
1

Chronolog: It’s about Time for Golog
GIUSEPPE DEGIACOMO AND MAURICE PAGNUCCO

ABSTRACT. In this paper we introduce a notion of discrete time into the cognitive
robotics languages of the Golog family. Our variant of Golog, namedChronolog, is
achieved in a rather straightforward manner but we show thatit allows one to express
a rich variety of temporal concepts. It is based on exogenoustick actions generated
by an external “clock” and a special functional fluent to keeptrack of the passing of
time. Moreover, we consider on-line and off-line versions of our proposal as well as
real-time and reactive variants and the ability to deal withexogenous actions.

1 Introduction
In this paper we introduce a notion of discrete time into the cognitive robotics language
Golog [Levesque, Reiter, Lespérance, Lin, and Scherl 1997; Reiter 2001]. The main ad-
vantages of our approach are that it is relatively straightforward yet novel and surprisingly
expressive. We consider that an external “clock” will generate discrete clock “ticks” and
that their arrival will be kept track of by a special functional fluent for time.

The introduction of time into Golog and the situation calculus is not new. It has already
been considered by several authors. Grosskreutz and Lakemeyer in describing their Golog
variant cc-Golog [Grosskreutz and Lakemeyer 2003] suggestthe use of an explicit clock
with discrete clock tick actions but object to it due to the problem of determining the correct
granularity of clock ticks. They also object to this on the basis that the execution traces
would be “glutted with irrelevant ‘clock tick’ actions”. Gans et al. [2003] also use the
notion of clock ticks in Golog but do not develop the idea formally. Reiter [1996, 1998,
2001] considers instantaneous actions with a temporal argumentA(x̄, t) denoting that the
action occurred at timet. He is able to deal with continuous actions, concurrent actions and
actions with duration by allowing processes (or events) to have a start action that initiates
the process and an end action that terminates it. This approach to actions with duration is
based on one developed by Pinto [1997]. Davis [1990] also discusses time in the situation
calculus and draws his account mainly on the work of McDermott [1982]. Here a fluent
clock time associates a time with situations. Situations can also belong to intervals (sets
of situations belonging to the interval). This allows for continuous actions and branching
time.

In this paper, we give a nice and simple framework to deal withdiscrete time, under cer-
tain assumptions. We consider our agent’s behavior to be controlled by (variants of) Golog
programs, and we consider the discrete passing of time (i.e., clock ticks) to be outside the
control of the agent. We then make the simplifying assumption that program execution is
orders of magnitudes quicker than the external ticking. Andwe equip agents’ programs
with simple abilities for testing time flow and synchronize with time ticks when needed. In
this setting we show that we can actually go surprisingly farin modeling sophisticated time
related properties within programs.

Giuseppe de Giacomo and Maurice Pagnucco

Again we stress that the simplicity and the effectiveness ofthe approach rely strongly on
the assumption that the computation of the agent is so fast that it can execute any amount
of computation in between time ticks. This is obviously an assumption that we cannot hope
to hold in every context. However there are contexts where itcan be thought of as a good
approximation of reality. Obvious examples are robots thatperform physical movements
directed by a high level control program.

The remainder of the paper is organized as follows. In the next section we provide some
background to the situation calculus and the cognitive robotics language Golog and some
of its variants. In Section 3 we introduce our notion of time and the axioms required to
capture it while in Section 4 we introduce some additional syntactic constructs to enhance
readability. Section 4 also illustrates the expressiveness of our approach with a list of tem-
poral notions that are captured. Section 5 discusses the execution of Chronolog programs.
We provide some examples in Section 6. In Section 7 we show themodifications required
of the IndiGolog [De Giacomo and Levesque 1999] interpreterto implement Chronolog
and in Section 8 we show how to implement a timed search construct.

2 Preliminaries
The basis for Golog and its variants is provided by the situation calculus [McCarthy 1963;
McCarthy and Hayes 1969; Reiter 2001]. We will not go over thelanguage in detail here
except to note the following components: there is a special constantS0 used to denote
the initial situation, namely that situation in which no actions have yet occurred; there
is a distinguished binary function symboldo wheredo(a, s) denotes the situation resulting
from performing the actiona at situations; relations whose truth values vary from situation
to situation, are called (relational)fluents, and are denoted by predicate symbols taking a
situation term as their last argument; and, there is a special predicatePoss(a, s) used to
state that actiona is executable in situations.

