
Realizing Multiple Autonomous Agents through Scheduling of Shared Devices∗

Sebastian Sardina
School of Computer Science and Information Technology

RMIT University
Melbourne, Australia

sebastian.sardina@rmit.edu.au

Giuseppe De Giacomo
Dipartimento di Informatica e Sistemistica

Sapienza Universita’ di Roma
Roma, Italy

degiacomo@dis.uniroma1.it

Abstract

Imagine a collection of available devices, such as a cam-
era, a vacuum cleaner, or robotic arm, each of which
is able to act (that is, perform actions) according to a
given behavior specification, expressed as a finite tran-
sition system. Imagine next a set of virtual independent
and autonomous agents, such as a surveillance agent or
a cleaning agent, which are meant to operate concur-
rently, each within a given specification of its capabili-
ties, again expressed as a finite transition system. The
question then is: can we guarantee the realization of
every agent by intelligently scheduling the available de-
vices while fully preserving the agents’ autonomy? In
this paper, we define the problem formally, and propose
a technique to actually generate a solution by appeal-
ing to recent results in LTL-based synthesis of reactive
systems. We also show that the proposed technique is
optimal with respect to computational complexity.

Introduction
In this paper we look at a novel problem, called below
concurrent composition, which is foreseen in the work on
complex agent systems such as robot ecology, ubiquitous
robots, or intelligent spaces (Lundh, Karlsson, & Saffiotti
2008; Saffiotti & Broxvall 2005; Kim et al. 2004; Lee &
Hashimoto 2002). Namely, we are to realize a collection
of independent virtual agents, for example a surveillance or
cleaning agent, which are meant to act autonomously and
asynchronously. These agents do not have a fixed embod-
iment, but they must be concretely realized by using a set
of shared available devices, for example a wall camera or a
vacuum cleaner.

In such context, concrete existing devices are allowed to
“join” and “leave” an agent dynamically, depending on the
current action the agent is about to perform. In other words,
each agent’s embodiment is dynamically transformed while
in execution. For example, an available camera may be used
in live mode by the house surveillance agent to track and
record the moves of burglar, and later on used by the clean-
ing agent to spot misplaced objects.

∗Revised version of the one appeared at ICAPS’08. Differences
are marked with a star * in the margin.
Copyright c© 2008, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

More concretely, in the concurrent composition problem,
we are concerned with guaranteeing the concurrent execu-
tion of a set of agents as if each of them were acting in iso-
lation, though, in reality, they are all collectively realized by
the same set of shared existing devices. A solution to such
problem amounts then to intelligently scheduling the actions
requested by all the agents to the set of devices at disposal.
The reader may notice that there is an apparent contradiction
between the presence of a coordination module, the “sched-
uler,” and the need of guaranteeing agents autonomy. This
is exactly what spices up the problem. The scheduler job
is to make the system, constituted by the shared devices, in
which the agents execute, as “friendly” as possible to the
agents, while preserving their autonomy. In doing so the
scheduler has to consider the characteristics of both agents
and devices:

• Agents are autonomous and decide by themselves what
action to do next; the scheduler may not break such au-
tonomy. The scheduler can however relay on a specifica-
tion of each agent’s capabilities, which form the so-called
space of deliberation of the agent, i.e., a specification of
what the agent can choose to do at each step. The sched-
uler can also exploit the fact that agents are asynchronous
(though forms of explicit synchronization are possible,
see later), and therefore unaware of when the scheduler
serves their pending requests with respect to those of other
agents. Obviously, though, the scheduler ought to guaran-
tee that every pending request is served eventually.

• Devices can be instructed to execute an action, but the
outcome of the action is not fully predictable before its
execution (devices are partially controllable). The sched-
uler can however relay on a specification of each device’s
logic stating at each step the possible outcomes of actions.

Technically, we abstract actual agents and devices as finite
state transition systems. More precisely, the logic of each
device is represented as a nondeterministic (to model partial
controllability) transition system; while each agent’s space
of deliberation is represented as a deterministic (to model
full controllability, by the agent) transition system. Working
with finite state transition systems allows us to leverage on
the notable recent progress in the area of Verification (Piter-
man, Pnueli, & Sa’ar 2006; Alura, Henzinger, & Kupferman
2002; Clarke, Grumberg, & Peled 1999).

We tackle the concurrent composition problem, on the one
hand, by borrowing ideas developed originally for service
composition (Berardi et al. 2005; De Giacomo & Sardina
2007), and on the other hand, by making use of recent LTL-
based synthesis techniques developed in the literature on
Verification (Piterman, Pnueli, & Sa’ar 2006). Specifically,
we develop a sound and complete technique to synthesize
a scheduler for the devices, and show that such technique
is indeed optimal with respect to computational complexity.
Notably, the technique proposed is readily implementable by
using current LTL-based state-of-the-art synthesis systems.

The technical content of paper is structured in two parts.
The first part, which comprises the next three sections, de-
scribes the concurrent composition problem formally, char-
acterizes what counts as a solution, and illustrates the differ-
ent features of the problem through several examples. The
second part, which comprises the remaining technical sec-
tions, presents a technique, based on a reduction to synthe-
sis in LTL, to automatically devise a solution for the con-
current composition problem. The crux of the latter part is
Theorem 2, which provides the soundness and completeness
of the technique, together with Theorem 3, which shows its
optimality with respect to computational complexity.

The Setting
We begin by providing formal accounts for the two basic
components of the concurrent composition problem: (i) the
set of virtual agents to be supported; and (ii) the set of avail-
able devices used to realize the agents. Technically, our for-
malization is inspired by (De Giacomo & Sardina 2007).
However, since the problem we look at here is definitively
more involved, for the sake of brevity, we simplify the set-
ting by dropping non-essential aspects.1

Transition Systems We use transition systems (TSs) to
represent “behaviors,” that is, the possible executions of the
components (i.e., agents and devices). Formally, a transition
system is a tuple B = 〈A, B, b0, δ〉, where:
• A is a finite set of actions;
• B is the finite set of possible TS states;
• b0 ∈ B is the initial state of B;
• δ ⊆ B×A×B is the TS’s transition relation: 〈b, a, b′〉 ∈
δ, or b a−→ b′ in B, denotes that TS B may evolve to state
b′ when action a is executed in state b.
Transition systems are, in general, nondeterministic, in

that they may allow many transitions to take place when the
same action a is executed. Nondeterministic TSs represent
partially controllable behaviors, since one cannot select the
actual transition (and hence the next state of the TS) through
the selection of the action to perform next.

