1

Chronolog: It’sabout Time for Golog
GIUSEPPE DEGIACOMO AND MAURICE PAGNUCCO

ABSTRACT. In this paper we introduce a notion of discrete time into tbgnitive
robotics languages of the Golog family. Our variant of GolngmedChronolog is
achieved in a rather straightforward manner but we showitlzibws one to express
a rich variety of temporal concepts. It is based on exogehousk actions generated
by an external “clock” and a special functional fluent to kéxgek of the passing of
time. Moreover, we consider on-line and off-line versiofi®or proposal as well as
real-time and reactive variants and the ability to deal witbgenous actions.

1 Introduction

In this paper we introduce a notion of discrete time into thgritive robotics language
Golog [Levesque, Reiter, Lespérance, Lin, and Scherl 1B@iter 2001]. The main ad-
vantages of our approach are that it is relatively straayiatard yet novel and surprisingly
expressive. We consider that an external “clock” will generdiscrete clock “ticks” and
that their arrival will be kept track of by a special functafluent for time.

The introduction of time into Golog and the situation calmuis not new. It has already
been considered by several authors. Grosskreutz and Lagkeimedescribing their Golog
variant cc-Golog [Grosskreutz and Lakemeyer 2003] sugthestise of an explicit clock
with discrete clock tick actions but object to it due to theldem of determining the correct
granularity of clock ticks. They also object to this on thesisathat the execution traces
would be “glutted with irrelevant ‘clock tick’ actions”. G et al. [2003] also use the
notion of clock ticks in Golog but do not develop the idea fafip Reiter [1996, 1998,
2001] considers instantaneous actions with a temporahaeguA(z,t) denoting that the
action occurred at time He is able to deal with continuous actions, concurrenbastand
actions with duration by allowing processes (or events)aeeha start action that initiates
the process and an end action that terminates it. This agptoaactions with duration is
based on one developed by Pinto [1997]. Davis [1990] alstudiges time in the situation
calculus and draws his account mainly on the work of McDetrfi®182]. Here a fluent
clock time associates a time with situations. Situations can alsonetio intervals (sets
of situations belonging to the interval). This allows fom@iauous actions and branching
time.

In this paper, we give a nice and simple framework to deal digkrete time, under cer-
tain assumptions. We consider our agent’s behavior to bealted by (variants of) Golog
programs, and we consider the discrete passing of time¢lozk ticks) to be outside the
control of the agent. We then make the simplifying assunmpifiat program execution is
orders of magnitudes quicker than the external ticking. Amdequip agents’ programs
with simple abilities for testing time flow and synchronizi&ghwtime ticks when needed. In
this setting we show that we can actually go surprisinglyrfanodeling sophisticated time
related properties within programs.

Giuseppe de Giacomo and Maurice Pagnucco

Again we stress that the simplicity and the effectivenese@approach rely strongly on
the assumption that the computation of the agent is so fastttban execute any amount
of computation in between time ticks. This is obviously asiesption that we cannot hope
to hold in every context. However there are contexts whetaritbe thought of as a good
approximation of reality. Obvious examples are robots geaform physical movements
directed by a high level control program.

The remainder of the paper is organized as follows. In thé sention we provide some
background to the situation calculus and the cognitive ticbdanguage Golog and some
of its variants. In Section 3 we introduce our notion of tinmsldhe axioms required to
capture it while in Section 4 we introduce some additionatagtic constructs to enhance
readability. Section 4 also illustrates the expressivenésur approach with a list of tem-
poral notions that are captured. Section 5 discusses tloeitiore of Chronolog programs.
We provide some examples in Section 6. In Section 7 we shomtdifications required
of the IndiGolog [De Giacomo and Levesque 1999] interpregemplement Chronolog
and in Section 8 we show how to implement a timed search aggtstr

2 Prdiminaries

The basis for Golog and its variants is provided by the sidmatalculus [McCarthy 1963;
McCarthy and Hayes 1969; Reiter 2001]. We will not go overlgmguage in detail here
except to note the following components: there is a spedas@ntS, used to denote
the initial situation, namely that situation in which no actions have yet occyrtbdre
is a distinguished binary function symhal wheredo(a, s) denotes the situation resulting
from performing the action at situations; relations whose truth values vary from situation
to situation, are called (relationdljents and are denoted by predicate symbols taking a
situation term as their last argument; and, there is a spe@dicatePoss(a, s) used to
state that action is executable in situation

An action theory of the following form is a common scenari@fter 2001]:

e Axioms describing the initial situatiorsjy;

e Action precondition axioms, one for each primitive actigrthat are used to charac-
terize Poss(a, s)—when it is possible to perform actienat situations;

e Successor state axioms, one for each fluénstating the conditions under which
F(Z,do(a, s)) holds as a function of what holds in situatisnthese take the place
of effect axioms, but also provide a solution to the framebfrm;

¢ Unigue names axioms for the primitive actions; and,

e Some foundational, domain independent axioms [Levesqde_akemeyer 2000;
Reiter 2001].

