
Composition of Services that Share an Infinite-State Blackboard
(Extended Abstract)

Fabio Patrizi and Giuseppe De Giacomo
Dipartimento di Informatica e Sistemistica

SAPIENZA Università di Roma
lastname@dis.uniroma1.it

1 Introduction
Recently, the issue of automatically building an orchestrator
able to coordinate the execution of a set of available services
so to realize a desired service has been investigated (cf. e.g.,
[Berardiet al., 2003; Pistoreet al., 2005; Sardiñaet al., 2008;
Lustig and Vardi, 2009]). One of the most well-known frame-
works to tackle this problem is the so called Roman Model
([Hull, 2005; Berardiet al., 2003]), where services are identi-
fied with their conversational behavior, represented by finite-
state transition systems. Given a set of (possibly nondeter-
ministic) available services and a deterministic target service,
the service composition problemamounts to finding anor-
chestratorable to coordinate available services so to show
the same behavior as the target service.

It has been shown that the above problem is deeply re-
lated to that of finding a simulation relation[Milner, 1971]
between two transition systems[Berardiet al., 2008; Sardiña
et al., 2008]. The obtained results essentially show that all
possible orchestrators, even infinite-state ones, are generated
from a (variant of a) simulation relation between the target
service and the asynchronous product of available services.
Such a result is also the basis for practical procedures to syn-
thesize the orchestrator, based upon the hypothesis of state
space finiteness. Even when a shared structure that available
services interact with has been introduced, a.k.a.environ-
ment[De Giacomo and Sardiña, 2007] or data box[Patrizi,
2009], its behavior has been assumed finite-state.

In this paper we remove such assumption and propose a
new framework where services are able to exchange values
with a shared data structure, namely ablackboard(i.e., an as-
sociative list) that can assume infinite states. In particular, we
assume that the blackboard has a bounded amount of space
and that it allows a key-based access to its elements. Notably,
the values that populate the blackboard range over an infinite
domain∆, which is totally ordered and dense. Observe that
due to the infiniteness of∆, the blackboard may traverse in-
finite states.

In particular, we assume that the community transition sys-
tem (obtained as the asynchronous product of the transition
systems of the available services) has already been computed,
and we directly study thecore problem of finding adata-
aware-simulation relation of a determnistic transition system
(the target) by a nondeterminstic transition system (the co-
munity of available services). Data-awareness comes from

services’ capability of interacting with the blackboard and ex-
changing data with it. In addition, transitions may be subject
to particular conditions over blackboard’s current state.Once
the simulation is computed, then, from this, an orchestrator
(generator) can be directly extracted, though we do not deal
with such issue in this paper.

Our solution is inspired by[Berardiet al., 2005; Deutsch
et al., 2007; 2009], where data are taken into account. As
shown is such papers, the main difficulty one gets when
infinite-state structures are introduced comes from the fact
that usual techniques and tools for system verification and
synthesis (e.g.,[Burchet al., 1992; Pnueli and Shahar, 1996;
Jobstmannet al., 2007; Pitermanet al., 2006]) are no longer
applicable, as based on the key hypothesis of state space
finiteness. We merge ideas from[Sardiñaet al., 2008;
Berardiet al., 2005; Deutschet al., 2007; 2009], and, start-
ing from a problem formulation that involves an infinite-state
blackboard, we show how an equivalent problem instance
which is finite-state can be built, thus making above men-
tioned techniques still applicable.

2 The Framework
Based on previous achievements[Berardi et al., 2008;
Sardiñaet al., 2008], we consider the problem of searching
for a simulation relation between two transition systems as
thecore problemof building an orchestrator that is a compo-
sition of a given target service.

In our setting, we have a countable infinite, dense and to-
tally ordered universe∆ (e.g., alphanumeric strings with lex-
icographic ordering) with underlying order relation≤. Such
universe constitutes theinterpretation domain1 of all rela-
tional structures introduced in this work. We assume the ex-
istence of ablackboardB that services can interact with and
which, in turn, affects services’ evolution.

