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1 Introduction services’ capability of interacting with the blackboardiax-

Recently, the issue of automatically building an orchestra cNangding data with it. In addition, transitions may be sabje

able to coordinate the execution of a set of available sesvic © particular conditions over blackboard's current stélace
so to realize a desired service has been investigated (cf. e. the simulation is computed, then, from this, an orchestrato

[Berardiet al, 2003; Pistoret al, 2005; Sardifiat al, 2008; (9enerator) can be directly extracted, though we do not deal

Lustig and Vardi, 200B. One of the most well-known frame- with such isgue_in_this.paper. . )

works to tackle this problem is the so called Roman Model Olurzs(())(l)LJ?t.loznolgglnspr):red g{/BerardleLaI., 2005; DeutschA
([Hull, 2005; Berardet al,, 2003), where services are identi- e';]a " sioh o W ereh ata are éaﬁ_enllnto account. hs
fied with their conversational behavior, represented byefini  SNOWN IS such papers, the main difficulty one gets when

state transition systems. Given a set of (possibly nor}dete}nfinite-state structures are introduced comes from the fac
ministic) available services and a deterministic targetise, ~ that usual techniques and tools for system verification and

the service composition problemmounts to finding atr- synthesis (e.g[Burchgt 6."" 1992; Pnueli and Shahar, 1996
chestratorable to coordinate available services so to ShoW]obstmanret al, 2007; Pitermaret al, 2008) are no longer

the same behavior as the target service. a_lp_plicable, as based on the key hypo_thesis of state space
v g v finiteness. We merge ideas frofSardifiaet al, 2008;

It has been shown that the above problem is deeply reBerardiet al., 2005; Deutsctet al., 2007; 2009, and, start-

lated to that of finding a simulation relatidMilner, 1971 . h - S
between two transition systefBerardiet al, 2008; Sardifia ing from a problem formulation that |_nvolves an |nf|n|t_e{sta
Y blackboard, we show how an equivalent problem instance

et al, 2004. The obtained results essentially show that all~'¢>"~>< s . .

possible orchestrators, even infinite-state ones, arergienie  WHich is finite-state can be built, thus making above men-
from a (variant of a) simulation relation between the targett'OneOI techniques still applicable.
service and the asynchronous product of available services

Such a result is also the basis for practical procedurestosy2 The Framework

thesize the orchestrator, based upon the hypothesis ef stab;5eq on previous achievemeriBerardi et al, 2008:
space finiteness. Even when a shared structure that aeailald 5 difget al. 2004, we consider the problem of’ search’ing
services interact with has been introduced, a.leaviron- o 4 simulation relation between two transition systems as
ment[De Giacomo and Sardifia, 200a" data box[Patrizi,  thecore problenof building an orchestrator that is a compo-
2009, its behavior has been assumed finite-state. sition of a given target service.

In this paper we remove such assumption and propose a |, our setting, we have a countable infinite, dense and to-
new framework where services are able to exchange valuggy ordered universa (e.g., alphanumeric strings with lex-

with a shared data structure, namelyiackboard(i.e., anas- jcographic ordering) with underlying order relatisn Such
sociative list) that can assume infinite states. In padicwe  njverse constitutes thiaterpretation domaih of all rela-
assume that the blackboard has a bounded amount of Spaggna) structures introduced in this work. We assume the ex-

and that it allows a key-based access to its elements. Notabligience of dlackboardB that services can interact with and

the vqlues that pqpulate the blackboard range over an mf'”'tvvhich, in turn, affects services’ evolution.

domainA, which istotally ordered and denseObserve that o ) )

due to the infiniteness ak, the blackboard may traverse in- Definition 2.1 A blackboardschema is a pai3 = (R, b)

finite states. whereR is a binary relation schem# andb € N is asize
In particular, we assume that the community transition sysbound GivenB = (R.b) and a (interpretation) domair,

tem (obtained as the asynchronous product of the transitioft blackboard staté? over A is a finite, functional relation

systems of the available services) has already been cothputel? & A” such thaf | < b.

and we directly study theore problem of finding adata- A blackboard stat is also referred to as aRinterpretation

awaresimulation relation of a determnistic transition systemThe first component of each tuple Ris also called théey
(the target) by a nondeterminstic transition system (the co

munity of available services). Data-awareness comes from *As usually referred to in Database Theory.



value (or simply key) of the tuple. For ease of exposition,
we sometimes blur the notion of blackboaBdand relation
schemak, by often referring, by slight abuse of notation, to
the former as to the latter and viceversa.