Next we turn to programs. The programs we consider here aedan the ConGolog
language defined in [De Giacomo, Lespérance, and Levesifii,2vhich provides a rich
set of programming constructs summarized below:

@ primitive action
1) wait for a condition
01; 02 sequence

51 | 02 nondeterministic branch

Chronolog: It's about Time for Golog

Tr.d nondeterministic choice of argument
o nondeterministic iteration

if ¢ then §; else o5 endIf conditional

while ¢ do 6 endWhile while loop

01 || 92 concurrency with equal priority

01)) 09 concurrency withy; at a higher priority
sl concurrent iteration

(¢p—0) interrupt

p(6) procedure call

Among these constructs, we notice the presence of nondeistit constructs. These
include(d; | d2), which nondeterministically chooses between progrénandds, 7 . 4,
which nondeterministically picks a binding for the variabl and performs the program
o for this binding ofz, andd*, which performsj zero or more times. It should be noted
that these forms of nondeterminism represent “reasonediteh; during execution any
choices to be made are carried out on the basis of what willagni@e termination of the
program. Also notice that ConGolog includes constructsdiesling with concurrency.
In particular(d; || d2) expresses the concurrent execution (interpreted asaaterlg) of
the programs; andd,. Observe that a program may become blocked when it reaches
a primitive action whose preconditions are false or a wdiibac)? whose conditior)

is false. Then, execution @b; || d2) may continue provided another program executes
next. Besidgd; || d2) ConGolog includes other constructs for dealing with coreny,
such as prioritized concurren€y;)) d2), and interruptgé — 6). In (61)) d2), 61 has
higher priority thand,, andd, may only execute whed; is done or blockeds! is like
nondeterministic iteration*, but the instances of are executed concurrently rather than
in sequence. Finally, an interrugt ¥ : ¢ — ¢ > has variableg, a trigger condition,
and a body. If the interrupt gets control from higher priority processand the condition
¢ is true for some binding of the variables, the interruptgés and the body is executed
with the variables taking these values. Once the body caeplxecution, the interrupt
may trigger again. We refer the reader to [De Giacomo, Lespfe, and Levesque 2000]
for a detailed account of ConGolog.

In [De Giacomo, Lespérance, and Levesque 2000], a singfetsansition semantics
in the style of [Plotkin 1981] is defined for ConGolog progsanTwo special predicates
Trans and Final are introducedT'rans(p, s,p’, s’) means that by executing program
starting in situatiors, one can get to situatiosi in one elementary step with the program
remaining to be executed, that is, there is a possible trangiom the configuratiofip, s)
to the configuratiorp’, s’). Fiinal(p, s) means that prograpmay successfully terminate
in situations, i.e., the configuratiofp, s) is final 2

Offline executionef programs, which are the kind of executions originallypwsed for
Golog and ConGolog [Levesque, Reiter, Lespérance, Lid,Ssherl 1997; De Giacomo,

1For the sake of simplicity, we will not consider proceduneshiis paper.
2For example, the transition requirements for sequence are

Trans([p1;p2],s,p’,s') =
Final(p1, s) A Trans(pz, s,p’,s’) V
3¢'. Trans(p1,s,q',8") Ap' = (¢';p2)

i.e., to single-step the progra(p1; p2), eitherp; terminates and we single-stgp, or we single-step; leaving
someq’, and(¢’; p2) is what is left of the sequence.

Giuseppe de Giacomo and Maurice Pagnucco

Lespérance, and Levesque 2000], are characterized tmtipip, s, s') predicate, which
means that there is an execution of prognathat starts in situatior and terminates in
situations’:

Do(p, s,s") e 3p' . Trans*(p,s,p’,s") A Final(p', s'),

whereT'rans* is the reflexive transitive closure @f-ans. An offline execution of program
p from situations is a sequence of actions, . . . , a,, such that:

Azioms = Do(p, s,do(ay,, . ..,do(a, s))).