Definition 2.1 A blackboardschema is a pairB = 〈R, b〉
whereR is a binary relation schemaR and b ∈ N is a size
bound. GivenB = 〈R, b〉 and a (interpretation) domain∆,
a blackboard statēR over ∆ is a finite, functional relation
R̄ ⊆ ∆2 such that|R̄| ≤ b.

A blackboard statēR is also referred to as anR interpretation.
The first component of each tuple inR is also called thekey

1As usually referred to in Database Theory.

value (or simply key) of the tuple. For ease of exposition,
we sometimes blur the notion of blackboardB and relation
schemaR, by often referring, by slight abuse of notation, to
the former as to the latter and viceversa.

We introduce two additional basic notions.

Definition 2.2 (Active domain) Let R be a relation schema
andR̄ a finite extension ofR over a generic domain∆. The
active domainof R̄ is the setadom(R̄) ⊆ ∆ of all and only
∆ elements appearing in someR’s tuple.

Such notion naturally extends to a set of relations
R1, . . . , Rn: adom(R1, . . . , Rn) = adom(R1) ∪ . . . ∪
adom(Rn).

Definition 2.3 (Relation restriction) Let R̄ be generic re-
lation extension of aritya. Given a generic setS of el-
ements, therestriction ofR to S, denotedR̄|S , is the set
R̄|S = {〈r1, . . . , ra〉 ∈ R̄ | ri ∈ S ∀i = 1, . . . , a}.

In the following, we will need to represent properties of
blackboard states. To this end, we define alanguageof con-
ditions.

Definition 2.4 (Conditions) Given a totally ordered dense
domain ∆, with order relation≤, and a binary relation
schemaR, a parametricconditionover R and ∆ is an ex-
pression of the following form:

• the constant⊤ or ⊥ (constant term);

• R(χ) (functional term), whereχ is either the parameter
(symbol)p /∈ ∆ or a constant from∆;

• α ≤ β (ordering term), whereα andβ can be either a
functional term or the parameterp, or a constant from
∆;

• a boolean combination of above terms, taken as atoms.

Parametric conditions are referred to asφ(p), p standing
for the only parameter they can possibly contain. A non-
parametric condition is a condition containing no occur-
rences of paramters and is referred to simply asφ. A guardis
a non-parametric condition.

Conditions are evaluated against(i) total dense order relation
≤ over∆ and(ii) R interpretations over∆.

Parametric conditionsφ(p) are, in fact, formulae and, as
such, need their parameter to be instanced, in order to be eval-
uated.

Definition 2.5 (Semantics of conditions)Given a total
dense order relation≤ over ∆ and anR interpretationR̄
over∆, the semantics of a non-parametric conditionφ over
∆ (, ≤) andR is as follows:

• if φ = ⊤ then〈R̄,≤〉 |= φ;

• if φ = ⊥ then〈R̄,≤〉 6|= φ;

• if φ = R(c), with c ∈ ∆, then〈R̄,≤〉 |= φ iff ∃c′ ∈ ∆ |
〈c, c′〉 ∈ R̄;

• if φ = α ≤ β then〈R̄,≤〉 |= φ iff 〈R̄,≤〉 |= φ′, where
φ′ = α′ ≤ β′ is the condition obtained fromφ by re-
placing each term (i.e.,α andβ):

– with itself, if it is a constant from∆;

– with c′ ∈ ∆, if it is a functional termR(c) such that
〈c, c′〉 ∈ R̄;

– with a default valued ∈ ∆, otherwise;

• if φ = ¬ϕ then〈R̄,≤〉 |= φ iff 〈R̄,≤〉 6|= ϕ;

• if φ = ϕ1 ∧ ϕ2 then〈R̄,≤〉 |= φ iff 〈R̄,≤〉 |= ϕ1 and
〈R̄,≤〉 |= ϕ2;

• if φ = ϕ1 ∨ ϕ2 then 〈R̄,≤〉 |= φ iff 〈R̄,≤〉 |= ϕ1 or
〈R̄,≤〉 |= ϕ2.