We introduce two additional basic notions.

Definition 2.2 (Active domain) Let R be a relation schema
and R a finite extension oR over a generic domairh. The
active domairof R is the setadom(R) C A of all and only
A elements appearing in sonigs tuple.

Such notion naturally extends to a set of relationsag for parametric conditiong

Ri,...,R,:
adom(Ry,).

Definition 2.3 (Relation restriction) Let R be generic re-
lation extension of aritya. Given a generic seb of el-
ements, theestriction of R to S, denotedR|s, is the set
Rls={(r1i,...,7q) ER|r; € SYi=1,...,a}.

In the following, we will need to represent properties of
blackboard states. To this end, we definarsguageof con-
ditions

adom(Ry,...,R,) = adom(Ry) U ... U

Definition 2.4 (Conditions) Given a totally ordered dense
domain A, with order relation <, and a binary relation
schemaR, a parametricconditionover R and A is an ex-
pression of the following form:

e the constant or L (constant terr

e R(x) (functional term), wherey is either the parameter
(symbollp ¢ A or a constant fromA;

e o < 3 (ordering tern), wherea and 3 can be either a
functional term or the parameter, or a constant from
A;
e a boolean combination of above terms, taken as atoms
Parametric conditions are referred to as(p), p standing

— with¢’ € A, ifitis a functional termR(c) such that
(¢,d) € R;
— with a default valuel € A, otherwise;
o if p = ~pthen(R, <) = ¢iff (R, <) F~ ;
o if p = 1 A pathen(R, <) | ¢iff (R, <) = ¢y and

o if o = p1 Vo then(R,<) = ¢ iff (R, <) =1 Or
(R, <) |= ¢2.

(p), if ¢ € Ais the value as-
signed top, theng(c) is a non-parametric condition —whose
semantics is defined above— obtained fig(m), by replacing
each occurrence gf with c.

Default valued in above definition is irrelevant and can be ar-
bitrarily chosen. Observe that conditions (containingnsr
of the forma < 8 where at least one betweenandg is a
functional term of the fornR(c) (c € A) have a special se-
mantics: ifc does not appear as a key in aRis tuple, then
R(c) is not defined and hence cannot be compared with any
value. In order to be able to evaluate the condition alsoif th
case,R(c) is replaced by a default valug Clearly, this situ-
ation is undesirable. To avoid this, one can firalidatethe
condition by testing whetheR(c) holds, i.e., whether com-
parisona < 3 is meaningful. For instance, let= R(c) and
B =c (¢, € A)and consider condition?(c) A R(c) < ¢.
Clearly, it evaluates td iff cis a key of some&R'’s tuple and
R(c) < ¢ wrt < overA, which is a clear semantics.

Next, we introduce operations that can be executeff on

Definition 2.6 (Atomic operations) Given B and A as
above, anatomic operation(over R and A) is any of the
following expressions(i) —R(x) (deletion),(ii) R(x) = v

(insertion/modification{iii) nop (empty operation), wherg

andwv can be either the parameteror a constant fromA.

for the only parameter they can possibly contain. A non-

parametric condition is a condition containing no occur-
rences of paramters and is referred to simplyad\ guardis
a non-parametric condition.

Conditions are evaluated agaiffijttotal dense order relation
< overA and(ii) R interpretations oveA.
Parametric conditions(p) are, in fact, formulae and, as

Definition 2.7 (Operations) Let B and A be as above. An
operationo € O (over R and A) is a set of pairso =
{(61(0), 1 (D)) - - -+ (b (D), vin(p)) }, Where eachs, (p) is
a (parametric) condition oveA and R, andv;(p) is a finite
sequence of atomic operations (oveandA).

We assume a finite set of operatiafis= {oy,...,0,} that

such, need their parameter to be instanced, in order to Ibe ev&an be executed ai. Semantics of general operations, under

uated.

Definition 2.5 (Semantics of conditions)Given a total
dense order relatior< over A and anR interpretation R
over A, the semantics of a non-parametric conditiprover
A (,<)andR s as follows:
if ¢ = T then(R, <) = ¢;
if ¢ = L then(R, <) [~ ¢;
if = R(c), withc € A, then(R, <) | ¢iff 3¢’ € A |
(e,d) € R;
if p = a < Bthen(R, <) | ¢iff (R, <) & ¢, where
¢’ = o < (@ is the condition obtained from by re-
placing each term (i.eq and 3):

— with itself, if it is a constant from\;

parameter instantiation, is defined based on atomic’s one.

