require that for each of the possible resulting
states of the activated service, the orchestrator is able to continue with the execution of
the next action. In addition, before ending a computation, available services need to be
left in a final state, hence we have the additional requirement above for finite traces.

Example 1 (cont.)Figure 1(c) shows an orchestrator programP (in this case with finite
states) for available servicesS1 andS2 in Figure 1(a), that realizes the target service
S0 in Figure 1(b). Essentially,P behaves as follows: it repeatedly delegates toS1 the
actionsearch (notice that both transitions labeled with this actions are delegated to
S1); then it checks the resulting state ofS1 and, depending on this state, it delegates the
actiondisplay to eitherS1 or S2.

7 Actually, the behavior captured by a transition system is typically identified with its execution
tree, see [3]. However, since the target service has a deterministic transition system, the set of
traces is sufficient, since one can immediately reconstruct the execution tree from it.



Observe also that the orchestrator program has to observe the states of the available
services in order to decide which service to select next (for a given action requested by
the target service). This makes such orchestrator programs akin to an advanced form of
conditional plans studied in AI [12]. Observe also that, in the above definition we allow
orchestrator program to have infinite states in general. But obviously it is of interest to
understand in what circumstances composition may be realized through an orchestrator
program that has only a finite number of state.

4 Composition Synthesis

It turns out that in spite of the additional complexity of dealing with nondeterminism,
one can still devise a reduction from the problem of checking the existence of a com-
position to satisfiability in Propositional Dynamic Logic (PDL) [5] as in [3, 4]. The
reduction is much more subtle in this case but still polynomial. As a result, we have
that composition synthesis can be performed in EXPTIME. Moreover from each model
of the resulting PDL formula one can directly extract an orchestrator program, and,
considering the finite model property of PDL, this in turns implies that an orchestrator
program that has only a finite number of states exists whenever a composition exists.

Actually, it comes quite as a surprise that in dealing with partial controllability one
can still use a PDL encoding instead of directly working with automata on infinite
trees [13]. And this finding is particularly welcome considering that certain operations
on automata on infinite trees (e.g., the notorious Safra’s complementation step) have
proved to be almost impossible to implement in an efficient way. PDL satisfiability,
instead shares the same basic algorithms behind the success of the description logics-
based reasoning system used for OWL, and hence its use is quite promising.

5 Conclusion

In this paper we studied how to synthesize a composition to realize a client service
request expressed as a target service a la [3, 4], in the case where available services are
only partially controllable (modeled as devilish nondeterminism) but fully observable
by the orchestrator. Such an approach to deal with nondeterministic available services
can be extended in several directions. As an example, by introducing a set ofvariables
shared among the available services and the clientthat encode some basic information
that is exchanged between the services, and that the client acquires while executing the
target service. Once we introduce shared variables, we can use them to guard transitions
in both the target and the available services.

The result can be also easily extended to the case where the client request is ex-
pressed as a nondeterministic transition system as in [4]. Note that in this case the non-
determinism has adon’t-care, akaangelic, nature: the client is not fully specifying the
target service he/she requires, and allows some degree of freedom to the composer in
providing him/her with one, by choosing among the nondeterministic transitions which
one to actually implement. Such a form of nondeterminism can be still tackled through
a reduction to satisfiability in PDL.

It should be noted that our approach, in which the orchestrator at each step sends an
execution request to available services and these then send back to the orchestrator their



states, is a form of control that is communication intensive8. In fact, if communication
is of concern, our model is too coarse. Indeed we should distinguish between actions
that affect the state of affairs and messages for sending (either contents or control)
information. Suggestions on tackling such a distinction are presented in [2].

Finally we want to stress that composition, especially in rich dynamic settings as
those studied in this paper, is essentially a form of (reactive) program synthesis, and
tight relationships exist with the literature on that field [11, 14, 16]. Although that liter-
ature often does not offer off-the-shelf results for composition, it certainly offers tech-
niques and general approaches that can be profitably used to tackle subtle issues, as, for
example, partial observability, which becomes an issue when the distinction between
actions and messages is taken into account.

References

1. G. Alonso, F. Casati, H. Kuno, and V. Machiraju.Web Services. Concepts, Architectures and
Applications. Springer, 2004.

2. D. Berardi, D. Calvanese, G. De Giacomo, R. Hull, and M. Mecella. Automatic composition
of transition-based semantic web services with messaging. InProc. of VLDB 2005, 2005.

3. D. Berardi, D. Calvanese, G. De Giacomo, M. Lenzerini, and M. Mecella. Automatic com-
position of e-services that export their behavior. InProc. of ICSOC 2003.

4. D. Berardi, D. Calvanese, G. De Giacomo, M. Lenzerini, and M. Mecella. Synthesis of
underspecified composite e-Services based on automated reasoning. InProc. of ICSOC 2004.

5. D. Harel, D. Kozen, and J. Tiuryn.Dynamic Logic. The MIT Press, 2000.
6. R. Hull and J. Su. Tools for design of composite web services. InProc. of ACM SIGMOD,

pages 958–961, 2004.
7. U. Kuter, E. Sirin, D. Nau, B. Parsia, , and J. Hendler. Information gathering during planning

for web service composition. InProc. of Workshop on Planning and Scheduling for Web and
Grid Services, 2004.

8. S. A. McIlraith and T. C. Son. Adapting Golog for composition of semantic web services.
In Proc. of KR 2002, pages 482–496, 2002.

9. B. Medjahed, A. Bouguettaya, and A. K. Elmagarmid. Composing web services on the
semantic web.VLDB Journal, 12(4):333–351, 2003.

10. M. Michalowski, J. L. Ambite, C. A. Knoblock, S. Minton, S. Thakkar, and R. Tuchinda.
Retrieving and semantically integrating heterogeneous data from the web.IEEE Intelligent
Systems, 19(3):72–79, 2004.

11. A. Pnueli and R. Rosner. On the synthesis of a reactive module. InProc. of POPL’89, pages
179–190, 1989.

12. J. Rintanen. Complexity of planning with partial observability. InProc. of the 14th Int. Conf.
on Automated Planning and Scheduling (ICAPS 2004), pages 345–354, 2004.

13. W. Thomas. Languages, automata, and logic. InHandbook of Formal Language Theory,
volume III, pages 389–455. 1997.

14. W. Thomas. Infinite games and verification. InProc. of CAV 2002, volume 2404 ofLNCS,
pages 58–64. Springer, 2002.

15. P. Traverso and M. Pistore. Automated composition of semantic web services into executable
processes. InProc. of ISWC 2004, volume 3298 ofLNCS, pages 380–394. Springer, 2004.

16. M. Y. Vardi. An automata-theoretic approach to fair realizability and synthesis. InProc. of
CAV’95, volume 939 ofLNCS, pages 267–292. Springer, 1995.

8 Actually we had essentially the same amount of control communication in [3, 4]: indeed even
if states were not sent back to the orchestrator, at least some feedback to signaling the readiness
to accept further commands should have been sent back.