As for parametric conditionsφ(p), if c ∈ ∆ is the value as-
signed top, thenφ(c) is a non-parametric condition –whose
semantics is defined above– obtained fromφ(p), by replacing
each occurrence ofp with c.

Default valued in above definition is irrelevant and can be ar-
bitrarily chosen. Observe that conditions (containing terms)
of the formα ≤ β where at least one betweenα andβ is a
functional term of the formR(c) (c ∈ ∆) have a special se-
mantics: ifc does not appear as a key in anyR̄’s tuple, then
R(c) is not defined and hence cannot be compared with any
value. In order to be able to evaluate the condition also in this
case,R(c) is replaced by a default valued. Clearly, this situ-
ation is undesirable. To avoid this, one can firstvalidatethe
condition by testing whetherR(c) holds, i.e., whether com-
parisonα ≤ β is meaningful. For instance, letα = R(c) and
β = c′ (c, c′ ∈ ∆) and consider condition:R(c)∧R(c) ≤ c′.
Clearly, it evaluates to⊤ iff c is a key of somēR’s tuple and
R(c) ≤ c′ wrt ≤ over∆, which is a clear semantics.

Next, we introduce operations that can be executed onB.

Definition 2.6 (Atomic operations) Given B and ∆ as
above, anatomic operation(over R and ∆) is any of the
following expressions:(i) ¬R(χ) (deletion),(ii) R(χ) = υ
(insertion/modification)(iii) nop (empty operation), whereχ
andυ can be either the parameterq or a constant from∆.

Definition 2.7 (Operations) Let B and∆ be as above. An
operationo ∈ O (over R and ∆) is a set of pairso =
{〈φ1(p), ν1(p)〉, . . . , 〈φm(p), νm(p)〉}, where eachφi(p) is
a (parametric) condition over∆ andR, andνi(p) is a finite
sequence of atomic operations (overR and∆).

We assume a finite set of operationsO = {o1, . . . , on} that
can be executed onB. Semantics of general operations, under
parameter instantiation, is defined based on atomic’s one.

Definition 2.8 (Semantics of atomic operations)Let B
and∆ be as above and consider aB stateR̄ over∆. Given
an atomic operation (with actual parameter)op(p) ≡ ¬R(p)

or op(p) ≡ R(p) = v or op(p) = nop, wherep, v ∈ ∆, a
B stateR̄′ is an R̄ atomic successor underop(p), denoted

R̄
op(p)
⇁ R̄′, iff:

• if op(p) ≡ ¬R(p), then〈r, r′〉 ∈ R̄′ iff 〈r, r′〉 ∈ R̄ and
r 6= p;

• if op(p) ≡ R(p) = v, then〈r, r′〉 ∈ R̄′ iff (i) 〈r, r′〉 ∈ R̄
andr 6= p or (ii) 〈r, r′〉 = 〈p, v〉 ;

• if op(p) ≡ nop, thenR̄′ = R̄;

Semantics of operationsop(p), wherep /∈ ∆, is defined as
above, given a constantp ∈ ∆ intended to replace all occur-
rences ofp, thus obtainingop(p) with no parameters.

Definition 2.9 (Semantics of operations)Let R and ∆ be
as above and consider anR interpretationR̄ over∆. Given
an operationo = {〈φ1(p), ν1(p)〉, . . . , 〈φm(p), νm(p)〉} and
a valuep ∈ ∆, an R interpretationR̄′ is an R̄ successor

under〈o, p〉, denotedR̄
o,p
−→ R̄′, iff:

• there existsi ∈ {1, . . . , m} such that〈R̄,≤〉 |= φi(p);

• for i as above andνi(p) = op1(p) · · · opli(p) (li > 0),

there existR̄1, . . . , R̄li such that(i) R̄
op1(p)
⇁ R̄1, (ii)

R̄j

opj(p)
⇁ R̄j+1 for j = 1, . . . , li and(iii) R̄j+1 = R̄′.