An action theory of the following form is a common scenario [Reiter 2001]:

• Axioms describing the initial situation,S0;

• Action precondition axioms, one for each primitive actiona, that are used to charac-
terizePoss(a, s)—when it is possible to perform actiona at situations;

• Successor state axioms, one for each fluentF , stating the conditions under which
F (~x, do(a, s)) holds as a function of what holds in situations; these take the place
of effect axioms, but also provide a solution to the frame problem;

• Unique names axioms for the primitive actions; and,

• Some foundational, domain independent axioms [Levesque and Lakemeyer 2000;
Reiter 2001].

Next we turn to programs. The programs we consider here are based on the ConGolog
language defined in [De Giacomo, Lespérance, and Levesque 2000], which provides a rich
set of programming constructs summarized below:

α primitive action
φ wait for a condition
δ1; δ2 sequence
δ1 | δ2 nondeterministic branch

Chronolog: It’s about Time for Golog

π x. δ nondeterministic choice of argument
δ∗ nondeterministic iteration
if φ then δ1 else δ2 endIf conditional
while φ do δ endWhile while loop
δ1 ‖ δ2 concurrency with equal priority
δ1 〉〉 δ2 concurrency withδ1 at a higher priority
δ|| concurrent iteration
〈 φ → δ 〉 interrupt
p(~θ) procedure call1

Among these constructs, we notice the presence of nondeterministic constructs. These
include(δ1 | δ2), which nondeterministically chooses between programsδ1 andδ2, π x. δ,
which nondeterministically picks a binding for the variable x and performs the program
δ for this binding ofx, andδ∗, which performsδ zero or more times. It should be noted
that these forms of nondeterminism represent “reasoned” choices; during execution any
choices to be made are carried out on the basis of what will guarantee termination of the
program. Also notice that ConGolog includes constructs fordealing with concurrency.
In particular(δ1 ‖ δ2) expresses the concurrent execution (interpreted as interleaving) of
the programsδ1 andδ2. Observe that a program may become blocked when it reaches
a primitive action whose preconditions are false or a wait action φ? whose conditionφ
is false. Then, execution of(δ1 ‖ δ2) may continue provided another program executes
next. Beside(δ1 ‖ δ2) ConGolog includes other constructs for dealing with concurrency,
such as prioritized concurrency(δ1 〉〉 δ2), and interrupts〈φ → δ 〉. In (δ1 〉〉 δ2), δ1 has
higher priority thanδ2, andδ2 may only execute whenδ1 is done or blocked.δ|| is like
nondeterministic iterationδ∗, but the instances ofδ are executed concurrently rather than
in sequence. Finally, an interrupt< ~x : φ → δ > has variables~x, a trigger conditionφ,
and a bodyδ. If the interrupt gets control from higher priority processes and the condition
φ is true for some binding of the variables, the interrupt triggers and the body is executed
with the variables taking these values. Once the body completes execution, the interrupt
may trigger again. We refer the reader to [De Giacomo, Lespérance, and Levesque 2000]
for a detailed account of ConGolog.

In [De Giacomo, Lespérance, and Levesque 2000], a single step transition semantics
in the style of [Plotkin 1981] is defined for ConGolog programs. Two special predicates
Trans andFinal are introduced.Trans(p, s, p′, s′) means that by executing programp
starting in situations, one can get to situations′ in one elementary step with the programp′

remaining to be executed, that is, there is a possible transition from the configuration(p, s)
to the configuration(p′, s′). Final(p, s) means that programp may successfully terminate
in situations, i.e., the configuration(p, s) is final.2

Offline executionsof programs, which are the kind of executions originally proposed for
Golog and ConGolog [Levesque, Reiter, Lespérance, Lin, and Scherl 1997; De Giacomo,

1For the sake of simplicity, we will not consider procedures in this paper.
2For example, the transition requirements for sequence are

Trans([p1; p2], s, p′, s′) ≡

F inal(p1, s) ∧ Trans(p2, s, p′, s′) ∨

∃q′. T rans(p1, s, q′, s′) ∧ p′ = (q′; p2)

i.e., to single-step the program(p1; p2), eitherp1 terminates and we single-stepp2, or we single-stepp1 leaving
someq′, and(q′; p2) is what is left of the sequence.