A TS B = 〈A, B, b0, δ〉 is deterministic if there is no pair
of transitions b a−→ b′ and b a−→ b′′ in B such that b′ 6= b′′.

1Among them we drop an explicit notion of environment, cf.
(De Giacomo & Sardina 2007). In fact, it can be shown that the
presence of an environment can be mimicked by using special syn-
chronization devices, see later. Details are omitted for brevity.

Notice that, given a state and an action in a deterministic
TS, we always know exactly the next state of the TS. Deter-
ministic TSs represent thus fully controllable behaviors; one
does select the (specific) transition (and hence the next state
of the TS) through the selection of the action.

Available Devices An available device in our terms can
be thought of as the behavior of a concrete device that can
be used in the system (e.g., a video camera). Formally, an
available device is a, possibly nondeterministic TS, which
can be activated, stopped, and resumed. When activated, a
device can be instructed to perform an action among the ones
that are currently possible for the device—that is, for which
there exists a transition from the device’s current state. In
this way, the TS associated with a device stands for the logic
of the device; at every step, it provides the user of the device
with the set of actions that can be performed by the device.
Once a device is activated and an action instructed to be ex-
ecuted, the device evolves accordingly to its logic and a new
set of actions is provided, and so on. Observe that, when
choosing the action to execute next, one may not be certain,
due to nondeterminism, of which choices will be available
later on, as that depends on what transition is actually car-
ried out. Hence, devices are only partially controllable.

Target Agent A target agent, or just an agent, is an entity
acting autonomously (e.g., a surveillance agent). In contrast
with the available devices, one does not instruct the agent
on what to do, as this is a decision the agent takes by itself
through its own deliberation mechanism. Nonetheless, we
assume to have a specification of the agent’s space of de-
liberation, capturing the possible executions that the agent
could potentially realize. Such a specification is given again
as a TS, this time, though, deterministic, and therefore fully
controllable (by the agent itself). In any target agent’s state,
the actions available to the agent in that state are accounted
for via corresponding transitions. Which action among these
is actually chosen at any given step is completely determined
by the (autonomous) agent. In other words, the behavior as-
sociated with a target agent can be seen as the description of
the capabilities of the agent. They are thus understood in a
analogous ways as Hierarchical Abstract Machines (HAMs)
are for decision-theoretic deliberative agents (Parr & Russell
1998), and high-level programs for reasoning about (user)
intentions in the situation calculus (McIlraith & Son 2002;
Demolombe & Otermin Fernandez 2006).

Available System and Target System The available sys-
tem Sa = 〈D1, . . . ,Dn〉 consists of n, possibly nondeter-
ministic, available devices Di. The target system, on the
other hand, is the multi-agent system St = 〈T1, . . . , Tm〉
consisting of m target agents Ti that are to be realized using
the available system.2 Without loss of generality, we im-
plicitly assume that all TSs for agents and devices share the

2We account for concurrent executions of agents and devices
via interleaving, as often done when dealing with concurrent pro-
cesses. Also, for simplicity, we assume that a single action is exe-
cuted at each step. It is indeed possible to extend the results here by

same set of actions A, and that no state in an agent may be
“blocked” with no action possible (i.e., agents never stop).3

Before moving on, we shall make clear two important
points regarding the multi-agent target system to be “im-
plemented.” First, and as already explained, each agent is
assumed to be autonomous, in that they themselves decide
what actions they are to execute, of course, within their own
space of deliberation. Hence, while the set of possible ac-
tions that could be requested by an agent is known, the ac-
tual request can neither be controlled nor restricted. Second,
we assume that the agents are asynchronous, that is, they
do not share time. This implies that agents are not “fussy”
or “sensible” on when their requests are met with respect to
those of the other agents, as long as they eventually are.4
Put it all together then, any “fair” realization that preserves
the agents’ future autonomy can, in principle, be taken into
consideration.

The Concurrent Composition Problem
In order to realize the target system with the available de-
vices, we need to (eventually) “delegate” each action chosen
by each agent to one of the devices. We call the component
that does this the “scheduler.” The problem that concerns
us has to do with the synthesis of such a scheduler. More
precisely, the problem we are interested in is the following:
given an available system Sa = 〈D1, . . . ,Dn〉 and a tar-
get system St = 〈T1, . . . , Tm〉, synthesize a scheduler that
fairly realizes all target agents in St by suitably operating
the available devices of Sa. A solution to such problem is
called a concurrent composition of St in Sa.

Next, we formally define what a scheduler is and when
one is a concurrent composition. Recall that each virtual
agent in the target multi-agent system is allowed to request
the execution of an action (e.g., take photo) among those
within its capabilities. This means that, at any point in time,
there is a set of “pending” actions, one per target agent. Af-
ter an agent’s request is met, the agent is allowed to request
another action (again, among the ones within its capabili-
ties), and so on. The task of the so-called scheduler amounts
to continuously guaranteeing the eventual fulfillment of all
pending requests by delegating them to the available de-
vices. As a result, while the autonomy of each agent is to
be respected, the actual scheduling of the pending actions is
to be decided by the scheduler so as to facilitate the overall
execution of the target system.

With these ideas spelled out, we are now ready to move
on.

allowing for multiple actions occurring simultaneously as in (Sar-
dina, Patrizi, & De Giacomo 2007).

3The latter is a standard assumption in Verification. One can
trivially get non-stopping agents by using “no-op” actions appro-
priately (Clarke, Grumberg, & Peled 1999).

4If instead the order of agent’s requests has to be respected,
then the scheduler has essentially to realize the cross-product of
the agents’ TSs, which can be in turn represented as a single target
TS, though nondeterministic. It follows that the resulting variant
of the problem is much closer to that studied in (De Giacomo &
Sardina 2007), and less involved than the one studied here.