We can now defineservices. Intuitively, they repre-
sent high-level behaviors that interact with a blackboardB,
through operations inO.

Definition 2.10 (Services)Given ∆ and B as above, a
nondeterministic, guarded, blackboard-aware service, or
simply BA-service, over B and ∆, is a tuple S =
〈O, S, s0, G, ̺, Sf 〉, where:

• O ⊆ O is a finite set of service’soperation specifica-
tions;

• S is the finite set of service’sstates;

• s0 ∈ S is the (single) service’sinitial state;

• G is the finite set of service’sguardsoverR and∆;

• ̺ ⊆ S × G × O × S is the service’stransition relation.
We freely interchange expressions〈s, g, o, s′〉 ∈ ̺ and
“ s

g,o
−→ s′ (is) in S”;

• Sf ⊆ S is the finite set of service’sfinal states;

Moreover, for convenience, for each service, we define the fi-
nite setC of all constants appearing either in(i) a condition
or effect of some operation specification with formal param-
eterso ∈ O, or (ii) in some guard.

Service transitions depend on the chosen operation and not
on the actual parameter which is provided only at runtime.

We are interested in checking whether, andhow, given two
services over a same blackboardB, one cansimulate, i.e.,
show the same behavior as, the other one. Informally, the
problem amounts to check whether a service is at least as ca-
pable as the other one (that is thesimulatedone). In the fol-
lowing Section, we clarify such notion, by providing a formal
statement of the problem.

3 Simulation
We start by introducing our notion of simulation relation be-
tween two services defined over the same blackboard.

Definition 3.1 Consider a possibly nondeterministic service
SC and a deterministic oneSt, both defined over the same
blackboardB. A blackboard-awaresimulation relation, BA-
simulation for short, ofSt bySC overB and∆ is a relation
Σ ⊆ St × S × ∆2 such that〈st, s, R̄〉 ∈ Σ implies:

1. R̄ is aB state (i.e., such that|adom(R̄)| ≤ b);

2. if st ∈ Sf
t thens ∈ Sf ;

3. for each transitionst
gt,o
−→ s′t in St s.t. 〈R̄,≤〉 |= gt and

for each actual parameterp ∈ ∆ such that for somēR′,

R
o,p
−→ R̄′:

(a) there exists a transitions
g,o
−→ s′ in S such that

〈R̄,≤〉 |= g;

(b) for all transitions(i) s
g,o
−→ s′ in S as above and

(ii) all R̄
o,p
−→ R̄′′, 〈s′t, s

′, R̄′′〉 ∈ Σ holds.

Analogously to a (ND-)simulation relation (cf.[Berardiet al.,
2008; Sardiñaet al., 2008]), a BA-simulation relation is in-
tended to capture the ability ofSC to mimickingSt behavior
onB.

We are now ready to formally state our problem:

Definition 3.2 (Core DA-service composition problem)
Consider a blackboard schemaB whose states are defined
over an infinite, countable, totally ordered and dense do-
main ∆. In addition, let (i) St be a deterministic (target)
DA-service overB and ∆ and (ii) SC be another, possibly
nondeterministic, DA-service overB and ∆. The core
DA-service composition problemis the problem of finding a
BA-simulation relation ofSt bySC onB and∆.

Clearly, BA-simulation relations are, in general, infinite,
due to infiniteness of∆, that input parameters range over,
which yields an infinite set ofB states. Hence, procedures
based on iterative fixpoint computations, such as the one de-
fined in, e.g.,[Sardiñaet al., 2008], are no longer useful, since
there is no finite bound on the number of iterations. How-
ever, through an abstraction procedure, one can focus only on
a finite set of actual values plus some symbolic values, so to
reduce the problem to, essentially, searching for a simulation
relation in a setting where states and data are finite.