Giuseppe de Giacomo and Maurice Pagnucco

Lespérance, and Levesque 2000], are characterized using theDo(p, s, s′) predicate, which
means that there is an execution of programp that starts in situations and terminates in
situations′:

Do(p, s, s′)
def
= ∃p′.T rans∗(p, s, p′, s′) ∧ Final(p′, s′),

whereTrans∗ is the reflexive transitive closure ofTrans. An offline execution of program
p from situations is a sequence of actionsa1, . . . , an such that:

Axioms |= Do(p, s, do(an, . . . , do(a1, s))).

Observe that an offline executor is in fact similar to a planner that given a program, a
starting situation, and a theory describing the domain, produces a sequence of actions to
execute in the environment. In doing this, it has no access tosensing results, which will
only be available at runtime. See [De Giacomo, Lespérance,and Levesque 2000] for more
details.

In [De Giacomo and Levesque 1999], IndiGolog, an extension of ConGolog that deals
with online executions with sensing is developed. The semantics defines anonline execu-
tion of an IndiGolog programp starting from a historyσ, as a sequence ofonline configu-
rations(p0 = p, σ0 = σ), . . . , (pn, σn) such that fori = 0, . . . , n−1:

Axioms ∪ {Sensed[σi]} |=
Trans(pi, end[σi], pi+1, end[σi+1]),

σi+1 =







σi if end[σi+1] = end[σi],
σi · (a, x) if end[σi+1] = do(a, end[σi])

anda returnsx.

An online execution successfully terminatesif

Axioms ∪ {Sensed[σn]} |= Final(pn, end[σn]).

There is no automatic lookahead in IndiGolog. Instead, asearchoperatorΣ(p) is intro-
duced to allow the programmer to specify when lookahead should be performed [De Gia-
como and Levesque 1999; De Giacomo, Lespérance, Levesque,and Sardina 2002].

3 Time in our Framework
We presume the existence of an external “clock” that generates exogenoustick actions.
All actions, includingtick, are instantaneous however and have no duration. While an
action may occur after a certain number oftickst have occurred and so can be considered
to have occurred att, it takes no time for the action itself to be performed. We shall discuss
how actions with duration may be handled later. No further assumptions are made about
the clock, or the regularity oftick actions, etc.

Chronolog introduces the special functional fluentTimeand exogenous actiontick. In
the initial situation,Timehas the value0 and is incremented by one each time an exogenous
tick occurs. In other words,Timeserves to keep track of the number of exogenousticks
that have occurred. Given these assumptions we can proceed as follows.
The initial state axiom for time:

T ime(S0) = 0

Chronolog: It’s about Time for Golog

The preconditions fortick are:

Poss(tick, s) ≡ true

The successor state axiom forTimeis:

T ime(do(a, s)) = t ≡
a = tick ∧ T ime(s) = t− 1 ∨
a 6= tick ∧ T ime(s) = t

Observe that these axioms conform to the requirements for Reiter’s Action Theories and
hence we can use regression and, more generally, all resultson Basic Action Theories apply
to them as well.

These axioms can be added to the standard Golog, ConGolog andIndiGolog axioms in
a straightforward way as described in Section 2. The repercussions of doing so, we shall
return to shortly. First however, it will be convenient to introduce some additional syntactic
constructs that will simplify our presentation. These willbe defined in terms of the notions
introduced above.

4 Synchronization
Now we turn toChronologprograms. These are simply IndiGolog programs thataccess
the time tickingby testing the fluentT ime(s). However, here we make the fundamental
assumption that no time ticks occur during the execution of aChronolog program, unless
it explicitly synchronizeswith time. In practice we are requiring that Chronolog programs
can be executed order of magnitudes quicker than time ticking.