System History A system configuration for an available
system Sa is a tuple of the form 〈s1, . . . , sn〉 denoting
that device Di = 〈A, Si, si0, δi〉, with i ∈ {1, . . . , n},
is in state si ∈ Si. A system history is a, pos-
sibly infinite, alternating sequence of system configura-
tions and pairs formed by an m-tuple of pending ac-
tions (one per agent) and the action executed by (one of)
the devices. Formally, system histories are alternating
sequences of the form 〈s0

1, . . . , s
0
n〉 · (〈a1

1, . . . , a
1
m〉, a1) ·

〈s1
1, . . . , s

1
n〉 · · · (〈ak1 , . . . , akm〉, ak) · 〈sk1 , . . . , skn〉 · · · where:

• s0
i = si0, for i ∈ {1, . . . , n}, that is, each device starts in

its initial state;

• the last element of the sequence, if finite, is a system con-
figuration;

• at each step k ≥ 1, there exists an i ∈ {1, . . . , n} such

that sk−1
i

ak

−→ ski in Di, and skj = sk−1
j , for all j 6= i,

that is, at each step in the history, only one of the devices,
namely Di, has made a transition (according to its transi-
tion relation δi), while the others have all remained still.

The set of all system histories is denoted byH.
A history h′ is a subhistory of a history h, denoted by

h′ v h, if h′ is a prefix of h. Moreover, when h ∈ H is
a history, [h] denotes the sequence of actions executed in h,
i.e., [h] = a1 · a2 · · · . (if h = 〈s0

1, . . . , s
0
n〉, then [h] = ε and

|[h]| = 0.) 5 Lastly, h|k denotes the subhistory of h of action
length k ≥ 0, i.e., h|k v h and |[h|k]| = k (if k ≥ |[h]|, then
h|k = h = h||[h]|).

Scheduler A scheduler P = 〈Pa, Pt〉 for an available sys-
tem Sa and a target system St is a pair of functions:

1. Pa : H × Am 7→ A × {1, . . . , n} that, given a history
h ∈ H, returns the action to execute next and the (index
of the) available device that shall perform such action.

2. Pt : H 7→ 2{1,...,m} that, given a history h ∈ H, returns
which target agents, if any, may advance one step.

Intuitively, at any point, a scheduler is able to do two
things. First, it is capable of instructing the execution of
an action in an available device (via function Pa). Second, it
can instruct some target agents to progress and request new
actions (via function Pt).

Let us now focus on when a scheduler amounts to a solu-
tion for the concurrent composition problem.

Agent Traces and Target System Trace Given a target
agent T = (A, T, t0, δ), we define the possible agent traces
of T as the, possibly infinite, sequences of actions of the

form λ = a1 · a2 · · · such that t0 = t0
a1

−→ t1
a2

−→ t2 · · · ,
for some ti’s, with i ≥ 0—that is, (ti, ai, ti+1) ∈ δ. As with
histories, when λ is an agent trace, λ|k stands for the k-long
prefix of λ (λ|0 = ε, where ε is the empty trace). Notice that
since target agents are in fact deterministic behaviors, any

5As standard, |·| denotes the “size” of an element (e.g., the
length of a sequence, the cardinality of a set, the size of a TS).

initial fragment of a trace leads to a single state in the target
agent. Thus, a target agent can be seen as a specification of
an (infinite) set of traces. (Remember that we assume agents
to be non-stopping.)

Given a target system St = 〈T1, . . . , Tm〉, a target system
trace for St is a tuple Λ = 〈λ1, . . . , λm〉 where λi is an
infinite agent trace for target agent Ti, for i ∈ {1, . . . ,m}.

Runs Prescribed by P with respect to Λ We now define
the set H`Λ,P of all system histories prescribed by sched-
uler P relative to target system trace Λ = 〈λ1, . . . , λm〉, in
which ` actions have been executed. Below, we shall use the
following notation: given a system history h ∈ H and a tar-
get index i ∈ {1, . . . ,m}, advP (h, i) stands for the number
of times that Pt has advanced agent Ti during h; formally,
advP (h, i) = |{h′ | h′ v h and i ∈ Pt(h′)}|.

The set of H`Λ,P is inductively defined as follows:
H0

Λ,P = {〈s10, . . . , sn0〉}; and Hk+1
Λ,P is the set of k + 1-

action long system histories of the form h·(〈a1, . . . , am〉, a)·
〈sk+1

1 , . . . , sk+1
n 〉, such that:

• h ∈ HkΛ,P (notice that |[h]| = k);

• 〈sk1 , . . . , skn〉 is the last configuration in h;

• λi|advP (h,i)+1 = λ′i · ai, for every i ∈ {1, . . . ,m},
that is, ai (i.e., the pending request of agent Ti) is the
(advP (h, i) + 1)-th action in Ti’s agent trace λi.

• Pa(h, 〈a1, . . . , am〉) = 〈a,w〉, for some w ∈ {1, . . . , n},
that is, the scheduler states that the action a at system his-
tory h should be executed in device Dw;

• (skw, a, s
k+1
w) ∈ δw, that is, device Dw may evolve from

its current state skw to state sk+1
w (by executing action a).;

• sk+1
i = skw, for all i 6= w, that is, devices other than Dw

remain still.

Finally, HωΛ,P = {h | h|` ∈ H`Λ,P , for every ` > 0} is the
set of all infinite system histories h whose finite prefixes h|`,
for any `, are prescribed by P . Observe that, in defining the
runs prescribed by P , no constraints are enforced between
functions Pt and Pa. Obviously, to account for a solution,
these two functions ought to work together, as shown next.

The Solution We say that a scheduler P = (Pa, Pt) fairly
realizes the target system trace Λ = 〈λ1, . . . , λm〉 for St iff

1. for all system histories h ∈ H`Λ,P , with ` ≥ 0, we have:

(a) there exists h′ ∈ H`+1
Λ,P such that h v h′, that is, P is

able to extend h one more step;
(b) [h] is an interleaving of the agent traces λ′1, . . . , λ

′
m,

where λ′i = λi|advP (h,i) or λ′i = λi|advP (h,i)+1;

2. for all infinite system histories h ∈ HωΛ,P , [h] is a fair
interleaving of the agent traces in Λ, that is, Pt selects
each target agent infinitely many often in h.

Condition (1b) binds Pt and Pa, forcing Pa to return actions
that are pending requests of some agent, and constraining Pt
so as to advance an agent only if its previous pending request

has been delegated (by Pa) to some device. Note also that P
has no control on the actual action requested by the agents:
each autonomous agent decides its own execution trace.