4 Symbolic Simulation
We define asymbolic simulation, i.e., a simulation relation
with additional information about value ordering. Such struc-
ture is, indeed, afinite representation of an infinite simulation
relation. As a consequence, one can compute the simulation
on this, rather than on an infinite structure (of course, thisis
not required if∆ is finite).

Definition 4.1 Consider two servicesS,St defined over a
same blackboardB = 〈R, b〉. Let C = Ct ∪ CC =
{c1, . . . , cm} be the (finite) set of constants contained in ei-
ther operations or guards appearing, in turn, in eitherSt

or SC . Let ∆̂ = {a0, . . . , a2b} ∪ C, where{a0, . . . , a2b} ∩
∆ = ∅. A symbolic BA-simulation relation is a relation
Σ̂ ⊆ St × S × ∆̂2 × ∆̂2 such that〈st, s, R̂, ≤̂〉 ∈ Σ̂ implies:

1. R̂ is anR interpretation over̂∆ such that|adom(R̂)| ≤
b;

2. ≤̂ is a total order relation overadom(R̂)∪C, such that
≤̂|C=≤|C ;

3. for each total order relation̂≤p obtained by extendinĝ≤

with a valuep ∈ ∆̂ (possibly contained inadom(R̂)∪C)

such that≤̂p|adom(≤̂)= ≤̂, for each transitionst
gt,o
−→ s′t

in St with 〈R̂, ≤̂〉 |= gt and (for someR̂′) R̂
o,p
−→ R̂′,

where operation conditions are evaluated over≤̂p, the
following holds:

(a) there exists a transitions
g,o
−→ s′ in S such that

〈R̂, ≤̂〉 |= g;

(b) for all transitions(i) s
g,o
−→ s′ in S, as above, and

(ii) all R̂
o,p
−→ R̂′′, as above,〈s′t, s

′, R̂′′, ≤̂′〉 ∈

Σ̂, where ≤̂|F = ≤̂′|F , for F = adom(≤̂) ∩
adom(≤̂′).

A symbolic BA-simulation relation is intended to capture
only the information actually relevant in a BA-simulation re-
lation: (i) the state that each service is in,(ii) the whole set
of constants appearing in eitherSt or SC specifications and
(iii) instead of theactual values contained in̄R, their mu-
tual order and their relationships with constants fromSt and
SC . Indeed, it can be shown that, as long as constant values
from St andSC specification are kept unchanged, renaming
values inadom(R̄) while preserving the mutual order does
not affect condition evaluations and, consequently, the possi-
bility of executing operations and their effects on the black-
board. Since the blackboard contains at most2b elements,
some of which may come fromC, with our abstraction ap-
proach one can provide an abstract description of each origi-
nal BA-simulation tuple, using at most2b + 1 symbolic val-
ues, the additional one being intended to represent the actual
input parameter.

The following theorem shows that one can exploit a sym-
bolic BA-simulation relation in order to solve the BA-service
composition core problem.

Theorem 4.1 Given a blackboardB and an interpretation
domain∆ as above, plus a target serviceSt and an additional
serviceSC over B, consider a (possibly infinite) simulation
relation Σ of St bySC overB. There exists a corresponding
symbolic simulation relation̂Σ ofSt bySC overB, with ∆̂ =
{a0, . . . , a2b} ∪ C, whereC = {c1, . . . , cm} is the set of all
constants in∆ occurring inSt or SC specifications.