Observe that an offline executor is in fact similar to a plarthat given a program, a
starting situation, and a theory describing the domaingpeces a sequence of actions to
execute in the environment. In doing this, it has no accesemsing results, which will
only be available at runtime. See [De Giacomo, Lespérarut| evesque 2000] for more
details.

In [De Giacomo and Levesque 1999], IndiGolog, an extensfd@amGolog that deals
with online executions with sensing is developed. The seicmdefines amnline execu-
tion of an IndiGolog program starting from a history, as a sequence ofline configu-
rations (po = p,00 = 0),. .., (pn,0n) Such thatfor =0,...,n—1:

Axioms U {Sensed|o;]} =
Trans(p;, end[o;], pi+1, end[oi+1]),

o if endo;11] = end|o],
oir1 =1 0i-(a,x) if endloiy1] = do(a,end]o;])
anda returnsz.

An online execution successfully terminaifes
Azioms U {Sensed[o,]} |E Final(py,end[oy]).

There is no automatic lookahead in IndiGolog. Insteaskachoperatory(p) is intro-
duced to allow the programmer to specify when lookaheadldhmiperformed [De Gia-
como and Levesque 1999; De Giacomo, Lespérance, Levemggi&ardina 2002].

3 Timein our Framework

We presume the existence of an external “clock” that geasmtogenousi ck actions.
All actions, includingt i ck, are instantaneous however and have no duration. While an
action may occur after a certain numbet ofck st have occurred and so can be considered
to have occurred a it takes no time for the action itself to be performed. Wdlstiacuss
how actions with duration may be handled later. No furtheuagptions are made about
the clock, or the regularity dfi ck actions, etc.

Chronolog introduces the special functional flu€imeand exogenous actidri ck. In
the initial situation;,Timehas the valu@ and is incremented by one each time an exogenous
t i ck occurs. In other wordgiimeserves to keep track of the number of exogendusk s
that have occurred. Given these assumptions we can prosdelibavs.
The initial state axiom for time:

Time(Sp) =0

Chronolog: It's about Time for Golog

The preconditions fari ck are:
Poss(ti ck, s) = true
The successor state axiom fimeis:

Time(do(a, s)) =t =
a=tick A Time(s)=t—1V
a#tick A Time(s) =t

Observe that these axioms conform to the requirements fitef®eAction Theories and
hence we can use regression and, more generally, all resutasic Action Theories apply
to them as well.

These axioms can be added to the standard Golog, ConGoldge@i@blog axioms in
a straightforward way as described in Section 2. The regsions of doing so, we shall
return to shortly. First however, it will be convenient tdroduce some additional syntactic
constructs that will simplify our presentation. These Ww#l defined in terms of the notions
introduced above.

4 Synchronization

Now we turn toChronologprograms. These are simply IndiGolog programs #ttess
the time tickingoy testing the fluenT'ime(s). However, here we make the fundamental
assumption that no time ticks occur during the execution @heonolog program, unless
it explicitly synchronizesvith time. In practice we are requiring that Chronolog paigs
can be executed order of magnitudes quicker than time tickin

Let us look at how synchronization can be performed in a Gblmnprogram. The most
basic synchronization facility is to wait for the passingaofertain number of clock ticks.
We introduce the construatait(t) wheret is an integer number dfi cks and define it as
follows.

wait(t) = wt’.[(Time = t")?; (Time =t +1)7)

or, equivalently,
wait(t) = wt'.[(t' = Time + t)7; (Time = t')7)

In other wordswait(t) in a Chronolog program causes the program to wait éxogenous
ti ck actions to occur.

The definitions above make use of Chronolog’s blocking waitstruct?. The first
instance is used to determine the current time (the numhsook ticks that have occurred
since the system was started in the initial situatifpft. The second instance causes the
Golog program to block until an additionalexogenous i ck actions have occurred. It
can be easily seen thatit(1) can be used to synchronize with the next clock tickit(0)
essentially does nothing.

Notice that here the assumption that Chronolog executionush quicker than time
ticking plays an important role. If this was not the case, an@xogenous tick occurs after
the execution of the first blocking wait constriodf await(0) but before the second, the
program will block forever and never terminate.

Other basic synchronization constructs that can be imnedgiexpressed in Chronolog
as well include the following.