Definition 2.8 (Semantics of atomic operationsjet B
and A be as above and considerfa state R over A. Given
an atomic operation (with actual parameten)(p) = —R(p)
or op(p) = R(p) = v or op(p) = nop, Whereé,v €A a
B state R’ is an R atomic successor undep(p), denoted

PO pr it

e if op(p) = —R(p), then(r,+') € R iff (r,7') € Rand
T # D

e if op(p) = R(p) = v, then(r,r’) € R'iff (i) (r,r’)
andr # p or (i) (r,7") = (p,v) ;

R

€R

e if op(p) = nop, thenR’ = R;



Semantics of operation®(p), wherep ¢ A, is defined as
above, given a constapte A intended to replace all occur-

rences obp, thus obtaini_ng)p(g) with no parameters.
Definition 2.9 (Semantics of operations)Let R and A be
as above and consider aR interpretation? over A. Given
an Operatlom = {<¢1 (p)a 141 (p)>a cees id)m(p)v VUm (p)>} and
avaluep € A, an R interpretation R’ is an R successor
under(o, p), denoted? 2L R iff:

e there exists € {1,...,m} suchthat{R, <) k= ¢;(p);

e for i as above and;(p) = opi(p) - - - opi, (p) (li > 0),

there existR,, .. Opl—(,g) Ry, (i)

R, Roforj=1,....1 and(ii) By, = R.
We can now defineservices Intuitively, they repre-
sent high-level behaviors that interact with a blackboB&rd
through operations i.

., Ry, such that(i) R

Definition 2.10 (Services)Given A and B as above, a
nondeterministic, guarded, blackboard-aware servioe
simply BA-servicg over B and A, is a tuple S
(0, S, 50, G, 0,57), where:

e O C O is a finite set of service’speration specifica-
tions

S is the finite set of servicestates
sg € Sis the (single) service'mitial state
G is the finite set of serviceuardsover R and A;

0 C S x G x O x S isthe service'dransition relation
We freely interchange expressiofis g, o, s’) € p and

‘ 9,0

‘s = 5’ (is) in S”;
e 57 C S isthe finite set of servicefinal states

Moreover, for convenience, for each service, we define the f

nite setC of all constants appearing either i) a condition

1. Ris a B state (i.e., such thatidom(R)| < b);
2. if s, € Sf thens € S7;

gt,0 4

3. for each transitions; == s} in S; s.t. (R, <) = g and
for each actual parametegr € A such that for somé’,

RZE R

(a) there exists a transition 22 & in S such that
(R, <) g

(b) for all transitions(i) s 2% s’ in S as above and
(i) all R 25 R", (s}, s', R") € ¥ holds.

Analogously to a (ND-)simulation relation (¢Berardiet al,,
2008; Sardifiat al, 2009), a BA-simulation relation is in-
tended to capture the ability &t to mimickingS; behavior
onB.

We are now ready to formally state our problem:

Definition 3.2 (Core DA-service composition problem)
Consider a blackboard schenia whose states are defined
over an infinite, countable, totally ordered and dense do-
main A. In addition, let(i) S; be a deterministictarge)
DA-service overB and A and (i) S¢ be another, possibly
nondeterministic, DA-service oveB and A. The core
DA-service compaosition probleris the problem of finding a
BA-simulation relation o&; by S¢ on B and A.

Clearly, BA-simulation relations are, in general, infinite
due to infiniteness of\, that input parameters range over,
which yields an infinite set oB states. Hence, procedures
based on iterative fixpoint computations, such as the one de-
finedin, e.g.[Sardifiaet al, 2004, are no longer useful, since
there is no finite bound on the number of iterations. How-
ever, through an abstraction procedure, one can focus only o
a finite set of actual values plus some symbolic values, so to
reduce the problem to, essentially, searching for a sinaulat
Felation in a setting where states and data are finite.

or effect of some operation specification with formal param-

eterso € O, or (ii) in some guard.