Let us look at how synchronization can be performed in a Chronolog program. The most
basic synchronization facility is to wait for the passing ofa certain number of clock ticks.
We introduce the constructwait(t) wheret is an integer number ofticks and define it as
follows.

wait(t) ≡ πt′.[(T ime = t′)?; (T ime = t′ + t)?]

or, equivalently,

wait(t) ≡ πt′.[(t′ = T ime+ t)?; (T ime = t′)?]

In other words,wait(t) in a Chronolog program causes the program to wait fort exogenous
tick actions to occur.

The definitions above make use of Chronolog’s blocking wait construct?. The first
instance is used to determine the current time (the number ofclock ticks that have occurred
since the system was started in the initial situationS0). The second instance causes the
Golog program to block until an additionalt exogenoustick actions have occurred. It
can be easily seen thatwait(1) can be used to synchronize with the next clock tick.wait(0)
essentially does nothing.

Notice that here the assumption that Chronolog execution ismuch quicker than time
ticking plays an important role. If this was not the case, andan exogenous tick occurs after
the execution of the first blocking wait construct? of await(0) but before the second, the
program will block forever and never terminate.

Other basic synchronization constructs that can be immediately expressed in Chronolog
as well include the following.

Giuseppe de Giacomo and Maurice Pagnucco

wait until time t:
(T ime = t)?

wait until after time t:
πu.[(u ≥ t)?; (T ime = u)]

wait no more than time t:
πu.[(u ≤ t)?; (T ime = u)]

Using these notions it turns out that we can express a surprisingly rich set of constructs.
To illustrate the range of possibilities we list a number of useful temporal concepts that our
approach can provide. To simplify notation we make the assumptions that unless otherwise
statedt ≥ T ime and also,t ≤ t′.

perform action a at t:
πu.[(u = t− T ime)?;wait(u); a]

perform action a before t:
πu.[(u ≤ t− T ime)?;wait(u); a]

perform action a after t:
πu.[(u ≥ t− T ime)?;wait(u); a]

In the following constructs we consider actions with duration. start a indicates the initi-
ation of the action andend a indicates its termination. We consider actions with duration
further in the discussion.

perform action a between t and t′:
πu.[(u = t− T ime)?;wait(u); start a;wait(t′ − t); end a]

perform action a for time t:
start a; wait(t); end a

perform action a for at least time t:
πu.(u ≥ t)?; start a; wait(u); end a

perform action a for no more than time t:
πu.(u ≤ t)?; start a; wait(u); end a

perform action a at t for time t′:
(T ime = t)?; start a; wait(t′); end a

perform action a at t for at least time t′:
(T ime = t)?;πu.(u ≥ t′); start a; wait(u); end a

perform action a at t for no more than time t′:
(T ime = t)?;πu.(u ≤ t′); start a; wait(u); end a

perform action a start before t for time t′:
πu.(u ≤ t− T ime)?; wait(u); start a; wait(t); end a

perform action a start before t for at least time t′:
πu.(u ≤ t− T ime)?; wait(u); πu′.(u′ ≥ t′)?; start a;
wait(u′); end a

Chronolog: It’s about Time for Golog

perform action a start before t for no more than t′:
πu.(u ≤ t− T ime)?; wait(u); πu′.(u′ ≤ t′)?; start a;
wait(u′); end a

perform action a start after t for time t′:
πu.(u ≥ t− T ime)?; wait(u); start a; wait(t); end a

perform action a start after t for at least time t′:
πu.(u ≥ t− T ime)?; wait(u); πu′.(u′ ≥ t′)?; start a;
wait(u′); end a

perform action a start after t for no more than time t′:
πu.(u ≥ t− T ime)?; wait(u); πu′.(u′ ≤ t′)?; start a;
wait(u′); end a

start action a before t and complete it at t′

πu.(u ≤ t− T ime)?; wait(u); start a;
πu′.(u′ = t′ − T ime)?; wait(u′); end a

start action a before t and complete it before t′

πu.(u ≤ t− T ime)?; wait(u); start a;
πu′.(u′ ≤ t′ − T ime∧ u′ ≥ u)?; wait(u′); end a