Giuseppe de Giacomo and Maurice Pagnucco

wait until time¢:
(Time = t)?

wait until after timet:
mu.[(u > 1)7; (Time = u)]

wait no morethan timet:
mu.[(u <)75 (Time = u))

Using these notions it turns out that we can express a sumgiyigich set of constructs.
To illustrate the range of possibilities we list a number éful temporal concepts that our
approach can provide. To simplify notation we make the apsioms that unless otherwise
statedt > Time and alsot < t'.

perform action a at ¢:
mu.[(u =t — Time)?; wait(u); a]

perform action a beforet:
mu.[(u <t — Time)?; wait(u); a

perform action a after ¢:
mu.[(u >t — Time)?; wait(u); a]

In the following constructs we consider actions with dwatistart_a indicates the initi-
ation of the action andnd_a indicates its termination. We consider actions with dormati
further in the discussion.

perform action a between ¢ and ¢';
mu.[(u =t — Time)?; wait(u); start_a; wait(t’ — t); end_a)
perform action a for timet:

start_a; wait(t); end_a

perform action a for at least timet:
mu.(u > t)?; start-a; wait(u); end-a

perform action a for no morethan time¢:
mu.(u <)75 start_a; wait(u); end-a

perform action a at ¢ for timet’:
(Time = t)?; start_a; wait(t'); end_a

perform action a at ¢ for at least timet':
(Time = t)?; wu.(u > t'); start_a; wait(u); end-a

perform action a at ¢ for no morethan timet’:
(Time = t)?; wu.(u < t); start_a; wait(u); end-a

perform action a start beforet for timet':
mu.(u < t — Time)?; wait(u); start_a; wait(t); end_a

perform action a start beforet for at least timet':
mu.(u < t — Time)?; wait(u); mu'.(u' > t')?; start_a;
wait(u'); end-a

Chronolog: It's about Time for Golog

perform action a start beforet for no morethan t':
mu.(u <t — Time)?; wait(u); mu'.(u' < t')?; start_a;
wait(u'); end-a

perform action a start after ¢ for timet’:
mu.(u >t — Time)?; wait(u); start_a; wait(t); end-a

perform action a start after ¢ for at least timet’:
mu.(u >t — Time)?; wait(u); mu'.(u' > t')?; start_a;
wait(u'); end-a

perform action a start after ¢ for no morethan time¢’:
mu.(u >t — Time)?; wait(u); mu'.(u' <)?; start_a;

wait(u'); end_a

start action a beforet and completeit at ¢/
mu.(u < t — Time)?; wait(u); start_a;
mu' (v =t — Time)?; wait(v'); end_a

start action a before¢ and completeit beforet’
mu.(u < t — Time)?; wait(u); start_a;
mu'.(u <t —Time Au' > u)?; wait(u'); end_a

start action a beforet and completeit after ¢/
mu.(u < t — Time)?; wait(u); start_a;
mu'.(u >t — Time)?; wait(u'); end_a

start action a after ¢t and completeit beforet’
mu.(u >t —Time Au <t —Time)?; wait(u); start_a;
mu'.(u <t —Time Au' > u)?; wait(u'); end_a

start action a after ¢t and completeit after ¢/
mu.(u >t —Time Au <t —Time)?; wait(u); start_a;
mu'.(u >t —Time Au' > u)?; wait(u'); end_a

start action a at ¢t and completeit after ¢/
mu.(u =t — Time)?; wait(u); start_a;
mu' . (u >t — Time)?; wait(u'); end_a
4.1 Triggersand Exceptions

By using ConGolog’s interrupt construct, we can arrangec@tain actions to occur at a
particular time or on a regular basis while executing a paogfdenoted by here).

trigger action a at timet:
((Time =1t) — a)))d

trigger action a at every ¢ ticks:
((Time%t) = 0) = a)))d

Where% is the modulus operator.

Giuseppe de Giacomo and Maurice Pagnucco

5 Chronolog execution

To understand the semantics of a Chronolog program, onechkeep in mind that a
Chronolog program is not executable in isolation in gendxat needs to be executed con-
currently with a process emitting ticks in a continuous wayso the ticking should be
slow enough to allow for complete execution of the parts ohaoBolog program that do
not include synchronization with time.

Observe that even if our program does not contain concuwyrerglicitly, in order to
understand the semantics we need to resort to concurreeage-the semantics, even for
the offline version, must be single-step. We use notions f@amGolog [De Giacomo,
Lespérance, and Levesque 2000] to discuss the executfdhroholog programs.