A scheduler P = (Pa, Pt) is a concurrent composition of
the target system St in the available system Sa iff P fairly
realizes every possible target system trace Λ for St.

Intuitively, a scheduler is a solution if it is able to intel-
ligently arrange the execution of actions in the devices in a
way that each target is guaranteed to have its desired execu-
tion trace realized.

Examples
In this section, we illustrate the setting and scheduling prob-
lem of interest through examples in an incremental way.
We begin with a two-agents scenario in which there are not
many choices to be made and where a successful scheduling,
i.e., a concurrent composition, is easy to generate.

So, we imagine the availability of the following three, de-
terministic, and hence fully controllable, devices:

s1
1 s1

2

a

r

o1 D1

s2
1 s2

2

b

r

o2 D2

s3
1 s3

2 s3
3

d e

r

c

D3

Devices D1 and D2 are (structurally) similar; they differ
only on the options available in their initial states, either a
and o1, or b and o2, respectively.

Next, imagine that, using the above system Sa =
〈D1,D2,D3〉, we are to realize the target system St =
〈TA, TB〉 built from the following two (simple) agents:

tA1 tA2

a

b

c

TA

tB1 tB2 tB3
d e

r

TB

It is not hard to see how such agents can be realized using
the above three devices. One scheduler P̄ that is a concur-
rent composition is as follows. Initially, TA requests a or
b, and TB requests action d. The scheduler selects TA’s re-
quest: it delegates a or b to either D1 or D2, respectively,
and allows TA to advance, thus requesting action c. After
that, the scheduler selects TB’s request: it delegates d to de-
viceD3 and allows TB to move on and request e next. Then,
P̄ continues by instructing D3 to perform e, fulfilling thus
TB’s request and allowing it to continue. At this point, agent
TA is in state tA2 requesting action c, whereas agent TB is in
state tB3 requesting r. In addition, the device D1 (D2) ought
to be in its state s1

2 (s2
1), if TA’s initial request was a, or in

its state s1
1 (s2

2), if TA’s initial request was b. The scheduler
P̄ then continues by instructingD3 to perform action c, thus
fulfilling agent TA, which in turn will next be able to request
either a or b, again. Finally, P̄ delegates the execution of

action r to either D1 or D2, whichever appropriate, allows
TB to progress, and finally repeats itself.

Observe how different devices may contribute to different
agents at different points in time (e.g., D3 is used to fulfill
TB’s requests for d and e and, but also to fulfill TA’s request
for c).

Next, consider an enriched version of TB in which the
agent may choose between actions o1 and o2 after having
performed action e:

tB1 tB2 tB3 tB4
d e

o1

o2

r

T ′B

Realizing agents TA and T ′B using the three devices now re-
quires more care. In particular, the scheduler should “hold”
agent TA until it is known whether agent TB would like to
execute action o1 or o2. Otherwise, if agent TA is immedi-
ately fulfilled (using D1 or D2), the scheduler may risk the
ability to fully satisfy the autonomy of agent TB . To see why,
suppose that TA requests a first and agent TB , after having
its actions d and e realized, happens to ask for o1—action o1

cannot be implemented at this point.
So, a concurrent composition ought to first use device D3

to fulfill TB’s requests for d and e. After that, either D1 or
D2 is used to implement the next choice of TB , either o1 or
o2. Then, the scheduler may continue easily as before. Ob-
serve, again, how agent TA has to “wait” for two execution
cycles to get its action finally performed.

In the above examples, the order in which the final request
for actions c (for agent TA) and r (for agent TA) are fulfilled
is irrelevant. That is, there are solutions where c is first ex-
ecuted and solutions where r is executed first. Imagine now
that the two agents TA and TB want to synchronize their fi-
nal actions so that action c is executed only after action r has
been performed. Synchronization can be achieved through
the use of devices. To that end, let us extend the system
to include a distinguished “synchronization” device Dsync,
with special actions !m (post messagem) and ?m (read mes-
sage m), and adapt our agents for explicit coordination. By
posting (!m) and reading (?m) a message to and from the
synchronization device Dsync, agents T syncA and T syncB are
now able to synchronize their last moves: any scheduling
composition solution may satisfy T syncA ’s request for c only
after having fulfilled T syncB ’s request for action r.

tB1 tB2 tB3 tB4

tB5

d e

o1

o2

r!mT syncB

tA1 tA2

tA3

a

b

?mcT syncA

ts1 ts2
!m

?m
Dsync

More sophisticated forms of synchronization, involv-
ing several agents and possibly several synchronization-
coordination devices, can be captured similarly.

Finally, notice that all devices that we have used so far
are deterministic. Due to lack of information on their actual
behaviors, the scheduler may only know an incomplete de-
scription of their logic, which shows up as nondeterminism
(and hence partial controllability) in the corresponding TSs
For instance, imagine the following nondeterministic ver-
sion of device D3:

s3
1 s3

2 s3
3

d e

e

r

c

Dnd3

Imagine then the task of realizing the original target system
St by using the available system 〈D1,D2,Dnd3 〉. When us-
ing device Dnd3 , the scheduler has to cope with the fact that
it is not known, a priori, whether instructingDnd3 to perform
action e would result in the device evolving to state s3

3 or
state s3

1. (It can observe though the resulting state after e
is executed.) As a matter of fact, the original scheduler P̄
would not be a concurrent composition anymore: the real-
ization would be “broken” if deviceDnd3 happened to evolve
to state s3

1 (and not to s3
3) upon a request for executing action

e.
Nonetheless, the target system can still be realized by

a more sophisticated scheduling strategy. In contrast with
P̄ , the new scheduler has to be “smarter” after device Dnd3
evolves to state s3

1 when performing e. Suppose that the last
action fulfilled for agent TA was a (an analogous argument
applies for the case of b). First, the scheduler instructs device
Dnd3 to execute action r first and then action c, thus allowing
agents TB and TA to advance to states tB1 and tA1 , respec-
tively. At this point, the whole system is as initially, except
for D1 being left in state s1

2. The trouble comes if agent TA
happens to request action a. The only device able to do a,
namely D1, is not able to realize such action from where it
was left (state s1

2). The scheduler then, leaves TA alone, and
fulfills the next three requests of agent TB , namely actions
d and e, by using device Dnd3 , and action r, by using D1.
At this point the scheduler can indeed fulfill TA’s pending
request for a by using D1. Now, Dnd3 is either in state s3

3 or
again in state s3

1. If in s3
3 thing can proceed easily for another

loop; if in s3
1, the scheduler has to apply the strategy above

again.