Proof: (Hint) The proof is based on building, for each tuple
t = 〈st, s, R̄〉 ∈ Σ, a mappingh : adom(R̄) ∪ C −→ ∆̂,
which is the identity onC, such that(i) R̄ isomorphically
maps into a relationR̂ and (ii) ≤|adom(R̄)∪C isomorphi-

cally maps into≤̂. Observe that this is made possible by
R̄ boundedness. Starting from this, one shows that the so
obtained symbolic tuplêt = 〈st, s, R̂, ≤̂〉 is isomorphicto
t = 〈st, s, R̄〉, in the sense that(i) an operation, possibly with
actual parameterp, is executable onst, s andR̄ iff it is exe-

cutable onst, s andR̂ when all conditions are evaluated over
≤̂p and(ii) that the obtainedsuccessortuplest′ = 〈s′t, s

′, R̄′〉

and t̂ = 〈s′t, s
′, R̂′, ≤̂′〉 are pairwise isomorphic in the same

sense. In other words, one can partition the infinite set ofΣ

elements into a finite set of equivalence classes, represented
by Σ̂ elements. 2

Importantly, the viceversa also holds:

Theorem 4.2 Given a blackboardB and an interpretation
domain∆ as above, plus a target serviceSt and an addi-
tional serviceSC overB, consider a symbolic BA-simulation
relation Σ̂ of St by S on B. There exists a corresponding
BA-simulation relationΣ of St bySC overB.

Proof: (Hint) The proof is based on two steps. First, from
eachΣ̂ tuple, a set ofisomorphictuples is built through a
mapping which is the identity onC and assigns each value in
adom(R̂) a value in∆. Observe that this is made possible by
≤ density. Next, one shows, with an inductive argument, that
the whole set of so obtained tuples is, in fact, a BA-simulation
relation. 2

Above results show that, in order to solve the core prob-
lem, one can search for a symbolic BA-simulation instead of
a non-symbolic one. Observe that the former is a finite struc-
ture which, apart from minor details, is, essentially, a BA-
simulation relation itself (over finite interpretation universe
∆̂), in the sense of[Sardiñaet al., 2008]. Hence, by rely-
ing on iterative procedures for fixpoint computation, one can
build a BA-simulation relation by actually building a sym-
bolic BA-simulation.

5 Discussion
[Berardiet al., 2008] shows how from a simulation relation
an orchestrator generatorcan be built. It is, essentially, an
enriched Mealy machine which, given(i) a states of the ser-
vice community,(ii) a statest of the target service simulated
by s, and(iii) an operationo supposed to be executed bySt,
outputs the whole set of available services that, ins, are ac-
tually able to executeo (there exists at least one) so that the
simulation relation is preserved also in all possible successor
states. Such a machine plays a central role as, from this, one
can easily generate all orchestrators which solve the compo-
sition problem, by just picking up, at each step, one of the
available services returned by the orchestrator generator.

When dealing with finite-state services, given the sim-
ulation relation, computing the orchestrator generator isa
straightforward task: it simply amounts to enumerate all
simulation states and, for each of them, compute allgood
services, i.e., all possiblewitnessesproving that s simu-
latesst (which requires checking for local conditions only).
However, in a setting where the whole community shows
an infinite-state behavior, a different approach needs to be
adopted, since state enumeration is clearly unfeasible.

As we briefly discussed in proof sketches of Theorems 4.1
and 4.2, there exists a correspondence between actual and
symbolic BA-simulations, identified by a set of isomorphisms
between actual and symbolic relations’ elements. Based on
this, rather than computing the actual orchestrator generator
starting from the actual BA-simulation relation, we build a
symbolicBA-orchestrator generator starting from a symbolic
BA-simulation relation. Then, at execution time, given cur-
rent community, target and blackboard states, plus the oper-
ation with actual parameter to be executed, in order to select

a service for operation execution, one transforms, througha
proper isomorphism, current states into symbolic ones and,
then, selects agoodservice from those returned by the sym-
bolic orchestrator. Theorems 4.1 and 4.2 guarantee that such
a choice issound, in the sense that the service chosen in the
symbolic context will be able to execute the requested oper-
ation in the concrete context, too. Also, we get that an or-
chestrator exists if and only if it can be generated in this way,
which shows that the procedure is alsocomplete.