The next question to settle is how we model the ticking precdse ticking must go
on forever in principle, but in practice it is sufficient todeaenough ticks to complete the
execution of the ConGolog program: i.e., a finite but unb@ghdumber of ticks. Hence
we can render in ConGolog the ticking process simply as:

tick”®

Finally we must formalize the execution of a ConGolog progaconcurrently with the
ticking process, and since we said that the Chronolog progreecutes freely unless a
synchronization with the ticking is required, we can foripathe execution of the program
0 together with the ticking process ck™ as:

4)y tick”

In this way if the Chronolog program can execute (make a iian} it does so, and only
when it synchronizes with a tick (i.e., waits for a given Jidoes it stop and allow the
ticking to go on.

Observe that when we turn to the online semantics, we musspegial attention to the
search operator. Indeed, we can retain IndiGolog’s noreeichsearch(d) that will not
take time synchronization into account. But can also inioeda “timed” search for parts
of Chronolog programs that require time synchronizatiohisTast variant of search can
be defined on the basis of the original one as follows:

timed_search(d) = search(d)) ti ck™)

That is, we search as normal but simulate the occurrende oks as required by the
program.

6 Examples

In the following examples we shall omit the specification ofien precondition axioms
and successor state axioms for fluents as they do not addirgythwhat we're trying
to demonstrate here. Furthermore, action and fluent nantlegiva an indication of their
purpose.

One common use for temporal notions is to arrange the scingdof regular actions.
For instance, consider the cron daemon under Unix. It's gaes to schedule the regular
execution of certain programs for effecting system maiatee tasks. As we have seen
above when discussing triggers, this can be easily implésdén Chronolog through the
use of ConGolog's interrupt mechanism. Here is an exampleoaf we might schedule
regular maintenance tasks in Chronolog.

Chronolog: It's about Time for Golog

((Time%3600) = 0) — hourly_task)))
((Time%86400) = 0) — daily_task)))
((Time%604800) = 0) — weekly_task)))
((

t

o~ o~~~

Time%2592000) = 0) — monthly_task)))
(true — wait(1))

Note that in this example we would need to use action pretiongito ensure that an action
is only executed once each time the interrupt's conditiotnis. However, an advantage
of our execution model is that more than one rule may fire invben clock ticks. For
example, when the time is a multiple of 86400, we can be swaethiehourly_task will
also be performed since 86400 is divisible by 3600. If we wdrb ensure that only one
interrupt was triggered between any two clock ticks (andiésg no other exogenous
actions), we could addaait(1) after all other actions that are to be executed in the body
of the interrupt. Another thing to be noted in this exampléhat we have not attempted to
model Unix’ multitasking abilities.

Of course, it is also possible to use preconditions thatliestme. For example, sup-
pose you wish to serve coffee to three people given when tiiElyenavailable (in this case,
between when they arrive and when they leave). A rebadan serve a persanprovided
that the person is around and that they are thirsty. Qniseserved they are not thirsty
anymore. The precondition can be specified in Chronolog lasfe.

Poss(serve(z),s) =
Time < arrive(x,s) A Time > leave(x, s) A thirsty(z, s))

We omit the successor axiom, and just say that they modehbittetat once a person
has been served they are not thirsty anymore, while arrivéll@aving time remain fixed
(situation independent).

A possible initial situation could be described as follows:

arrive(giuseppe, Sp) = 10, leave(giuseppe, Sp) = 20
arrive(maurice, Sp) = 15, leave(maurice, Sp) = 30
arrive(bob, Sp) = 1, leave(bob, Sp) = 50
thirsty(giuseppe, Sp), thirsty(maurice, Sp),
thirsty(bob, Sp)

A Chronolog program to decide the ordering of the servindiobe that want coffee is

timedsearch(
(rx.serve(x) | wait(1))*; (Va.—thirsty(x))?

)

This program will attempt to find a sequence of actions (a)plarserve everyone while
they are around. More complex variants where we take intowdcthe time the robots
need to serve someone can also be easily modeled.