Reactive Synthesis in LTL
Linear Temporal Logic (LTL) is a well-known logic used
to specify dynamic or temporal properties of programs, see
e.g., (Vardi 1996). Formulas of LTL are built from a set P of
atomic propositions and are closed under the boolean opera-
tors, the unary temporal operators© (next), ♦ (eventually),
and � (always, from now on), and the binary temporal op-
erator until (which in fact can be used to express both ©
and �, though it will not be used here). LTL formulas are

interpreted over infinite sequences π of propositional inter-
pretation for P , i.e., π ∈ (2P)ω . If π is an interpretation and
i a natural number, and φ a propositional formula, we denote
by π, i |= φ the fact that φ is true in the i-th propositional
interpretation of π. Such interpretation is extended to the
temporal operators as follows (we omit until for brevity).

π, i |=©φ iff π, i+1 |= φ;
π, i |= ♦φ iff for some j ≥ i, we have that π, j |= φ;
π, i |= �φ iff for all j ≥ i, we have that π, j |= φ.

An interpretation π satisfies φ, written π |= φ, if π, 0 |= φ.
Standard logical tasks such as satisfiability or validity are
defined as usual, e.g., a formula φ is satisfiable if there exists
an interpretation that satisfies it. Checking satisfiability or
validity for LTL is PSPACE-complete.

Here we are interested in a different kind of logical task,
which is called realizability, or Church problem, or simply
synthesis (Vardi 1996; Pnueli & Rosner 1989). Namely,
we partition P into two disjoint sets X and Y . We as-
sume to have no control on the truth value of the propo-
sitions in X , while we can control those in Y . The prob-
lem then is: can we control the values of Y such that for
all possible values of X a certain LTL formula remains
true? More precisely, interpretations now assume the form
π = (X0, Y0)(X1, Y1)(X2, Y2) · · · , where (Xi, Yi) is the
propositional interpretation at the i-th position in π, now par-
titioned in the propositional interpretation Xi for X and Yi
for Y . Let us denote by πX |i the interpretation π projected
only on X and truncated at the i-th element (included), i.e.,
πX |i = X0X1 · · ·Xi. The realizability problem checks the
existence of a function f : (2X)∗ → 2Y such that for all π
with Yi = f(πX |i) we have that π satisfies the formula φ.
The synthesis problem consists in actually computing such
a function. Observe that in realizability/synthesis we have
no way of constraining the value assumed by the proposi-
tions in X : the function we are looking for only acts on
propositions in Y . This means that the most interesting for-
mulas for the synthesis have the from ϕ→ ψ, where ϕ cap-
tures the “relevant” assignments of the propositions in X
(and Y) and ψ specifies the property we want to assure for
such relevant assignments. The realizability (and actual syn-
thesis) are 2EXPTIME-complete for arbitrary LTL formulas
(Pnueli & Rosner 1989). However, recently, largely inspired
by research in discrete-event control (Ramadge & Won-
ham 1993), several well-behaved patterns of LTL formulas
have been identified, for which efficient procedures based
on model checking technologies applied to game structures6

can be devised. Here, we shall focus on one of the most
general well-behaved pattern, called “general reactivity (1)”
or GR(1) (Piterman, Pnueli, & Sa’ar 2006). Such formulas

6Interestingly, realizability is the logical task at the base of the
logics ATL and ATL* (Alura, Henzinger, & Kupferman 2002),
whose semantics is based on an alternating multi-agent game
played by a team of cooperating agents against the other agents
in the systems. While general algorithms for ATL* are indeed
2EXPTIME-hard and difficult to implement, practical tools, based
on model checking of game structures, exist for the simpler ATL
(Alur et al. 1998).

have the form ϕ→ ψ, with ϕ and ψ of the following shape

ϕ: φ[X ,Y] ∧
∧
j �φj [X ,Y,©φ[X]] ∧

∧
k �♦φk[X ,Y];

ψ: φ[X ,Y] ∧
∧
j �φj [X ,Y,©φ[X ,Y]] ∧

∧
k �♦φk[X ,Y],

where φ[Z] stands for any boolean combination of symbols
from Z . Notice that: (i) with the first conjunct we can ex-
press initial conditions; (ii) with the second (big) conjunct
we can express transitions —and we have the further con-
straint that in doing so withinϕwe cannot talk about the next
value of the propositions in Y; and (iii) with the third (big)
conjunct we can express fairness conditions of the form “it
is always true that eventually something holds.” For such
formulas we have the following result.
Theorem 1 (Piterman, Pnueli, & Sa’ar 2006)
Realizability (and synthesis) of GR(1) LTL formulas
ϕ → ψ can be determined in time O((p ∗ q ∗ w)3), where
p and q are the number of conjuncts of the form �♦φ in ϕ
and ψ, respectively,7 and w is the number of possible value
assignments of X and Y under the conditions of ϕ→ ψ.

Synthesis of the Scheduler
We are now ready to investigate how to check for the exis-
tence of (and actually compute) a scheduler that realizes a
multi-agent target system.

We reduce our problem to realizability (and synthesis)
of a GR(1) LTL formula Φ. Below, we shall illustrate the
reduction using informal concepts, such as “phases” and
“stages”, whose only purpose is to guide the reader through
the construction of the LTL formula Φ. The reader should
keep in mind that, although the reduction can be informally
understood as a set of constraints on the strategy to get the
solution, its formal justification is simply Theorem 2, stat-
ing its soundness and completeness, and Theorem 3 stating
its optimality with respect to computational complexity.

The intuition behind the reduction is as follows. We make
the scheduler operate on phases, each of them formed ofm+
1 stages. At the beginning of each phase, there arem actions
pending to be served, one per target agent. In each of the
m first stages, the scheduler may select a (pending) action
and an available device, and instruct the device to execute
the action. Finally, in the last stage of each phase, called
the “synchronization” stage, the scheduler matches one-to-
one actions that have been executed during the phase with
target agents that were requesting those actions. The targets
that were matched are allowed to request new actions (within
their capabilities), and a new phase begins.