4 Symbolic Simulation

Service transitions depend on the chosen operation and néfe define asymbolic simulationi.e., a simulation relation

on the actual parameter which is provided only at runtime.
We are interested in checking whether, &ody, given two
services over a same blackbodsgd one cansimulate i.e.,

with additional information about value ordering. Suclustr
ture is, indeed, &nite representation of an infinite simulation
relation. As a consequence, one can compute the simulation

show the same behavior as, the other one. Informally, then this, rather than on an infinite structure (of course, ithis
problem amounts to check whether a service is at least as caet required ifA is finite).

pable as the other one (that is tsieulatedone). In the fol-
lowing Section, we clarify such notion, by providing a folma
statement of the problem.

3 Simulation

We start by introducing our notion of simulation relation be
tween two services defined over the same blackboard.

Definition 3.1 Consider a possibly nondeterministic service
Sc¢ and a deterministic oné;, both defined over the same
blackboardB. A blackboard-awarsimulation relation, BA-
simulation for short, ofS; by S¢ over B and A is a relation

¥ C S, x S x A? suchthat(s;, s, R) € ¥ implies:

Definition 4.1 Consider two services, S; defined over a
same blackboardB (R,b). LetC = CyUC¢
{e1,...,cm} be the (finite) set of constants contained in ei-
ther operations or guards appearing, in turn, in eith&y

or Se. LetA = {ay,..., a9} UC, where{ag,...,axn} N

A = (. A symbolic BA-simulation relation is a relation
3 C S x S x A? x A% such that(s,, s, R, <) € 3 implies:

1. Ris anR interpretation overA such thafadom(R)| <

<

2. < is atotal order relation overdom(R) U C, such that

<
<le=<|c;



3. foreach total order relatioég obtained by extending elements into a finite set of equivalence classes, repedent
with a valuep € A (possibly contained indom(R)UC) by elements. O

such that<, | 5= <, for each transitions; 2% s Importantly, the viceversa also holds:
, A al LA 0p o Theorem 4.2 Given a blackboard3 and an interpretation
in Sy with (R, <) |= g: and (for somel’) B — R',  gomainA as above, plus a target servicd and an addi-
where operation conditions are evaluated ov&y, the  tional serviceSc over B, consider a symbolic BA-simulation
following holds: relation 3 of S; by S on B. There exists a corresponding
(a) there exists a transition 2% s’ in S such that BA-3|muIa.1t|on relatiort: O,f St by Sc overB. _
<R g Proof:A (Hint) The proof is based on two steps. First, from
B . , go - each tuple, a set ofisomorphictuples is built through a
(b) for all tr?nsfjt;)on?o) s = s'in S, as ?boye, and mapping which is the identity off and assigns each value in
(i) all R — R, as aboves;,s’,R”,<') €  adom(R)avalueinA. Observe that this is made possible by

adom(

3, where §|F = §'|F, for F = adom(i) ) < density. Next, one shows, with an inductive argument, that
adom(<). the whole set of so obtained tuples is, in fact, a BA-simorati
- relation. O

A symbolic BA-simulation relation is intended to capture
only the information actually relevant in a BA-simulatiogr
lation: (i) the state that each service is {ii) the whole set
of constants appearing in eith8y or S¢ specifications and
(iii) instead of theactual values contained ir?, their mu-
tual order and their relationships with constants frSpand

Above results show that, in order to solve the core prob-
lem, one can search for a symbolic BA-simulation instead of
a non-symbolic one. Observe that the former is a finite struc-
ture which, apart from minor details, is, essentially, a BA-
simulation relation itself (over finite interpretation uaise

Sc. Indeed, it can be shown that, as long as constant values): I the sense ofSardinaet al, 2004. Hence, by rely-
from S; andSc specification are kept unchanged, renamingind On itérative procedures for fixpoint computation, one ca
values inadom(R) while preserving the mutual order does PUild @ BA-simulation relation by actually building a sym-
not affect condition evaluations and, consequently, trespo  P0li¢ BA-simulation.
bility of executing operations and their effects on the kiac . .
board. Since the blackboard contains at nitiselements, 5 Discussion

some of which may come frof, with our abstraction ap- [Berardiet al, 2009 shows how from a simulation relation
proach one can provide an abstract description of each- origan orchestrator generatocan be built. It is, essentially, an
nal BA-simulation tuple, using at mo8b + 1 symbolic val-  enriched Mealy machine which, givéi a states of the ser-

ues, the additional one being intended to represent thalactuvice community(ii) a states; of the target service simulated
input parameter. by s, and(iii) an operatior supposed to be executed 8y,