start action a before t and complete it after t′

πu.(u ≤ t− T ime)?; wait(u); start a;
πu′.(u′ ≥ t′ − T ime)?; wait(u′); end a

start action a after t and complete it before t′

πu.(u ≥ t− T ime∧ u ≤ t′ − T ime)?; wait(u); start a;
πu′.(u′ ≤ t′ − T ime∧ u′ ≥ u)?; wait(u′); end a

start action a after t and complete it after t′

πu.(u ≥ t− T ime∧ u ≤ t′ − T ime)?; wait(u); start a;
πu′.(u′ ≥ t′ − T ime∧ u′ ≥ u)?; wait(u′); end a

start action a at t and complete it after t′

πu.(u = t− T ime)?; wait(u); start a;
πu′.(u′ ≥ t′ − T ime)?; wait(u′); end a

4.1 Triggers and Exceptions

By using ConGolog’s interrupt construct, we can arrange forcertain actions to occur at a
particular time or on a regular basis while executing a program (denoted byδ here).

trigger action a at time t:
〈(T ime = t) → a〉 〉〉δ

trigger action a at every t ticks:
〈((T ime%t) = 0) → a〉 〉〉δ

Where% is the modulus operator.

Giuseppe de Giacomo and Maurice Pagnucco

5 Chronolog execution
To understand the semantics of a Chronolog program, one has to keep in mind that a
Chronolog program is not executable in isolation in general, but needs to be executed con-
currently with a process emitting ticks in a continuous way.Also the ticking should be
slow enough to allow for complete execution of the parts of a Chronolog program that do
not include synchronization with time.

Observe that even if our program does not contain concurrency explicitly, in order to
understand the semantics we need to resort to concurrency. Hence the semantics, even for
the offline version, must be single-step. We use notions fromConGolog [De Giacomo,
Lespérance, and Levesque 2000] to discuss the execution ofChronolog programs.

The next question to settle is how we model the ticking process. The ticking must go
on forever in principle, but in practice it is sufficient to have enough ticks to complete the
execution of the ConGolog program: i.e., a finite but unbounded number of ticks. Hence
we can render in ConGolog the ticking process simply as:

tick∗

Finally we must formalize the execution of a ConGolog program δ concurrently with the
ticking process, and since we said that the Chronolog program executes freely unless a
synchronization with the ticking is required, we can formalize the execution of the program
δ together with the ticking processtick∗ as:

δ 〉〉 tick∗

In this way if the Chronolog program can execute (make a transition) it does so, and only
when it synchronizes with a tick (i.e., waits for a given tick) does it stop and allow the
ticking to go on.

Observe that when we turn to the online semantics, we must payspecial attention to the
search operator. Indeed, we can retain IndiGolog’s normal searchsearch(δ) that will not
take time synchronization into account. But can also introduce a “timed” search for parts
of Chronolog programs that require time synchronization. This last variant of search can
be defined on the basis of the original one as follows:

timed search(δ) ≡ search(δ 〉〉 tick∗)

That is, we search as normal but simulate the occurrence ofticks as required by the
program.

6 Examples
In the following examples we shall omit the specification of action precondition axioms
and successor state axioms for fluents as they do not add anything to what we’re trying
to demonstrate here. Furthermore, action and fluent names will give an indication of their
purpose.

One common use for temporal notions is to arrange the scheduling of regular actions.
For instance, consider the cron daemon under Unix. It’s purpose is to schedule the regular
execution of certain programs for effecting system maintenance tasks. As we have seen
above when discussing triggers, this can be easily implemented in Chronolog through the
use of ConGolog’s interrupt mechanism. Here is an example ofhow we might schedule
regular maintenance tasks in Chronolog.

Chronolog: It’s about Time for Golog

〈((T ime%3600) = 0) → hourly task〉 〉〉
〈((T ime%86400) = 0) → daily task〉 〉〉
〈((T ime%604800) = 0) → weekly task〉 〉〉
〈((T ime%2592000) = 0) → monthly task〉 〉〉
〈true → wait(1)〉

Note that in this example we would need to use action preconditions to ensure that an action
is only executed once each time the interrupt’s condition istrue. However, an advantage
of our execution model is that more than one rule may fire in between clock ticks. For
example, when the time is a multiple of 86400, we can be sure that thehourly task will
also be performed since 86400 is divisible by 3600. If we wanted to ensure that only one
interrupt was triggered between any two clock ticks (and assuming no other exogenous
actions), we could add await(1) after all other actions that are to be executed in the body
of the interrupt. Another thing to be noted in this example isthat we have not attempted to
model Unix’ multitasking abilities.