Let Sa = 〈D1, . . . ,Dn〉 be an available system, where
Di = (A, Si, si0, δi), with i ∈ {1, . . . , n}, are the avail-
able devices (over the shared actions A), and let St =
〈T1, . . . , Tm〉 be a target system, where Ti = (A, Ti, ti0, δ̂i),
with i ∈ {1, . . . ,m}, are the target agents (again, over the
same shared actions A). We start building the GR(1) LTL
formula Φ = ϕ → ψ by specifying the sets of uncontrolled
and controlled propositions X and Y , and then build the as-
sumption formula ϕ and the requirement formula ψ.

7We assume that both ϕ and ψ contain at least one conjunct of
such a form, if not, we vacuously add the trivial one �♦true.

Uncontrolled and controlled propositions X and Y As
the set of uncontrolled propositions X , we have:

• one atomic proposition s for each state s ∈ Si in Di and
each i ∈ {1, . . . , n}, denoting that device Di is in state s;

• one atomic proposition t for each state t ∈ Ti in Ti and
each i ∈ {1, . . . ,m}, denoting that target Ti is in state t;

• one atomic proposition ai for each action a ∈ A and tar-
get Ti, stating that action a is pending for target Ti;

• atomic propositions nopendak, for each action a ∈ A and
each k ∈ {0, . . . ,m}, denoting that there are k actions a’s
pending to be satisfied.

Similarly, as the set of controlled propositions Y , we have:

• atomic propositions Execia, for each i ∈ {1, . . . , n} and
a ∈ A, denoting that a is executed in device Di;

• atomic propositions Full i, for each i ∈ {1, . . . ,m}, de-
noting that target Ti has been fulfilled (within the phase);

• atomic propositions at1, . . . , atm and atSync, used to de-
note the m+ 1 stages within one phase.

Assumption formula ϕ Next, we build the formula of the
form ϕ = ϕinit ∧ ϕtrans that is ought to capture the as-
sumptions on the overall framework the scheduler is acting
on. For technical convenience, we introduce two auxiliary
notation that will be used below. First, we use ∆B(s) to de-
note the set of actions that behavior B can legally perform
when in state s, i.e., ∆B(s) = {a | ∃s′.(s, a, s′) ∈ δ}. Sec-
ond, when Σ is a set of formulas and 0 ≤ k ≤ |Σ|, we use
Count(Σ, k) to denote the (exponential in Σ) formula which
states that exactly k formulas in Σ are true.

The formula ϕinit is a propositional formula which char-
acterizes the (legal) initial states of the overall system:

ϕinit =
n∧
j=1

sj0 ∧
m∧
j=1

[tj0 ∧
∨

a∈∆Tj
(tj0)

aj].

That is, initially, every device and target agent is in its initial
state sj0 and tj0, respectively, and each target Ti is request-
ing some action among the possibles in its initial state.

The formula ϕtrans is an LTL formula which character-
izes the assumptions on how the overall system may evolve:

ϕtrans =
m∧
j=1

�φagtj ∧
n∧
j=1

�φdevj ∧�φpend.

We build formula φagti , which represents the operation of
the target agent Ti, with i ∈ {1, . . . ,m}, as the conjunction
of (for each state t ∈ Ti and action a ∈ A):

• atSync∧ t∧ Full i ∧ ai →©t′, for the unique transition
(t, a, t′) ∈ δ̂i, stating that, at the last (synchronization)
stage atSync of the phase, the target agent evolves, from
sate t to t′ if its requested action a has been fulfilled;

• (¬atSync ∨ ¬Full i) ∧ t → ©t, for each transition
(t, a, t′) ∈ δ̂i, forcing the agent to remain still outside
the synchronization stage and when not fulfilled;

• t →
∨
a∈∆Ti

(t) ai, stating that the agent always requests
actions accordingly to its capabilities, that is, when in
state t the agent is requesting an action in ∆Ti

(t);
• (¬atSync∨¬Full i)∧ai →©ai, stating that the agent’s

requested action persists until the synchronization stage,
and also between phases if it has not been fulfilled;

• (
∨
a∈A ai) ∧

∧
a 6=b∈A ¬(ai ∧ bi), stating that the target

agent is always requesting one and only one action.

We build formula φdevi , which encodes the operation of
the available device Di, i ∈ {1, . . . , n}, as the conjunction
of (for each state s ∈ Si and action a ∈ A):
• s ∧ Execia → ©[

∨
(s,a,s′)∈δi

s′]. These assertions en-
code that if the available device Di is in state s, and Di
is selected for the execution of an action a (i.e., Execia is
true), then the device evolves to one of its successor states
accordingly to its transitions.

• s ∧ (
∧
a∈A ¬Execia) → ©s. This states that the device

remains still in s if it has not been chosen for execution.

Finally, we build the formula φpend, which models the
“counting” of pending requested actions (per action), as the
conjunction of (for each a ∈ A and k ∈ {0, . . . ,m}):
• nopendak → ¬nopendak′ , for every k′ ∈ {0, . . . ,m} \
{k}, stating that the m + 1 propositions to model the
counter for action a are disjoint;

• at1 → [nopendak ↔ Count(
⋃m
j=1 aj , k)], which forces

the counter for a to be assigned (or initialized) at the first
stage at1 of a phase;

• (
∨n
j=1 Execja) ∧ nopendak → ©nopendak−1, for k > 0,

stating that the counter for action a is decremented if the
action has just been executed in some device;

• (
∧n
j=1 ¬Execja)∧¬atSync∧nopendak →©nopendak, *

which states that, in every non-synchronization stage, the
current value of the counter is propagated if the action was
not executed anywhere. At a synchronization stage, how-
ever, the counter is never propagated as it will be com-
pletely recalculated at next stage at1.