The following theorem shows that one can exploit a sym-outputs the whole set of available services that,iare ac-
bolic BA-simulation relation in order to solve the BA-sergi  tually able to execute (there exists at least one) so that the
composition core problem. simulation relation is preserved also in all possible sesoe

states. Such a machine plays a central role as, from this, one
Theorem 4.1 Given a blackboard3 and an interpretation  can easily generate all orchestrators which solve the cempo
domainA as above, plus a target serviGg and an additional  sjtion problem, by just picking up, at each step, one of the
serviceSc over B, consider a (possibly infinite) simulation available services returned by the orchestrator generator
relation 3 of S; by Sc over B. There exists a corresponding  When dealing with finite-state services, given the sim-

symbolic simulation relatio® of S; by S¢ over B, with A = ulation relation, computing the orchestrator generatoa is
{ag,...,a2} UC, whereC = {c1,...,cn }isthe setof all straightforward task: it simply amounts to enumerate all
constants imA occurring inS; or S¢ specifications. simulation states and, for each of them, computegatbd

o . - services, i.e., all possiblevitnessesproving thats simu-
Proof: (Hint) The proof is based on building, for each tuple |5ie5, (which requires checking for local conditions only).
t = (s, s, R) € ¥, amappingh : adom(R) UC — A, However, in a setting where the whole community shows

which is the identity orC’, such that(i) R isomorphically  an infinite-state behavior, a different approach needs to be
maps into a relationz and (i) <[,qom(ryuc iSOMOrphi-  adopted, since state enumeration is clearly unfeasible.

cally maps into<. Observe that this is made possible by As we briefly dispussed in proof sketches of Theorems 4.1
R boundedness. Starting from this, one shows that the sand 4.2, there exists a correspondence between actual and
obtained symbolic tuplé = <St7571§7 <) is isomorphicto symbolic BA-simulations, |de_nt|f|ed_byaset of isomorphgsm
t = (s, s, R), in the sense that) an operation, possibly with between actual and symbolic relations’ elements. Based on
actual parametep, is executable or;, s and R iff it is exe-  thiS, rather than computing the actual orchestrator géorera

— - . starting from the actual BA-simulation relation, we build a
cutable on,, s and I when all conditions are evaluated over gy mpyjicBA-orchestrator generator starting from a symbolic
<p and(ii) that the obtaineduccessauples!’ = (s;, s, ') ga_simulation relation. Then, at execution time, given-cur
andt = (s}, s, R',<') are pairwise isomorphic in the same rent community, target and blackboard states, plus the-oper
sense. In other words, one can partition the infinite sefof ation with actual parameter to be executed, in order to selec



a service for operation execution, one transforms, thraugh [Lustig and Vardi, 200P Yoad Lustig and Moshe Y. Vardi.
proper isomorphism, current states into symbolic ones and, Synthesis from component libraries. ROSSACSpages
then, selects goodservice from those returned by the sym-  395-409, 2009.
bolic c_)rchestrator_. Theorems 4.1 and 4.2 guarantee thht SU€Milner, 1971 Robin Milner. An algebraic definition of sim-
a choice issound in the sense that the service chosen in the  |ation between programs. Froc. of IJCAI 1971 pages
symbolic context will be able to execute the requested oper- 481-489, 1971.

ation in the concrete context, too. Also, we get that an or- o ) L . )
chestrator exists if and only if it can be generated in thig,wa [Patrizi, 2009 Fabio Patrizi. Simulation-based Techniques

which shows that the procedure is atsamplete for Automated Service Composition PhD thesis,
Observe that reducing the service composition problem SAPIENZA, Univ. Roma, 2009.

in the presence of an infinite-state blackboard to the finitdPistoreet al, 2009 Marco Pistore, Paolo Traverso, and

case makes all previous results about composition by simu- Piergiorgio Bertoli. Automated composition of web ser-

lation applicable to this case, and, in addition allows aofet vices by planning in asynchronous domains. Piioc. of

automated tools for system verification and synthesis,(e.g. ICAPS 2005pages 2-11, 2005.

TLv [Pnueli and Shahar, 19D6r ANzu [Jobstmanret al,  [pjtermanet al, 2004 Nir Piterman, Amir Pnueli, and Yaniv
2007) to be exploited for actual solution computation. Sa‘ar. Synthesis of reactive(1) designs. MMCAI, pages
364-380, 2006.
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