Of course, it is also possible to use preconditions that involve time. For example, sup-
pose you wish to serve coffee to three people given when they will be available (in this case,
between when they arrive and when they leave). A robotr can serve a personx provided
that the person is around and that they are thirsty. Oncex is served they are not thirsty
anymore. The precondition can be specified in Chronolog as follows.

Poss(serve(x), s) ≡
T ime ≤ arrive(x, s) ∧ T ime ≥ leave(x, s) ∧ thirsty(x, s))

We omit the successor axiom, and just say that they model the fact that once a person
has been served they are not thirsty anymore, while arrival and leaving time remain fixed
(situation independent).

A possible initial situation could be described as follows:

arrive(giuseppe, S0) = 10, leave(giuseppe, S0) = 20
arrive(maurice, S0) = 15, leave(maurice, S0) = 30
arrive(bob, S0) = 1, leave(bob, S0) = 50
thirsty(giuseppe, S0), thirsty(maurice, S0),
thirsty(bob, S0)

A Chronolog program to decide the ordering of the serving of those that want coffee is

timedsearch(
(πx.serve(x) | wait(1))∗; (∀x.¬thirsty(x))?

)

This program will attempt to find a sequence of actions (a plan) to serve everyone while
they are around. More complex variants where we take into account the time the robots
need to serve someone can also be easily modeled.

7 On-line Real-Time Interpreter
Implementing Chronolog requires a fairly straightforwardmodification to the IndiGolog
interpreter [De Giacomo and Levesque 1999] by modifying theindigo(E, H) predicate
and adding theexec inst(E, H, E1, H1) predicate. Thewait for a tick(H1,
H2) predicate blocks until an exogenoustick action occurs. Theexec inst predicate

Giuseppe de Giacomo and Maurice Pagnucco

executes as many primitive (instantaneous) actions as possible. In other words, the idea is
to execute as much of the program as possible (since primitive actions in the situation cal-
culus are considered to be instantaneous) and then check forthe occurrence of exogenous
ticks.

indigo(E, H) :-
exec_inst(E, H, E1, H1),
(final(E1, H1) ->

true;
(wait_for_a_tick(H1, H2), indigo(E1, H2)).

exec_inst(E, H, E, H) :-
final(E, H).

exec_inst(E, H, E2, H2) :-
trans(E, H, E1, H1), !,
exec_inst(E1, H1, E2, H2).

exec_inst(E, H, E, H) :-
not trans(E, H, _ , _),
not final(E, H).

Modifying IndiGolog in this way means that the program essentially behaves in the fol-
lowing manner (whereδ is a Chronolog program)δ〉〉tick∗ as desired. Notice that the
underlying transition semantics, in terms oftrans andfinal, is on-line.

8 Conclusions
We have introduced a notion of discrete time into the situation calculus and the cognitive
robotics language Golog. Our Golog variant, called Chronolog, achieves this through the
introduction of a special functional fluentT ime to keep track of the passage of time and
exogenoustick actions assumed to be generated by an external clock. All we require is a
small number of additional axioms, yet the resulting framework allows us to express a sur-
prising number of temporal notions. We have also described the execution of a Chronolog
program and introduced the notion of a timed search.

Several extensions that follow in the same spirit are possible. It would be possible to
introduce a constructwait(action) that waits until actiona occurs and implement it in a
similar way towait(t). Similarly we could introducewait; wait for an exogenous action
(any exogenous action) to occur.

Our introduction of time into Golog would allow one to easilydeal with actions with du-
ration. These would need to be “clipped” along the lines thatPinto [Pinto 1997] deals with
such actions, so that if we have an actiona, it will be clipped intostart a andend a. See
also the discussion regarding ConGolog [De Giacomo, Lespérance, and Levesque 2000].
Note that it may not be easy to split all actions in this way.