Requirement Formula ψ We now turn to the for-
mula capturing the requirements for the module to be
synthesized—the scheduler. We first define some useful ab-
breviations:
• norequestedak

def= Count(
⋃m
j=1 aj , k), where a ∈ A and

k ∈ {0, . . . ,m}—action a is being requested k times;

• assignedak
def= Count(

⋃m
j=1{Full j ∧ aj}, k), where a ∈

A and k ∈ {0, . . . ,m}—action a has been satisfied (i.e.,
assigned to a target requesting a) k times;

• Exec− def=
∧
a∈A

∧n
j=1 ¬Execja—no action is being cur-

rently performed in any device.
The formula to be constructed for capturing the necessary

requirements is of the form ψ = ψinit ∧ ψtrans ∧ ψev . The
formula ψinit = at1 states that the only requirement for the

initial state is that the scheduler starts in the first stage. The
formula ψtrans is an LTL formula stating the constraints on
how the actions can be executed in devices and how target
agents are “fulfilled,” namely:

ψtrans = �φstages ∧�φFull ∧�φExec .

We build formula φstages, which models the m+1 stages
at1, . . . , atm, atSync of a phase, as the conjunction of:

at1 ∨ . . . ∨ atm ∨ atSync,
ati →©ati+1, for each i ∈ {1, . . . ,m− 1},
atm →©atSync, atSync→©at1,∧
i6=j∈{1,...,m} ¬(ati ∧ atj),∧
i∈{1,...,m} ¬(ati ∧ atSync).

Formula φFull , which represents how targets may be ful-
filled within each phase, is built as the conjunction of:

• ¬atSync →
∧
j∈{1,...,m} ¬Full j , denoting that no target

can be satisfied in a stage other than the last one;

• atSync →
∨
j∈{1,...,m} Full j , stating that at least one

target ought to be satisfied at the last atSync stage;

• atSync → [assignedak ↔
∨
r∈{k...m} norequestedar ∧*

nopendar−k], for each a ∈ A and k ∈ {0, . . . ,m}, stating
that an action is assigned to targets exactly as many times
as they were executed in the devices during the phase.

We construct formula φExec , representing how devices
may be selected for action execution, as the conjunction of:

• at1 → ¬Exec−, stating that at least one device must be
activated in the first stage of every phase;

• atSync → Exec−, forcing no device to be activated in
the last synchronization stage of phases;

•
∧
a∈A

∧
i 6=j∈{1,...,n} ¬(Execia ∧ Execja), denoting that

no action can be delegated to two (or more) devices;

• (
∨
i∈{1,...,n} Execia)→ ¬nopenda0 , for each a ∈ A, stat-

ing that if an action is delegated to some device, then such
action ought to be pending (at least once).

Finally, the formula ψev encodes the fairness conditions
that must be guaranteed by the scheduler, namely:

ψev =
∧

i∈{1,...m}

�♦Full i.

Intuitively, it imposes the requirement that one is always
able to (eventually) fulfill every single target agent, by ac-
tually performing its requested action in some available de-
vice. Thus, this constraint encodes the “fairness” property of
successful schedulers (see second condition in the solution).

We can now state our main result. Checking the realiz-
ability of Φ is a sound and complete technique for concur-
rent composition, as stated by the following theorem.

Theorem 2 (Soundness & Completeness) There exists a
scheduler that is a concurrent composition of the target sys-
tem St in the system Sa iff the LTL formula Φ, constructed
as above, is realizable.

It is easy to see that Φ = ϕ → ψ is indeed a GR(1) LTL
formula. Considering Theorem 1 and analyzing the structure
of Φ, we get that: (i) ϕ contains no subformulas of the form
�♦φ; (ii) ψ contains m such subformulas; and finally (iii)
the number of possible value assignments of X and Y under
the conditions of ϕ → ψ is O(|A| ∗ um+n), where u is the
number of states of the largest TS among the target agents
and the devices (observe that variables that represent states
in a TS are pairwise disjoint). As a consequence we get:
Theorem 3 (Complexity upperbound) Checking the exis-
tence of a scheduler that is a concurrent composition of the
target system St = (T1, . . . , Tm) in the available system
Sa = (D1, . . . ,Dn) can be done in O(m ∗ |A| ∗ um+n),
where u = max{|T1|, . . . , |Tm|, |S1|, . . . , |Sn|}.
We stress that by solving realizability with the techniques in
(Piterman, Pnueli, & Sa’ar 2006) we do get an actual syn-
thesized scheduler, not merely verify its existence.

We close this section by observing that when we have a
single target, we essentially get the composition problem in
(De Giacomo & Sardina 2007), and in fact the EXPTIME-
hardness result in (Muscholl & Walukiewicz 2007) applies
to our case as well. As a result, we obtain a complete com-
putational complexity characterization of the problem.
Theorem 4 (Complexity characterization) Checking the
existence of a scheduler that is a concurrent composition of
a target system St in a system Sa is EXPTIME-complete.

Conclusion
In this paper, we looked at the concurrent composition prob-
lem, that is, the problem of realizing multiple virtual agents
by making use of a set of available shared devices. Solving
such a problem amounts to synthesizing a scheduler that im-
plements agents’ action requests by delegating them to the
concrete existing devices—possibly accommodating the in-
terleaving among the agents—in a way that agent autonomy
is fully preserved.

The synthesis technique we devised is based on a reduc-
tion to realizability of a special kind of LTL formulas for
which practical algorithms exist. As a result, we can make
use of current LTL-based state-of-the-art synthesis systems
such as TLV8 and Anzu9 to solve the concurrent composi-
tion problem.

There are clear analogies between concurrent composi-
tion and classical scheduling (Lawler et al. 1993): the set
of all agents’ requests form the activities to be carried on,
whereas the available devices stand for the so-called re-
sources. However, the set of activities and the set of re-
sources are not specified at the outset but are dynamic: the
set of activities, as well as the set of resources to which ac-
tivities can be assigned, change dynamically as agents and
devices progress on their executions. A natural question that
arises is how substantially different the concurrent composi-
tion problem is compared to classical scheduling problems,
e.g., Job-Shop-Scheduling (JSS). Here, we just notice that
JSS, as all classical scheduling problems, is NP-complete,

8www.cs.nyu.edu/acsys/tlv/
9www.ist.tugraz.at/staff/jobstmann/anzu/

while the concurrent composition problem is EXPTIME-
complete. As a consequence, any reduction from concur-
rent composition to classical scheduling must be exponen-
tial (assuming NP differs from EXPTIME). This is a strong
indication that the link between the two is non-trivial.