Observe that reducing the service composition problem
in the presence of an infinite-state blackboard to the finite
case makes all previous results about composition by simu-
lation applicable to this case, and, in addition allows a setof
automated tools for system verification and synthesis (e.g.,
TLV [Pnueli and Shahar, 1996] or ANZU [Jobstmannet al.,
2007]) to be exploited for actual solution computation.

References
[Berardiet al., 2003] Daniela Berardi, Diego Calvanese,

Giuseppe De Giacomo, Maurizio Lenzerini, and Massimo
Mecella. Automatic Composition of e-Services that Ex-
port their Behavior. InProc. of ICSOC 2003, pages 43–58,
2003.

[Berardiet al., 2005] Daniela Berardi, Diego Calvanese,
Giuseppe De Giacomo, Rick Hull, and Massimo Me-
cella. Automatic Composition of Transition-based Seman-
tic Web Services with Messaging. InProc. of VLDB 2005,
2005.

[Berardiet al., 2008] Daniela Berardi, Fahima Cheikh,
Giuseppe De Giacomo, and Fabio Patrizi. Automatic
service composition via simulation.International Journal
of Foundations of Computer Science, 19(2):429–451,
2008.

[Burchet al., 1992] Jerry R. Burch, Edmund M. Clarke,
Kenneth L. McMillan, David L. Dill, and L. J. Hwang.
Symbolic Model Checking:1020 States and Beyond.Inf.
Comput., 98(2):142–170, 1992.

[De Giacomo and Sardiña, 2007] Giuseppe De Giacomo and
Sebastian Sardiña. Automatic synthesis of new behav-
iors from a library of available behaviors. InProc. of IJ-
CAI 2007, pages 1866–1871, 2007.

[Deutschet al., 2007] Alin Deutsch, Liying Sui, and Victor
Vianu. Specification and verification of data-driven web
applications.J. Comput. Syst. Sci., 73(3):442–474, 2007.

[Deutschet al., 2009] Alin Deutsch, Richard Hull, Fabio Pa-
trizi, and Victor Vianu. Automatic Verification of Data-
Centric Business Processes . InProc. of ICDT 2009, 2009.

[Hull, 2005] Richard Hull. Web services composition: A
story of models, automata, and logics. In2005 IEEE In-
ternational Conference on Services (SCC 2005), 2005.

[Jobstmannet al., 2007] Barbara Jobstmann, Stefan Galler,
Martin Weiglhofer, and Roderick Bloem. Anzu: A tool
for property synthesis. InProc. of CAV 2007, pages 258–
262, 2007.

[Lustig and Vardi, 2009] Yoad Lustig and Moshe Y. Vardi.
Synthesis from component libraries. InFOSSACS, pages
395–409, 2009.

[Milner, 1971] Robin Milner. An algebraic definition of sim-
ulation between programs. InProc. of IJCAI 1971, pages
481–489, 1971.

[Patrizi, 2009] Fabio Patrizi. Simulation-based Techniques
for Automated Service Composition. PhD thesis,
SAPIENZA, Univ. Roma, 2009.

[Pistoreet al., 2005] Marco Pistore, Paolo Traverso, and
Piergiorgio Bertoli. Automated composition of web ser-
vices by planning in asynchronous domains. InProc. of
ICAPS 2005, pages 2–11, 2005.

[Pitermanet al., 2006] Nir Piterman, Amir Pnueli, and Yaniv
Sa’ar. Synthesis of reactive(1) designs. InVMCAI, pages
364–380, 2006.

[Pnueli and Shahar, 1996] A. Pnueli and E. Shahar. The TLV
system and its applications. Technical report, Weizmann
Institute, 1996.

[Sardiñaet al., 2008] Sebastian Sardiña, Giuseppe De Gia-
como, and Fabio Patrizi. Behavior composition in the pres-
ence of failure. InProc. of KR’08, 2008.