We may also want to introduce constructs into Golog to explicitly allow for such actions.
For example:

Clipped(a, start a, end a)

Chronolog: It’s about Time for Golog

means that actiona can be clipped and hasstart a as the initiation of actiona andend a

as the termination of actiona. Note thatend a can be specified as exogenous or not. In
some cases we do not want an exogenous termination but want toexplicitly terminate the
action at a particular time. It might be interesting to investigate the possibility of allowing
end a to be both exogenous and primitive so that you can do things like: “perform action
a and if it has not terminated before a particular condition istrue, (explicitly) terminate the
action.”

Precondition axioms and effect axioms (equivalently, successor state axioms for fluents)
would need to be supplied for these actions. What is the relationship between the precon-
ditions and effect/successor state axioms of the three actions? Here is one possibility:

Poss(a, s) ≡ Poss(start a, s)
Poss(end a, s) ≡ true

effects(do(a, s)) ≡ effects(do(end a, do(start a, s))

Moreover, supposing that we wish to performa instantaneously, that would be the same as
the action sequencestart a; end a.

Acknowledgments
This paper is dedicated to Hector J. Levesque; a colleague, amentor, an inspiration and,
above all, a friend.

This work was completed while the second author was on Special Studies Program leave
at the Università di Roma “La Sapienza”.

References
Davis, E. [1990].Representations of Commonsense Knowledge. San Francisco: Morgan

Kaufmann.

De Giacomo, G., Y. Lespérance, and H. J. Levesque [2000]. ConGolog, a concurrent
programming language based on the situation calculus.Artificial Intelligence 121(1-
2), 109–169.

De Giacomo, G., Y. Lespérance, H. J. Levesque, and S. Sardina [2002]. On the semantics
of deliberation in indigolg – from theory to implementation. In Proceedings of the
8th International Conference on the Principles of Knowledge Representation and
Reasoning (KR’02), pp. 603–614. Morgan Kaufmann Publishers.

De Giacomo, G. and H. J. Levesque [1999]. An incremental interpreter for high-level
programs with sensing. In H. J. Levesque and F. Pirri (Eds.),Logical Foundations
for Cognitive Agents, pp. 86–102. Springer-Verlag.

Gans, G., G. Lakemeyer, M. Jarke, and T. Vits [2003]. Snet: A modeling and simulation
environment for agent networks based on i∗ and congolog. InProceedings of the
Conference on Advanced Information Systems Engineering (CAiSE’03).

Grosskreutz, H. and G. Lakemeyer [2003, March). ccgolog – a logical language dealing
with continuous change.Logic Journal of the IGPL 11(2), 179–221.

Levesque, H. J. and G. Lakemeyer [2000].The Logic of Knowledge Bases. Cambridge,
Massachusetts: MIT Press.

Giuseppe de Giacomo and Maurice Pagnucco

Levesque, H. J., R. Reiter, Y. Lespérance, F. Lin, and R. Scherl [1997]. GOLOG: A logic
programming language for dynamic domains.Journal of Logic Programming 31,
59–84.

McCarthy, J. [1963]. Situations, actions, and causal laws.Technical report, Stanford
University Artificial Intelligence Project.

McCarthy, J. and P. Hayes [1969]. Some philosophical problems from the standpoint of
artificial intelligence. In D. Michie and B. Meltzer (Eds.),Machine Intelligence 4,
pp. 463–502. University of Edinburgh Press.

McDermott, D. [1982]. A temporal logic for reasoning about processes and plans.Cog-
nitive Science 6, 101–155.

Pinto, J. [1997]. Integrating discrete and continuous change in a logical framework.
Computational Intelligence 14(1).

Plotkin, G. [1981]. A structural approach to operational semantics. Technical Report
DAIMI-FN-19, Computer Science Dept., Aarhus University, Denmark.

Reiter, R. [1996]. Natural actions, concurrency and continuous change in the situa-
tion calculus. InProceedings of the Fifth International Conference on Principles
of Knowledge Representation and Reasoning, pp. 2–13.

Reiter, R. [1998]. Sequential, temporal golog. InProceedings of the Sixth International
Conference on Principles of Knowledge Representation and Reasoning.

Reiter, R. [2001].Knowledge in Action: Logical Foundations for Describing and Imple-
menting Dynamical Systems. MIT Press.