Several issues remain to be studied. For example, an in-
teresting issue is how to drop a central scheduler in favor of
many distributed ones. Ideas on distributing the scheduler to
the devices can be found in (Sardina, Patrizi, & De Giacomo
2007). However, here it may be preferable to distribute the
scheduler to the agents instead, given that these must be al-
ready equipped with some computational mechanism for de-
liberation.

Another interesting issue is the study of “weaker” notions
of agent autonomy which may be sufficient in certain con-
texts, such as guaranteeing that agents can always carry on
at least one action/transition within their capabilities. We
believe techniques developed within LTL synthesis give us
formal tools to tackle such variants of the problems as well.

In this work, we took a high-level perspective on agents
and shared devices and focused on the synthesis problem
only. Nonetheless, there are many other practical aspects of
concern when it comes to implementing the solution. For
instance, how to design such devices so that they can eas-
ily interoperate among themselves, as we assume here, is an
active area of research on its own (Bordignon et al. 2007;
Lundh, Karlsson, & Saffiotti 2007). In fact, we expect a
fruitful cross-fertilization between the theoretical studies on
automated synthesis of agents, as the one in the present pa-
per, and practical work on experimenting device integration
in robot ecologies and ambient intelligence.

Acknowledgments
The authors would like to thank Alessandro Saffiotti and
his group for an interesting discussion on robot ecologies,
which inspired this work. The authors would also like to
thank the anonymous reviewers for their helpful sugges-
tions. The first author was supported by the Australian Re-
search Council and Agent Oriented Software (under grant
LP0560702), and the National Science and Engineering Re-
search Council of Canada under a PDF fellowship. The
second author was partially supported by the the European
FET basic research project FP6-7603 Thinking Ontologies
(TONES).

References
Alur, R.; Henzinger, T. A.; Mang, F. Y. C.; Qadeer, S.; Rajamani,
S. K.; and Tasiran, S. 1998. MOCHA: Modularity in model
checking. In Proc. of the 10th International Conference on Com-
puter Aided Verification (CAV), 521–525.
Alura, R.; Henzinger, T. A.; and Kupferman, O. 2002.
Alternating-time temporal logic. Journal of the ACM 49:672–
713.
Berardi, D.; Calvanese, D.; De Giacomo, G.; Hull, R.; and Me-
cella, M. 2005. Automatic composition of transition-based se-
mantic web services with messaging. In Proc. of the International
Conference on Very Large Data Bases (VLDB), 613–624.
Bordignon, M.; Rashid, J.; Broxvall, M.; and Saffiotti, A. 2007.
Seamless integration of robots and tiny embedded devices in a

PEIS-ecology. In Proc. of the IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), 3101–3106.
Clarke, E. M.; Grumberg, O.; and Peled, D. A. 1999. Model
checking. Cambridge, MA, USA: MIT Press.
De Giacomo, G., and Sardina, S. 2007. Automatic synthesis of
new behaviors from a library of available behaviors. In Proc. of
the International Joint Conference on Artificial Intelligence (IJ-
CAI), 1866–1871.
Demolombe, R., and Otermin Fernandez, A. M. 2006. Intention
recognition in the situation calculus and probability theory frame-
works. In Proc. of the International Workshop on Computational
Logic in Multi-Agent Systems (CLIMA), volume 3900 of LNCS,
358–372.
Kim, J.; Kim, Y.; ; and Lee, K. 2004. The third generation of
robotics: Ubiquitous robot. In Proc. of the IEEE International
Conference on Robotics and Automation (ICRA), 1–7.
Lawler, E.; Lenstra, L.; Rinnooy Kan, A.; and Shmoys, D. 1993.
Sequencing and Scheduling: Algorithms and Complexity, vol-
ume 4 of Logistics of Production and Inventory, Handbooks in
Operations Research and Management Science. North-Holland.
chapter 9, 445–522.
Lee, J., and Hashimoto, H. 2002. Intelligent space: Concept and
contents. Advanced Robotics 16(3):265–280.
Lundh, R.; Karlsson, L.; and Saffiotti, A. 2007. Plan-based con-
figuration of an ecology of robots. In Proc. of the IEEE Interna-
tional Conference on Robotics and Automation (ICRA), 64–70.
Lundh, R.; Karlsson, L.; and Saffiotti, A. 2008. Automatic con-
figuration of multi-robot systems: Planning for multiple steps.
In Proc. of the European Conference in Artificial Intelligence
(ECAI).
McIlraith, S., and Son, T. C. 2002. Adapting Golog for pro-
gramming the semantic web. In Proc. of Principles of Knowledge
Representation and Reasoning (KR), 482–493.
Muscholl, A., and Walukiewicz, I. 2007. A lower bound on web
services composition. In Proc. of the International Conference
on Foundations of Software Science and Computation Structures
(FoSSaCS), volume 4423 of LNCS, 274–286.
Parr, R., and Russell, S. 1998. Reinforcement learning with hier-
archies of machines. Advances in Neural Information Processing
Systems 10:1043–1049.
Piterman, N.; Pnueli, A.; and Sa’ar, Y. 2006. Synthesis of reac-
tive(1) designs. In Proc. of the International Conference on Ver-
ification, Model Checking, and Abstract Interpretation (VMCAI),
volume 3855 of LNCS, 364–380.
Pnueli, A., and Rosner, R. 1989. On the synthesis of a reactive
module. In Proc. of the ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL), 179–190.
Ramadge, P. J., and Wonham, W. M. 1993. The control of discrete
event systems. Proc. of the IEEE 77(1):81–98.
Saffiotti, A., and Broxvall, M. 2005. PEIS ecologies: Ambient
intelligence meets autonomous robotics. In Proc. of the Inter-
national Conference on Smart Objects and Ambient Intelligence,
275–280.
Sardina, S.; Patrizi, F.; and De Giacomo, G. 2007. Automatic
synthesis of a global behavior from multiple distributed behav-
iors. In Proc. of the National Conference on Artificial Intelligence
(AAAI), 1063–1069.
Vardi, M. Y. 1996. An automata-theoretic approach to linear
temporal logic. In Logics for Concurrency: Structure versus Au-
tomata, volume 1043 of LNCS. Springer. 238–266.