7 On-lineReal-Time Interpreter

Implementing Chronolog requires a fairly straightforwanddification to the IndiGolog
interpreter [De Giacomo and Levesque 1999] by modifying thei go(E, H) predicate
and addingthexec_.i nst (E, H, E1, H1) predicate. Theait for _atick(Hl.,

H2) predicate blocks until an exogenauisck action occurs. Thexec_i nst predicate

Giuseppe de Giacomo and Maurice Pagnucco

executes as many primitive (instantaneous) actions asiy@sk other words, the idea is

to execute as much of the program as possible (since prartitions in the situation cal-

culus are considered to be instantaneous) and then chetiiefoccurrence of exogenous
ticks.

i ndigo(E, H :-
exec_inst(E, H, E1, Hl),
(final (E1, H1) ->
true;
(wait_for_a tick(HL, H2), indigo(El, H2)).

exec_inst(E, H E H :-
final (E, H).

exec_inst(E, H E2, H2) :-
trans(E, H, E1, H1), !,
exec_inst(E1, Hl, E2, H2).

exec_inst(E, H E H :-
not trans(E, H _ ,),
not final (E, H).

Modifying IndiGolog in this way means that the program esisdlg behaves in the fol-
lowing manner (wheré is a Chronolog programj))ti ck* as desired. Notice that the
underlying transition semantics, in termstefins and final, is on-line.

8 Conclusions

We have introduced a notion of discrete time into the situatialculus and the cognitive
robotics language Golog. Our Golog variant, called Chrogpachieves this through the
introduction of a special functional fluefitime to keep track of the passage of time and
exogenousi ck actions assumed to be generated by an external clock. Akgune is a
small number of additional axioms, yet the resulting frameuallows us to express a sur-
prising number of temporal notions. We have also describe@xecution of a Chronolog
program and introduced the notion of a timed search.

Several extensions that follow in the same spirit are péssilh would be possible to
introduce a construabait(action) that waits until actioru occurs and implement it in a
similar way towait(t). Similarly we could introducevait; wait for an exogenous action
(any exogenous action) to occur.

Our introduction of time into Golog would allow one to eadilgal with actions with du-
ration. These would need to be “clipped” along the lines Biato [Pinto 1997] deals with
such actions, so that if we have an actigrit will be clipped intostart_a andend_a. See
also the discussion regarding ConGolog [De Giacomo, Lrespe, and Levesque 2000].
Note that it may not be easy to split all actions in this way.

We may also want to introduce constructs into Golog to eitpfiallow for such actions.
For example:

Clipped(a, start-a, end_-a)

Chronolog: It's about Time for Golog

means that action can be clipped and hasart_a as the initiation of actiom andend_a
as the termination of actiom. Note thatend_a can be specified as exogenous or not. In
some cases we do not want an exogenous termination but warplicitly terminate the
action at a particular time. It might be interesting to irigeste the possibility of allowing
end_a to be both exogenous and primitive so that you can do thikegs fperform action
a and if it has not terminated before a particular conditioinug, (explicitly) terminate the
action.”

Precondition axioms and effect axioms (equivalently, sssor state axioms for fluents)
would need to be supplied for these actions. What is theioalship between the precon-
ditions and effect/successor state axioms of the threeresiHere is one possibility:

Poss(a, s) = Poss(start_a, s)
Poss(end_a, s) = true

ef fects(do(a, s)) = ef fects(do(end-a, do(start_a, s))

Moreover, supposing that we wish to perfosinmstantaneously, that would be the same as
the action sequencgart_a; end_a.

Acknowledgments

This paper is dedicated to Hector J. Levesque; a colleagmeraor, an inspiration and,
above all, a friend.

This work was completed while the second author was on Sfgftidies Program leave
at the Universita di Roma “La Sapienza”.

References

Davis, E. [1990]Representations of Commonsense KnowleBiga Francisco: Morgan
Kaufmann.

De Giacomo, G., Y. Lespérance, and H. J. Levesque [2000j30tng, a concurrent
programming language based on the situation calcAldsicial Intelligence 1211-
2), 109-169.

De Giacomo, G., Y. Lespérance, H. J. Levesque, and S. $g2002]. On the semantics
of deliberation in indigolg — from theory to implementatidn Proceedings of the
8th International Conference on the Principles of Knowlkedepresentation and
Reasoning (KR'02)pp. 603-614. Morgan Kaufmann Publishers.

De Giacomo, G. and H. J. Levesque [1999]. An incrementafpnéter for high-level
programs with sensing. In H. J. Levesque and F. Pirri (Etl®gjcal Foundations
for Cognitive Agentspp. 86—102. Springer-Verlag.

Gans, G., G. Lakemeyer, M. Jarke, and T. Vits [2003]. Snet:odeling and simulation
environment for agent networks based érand congolog. IrProceedings of the
Conference on Advanced Information Systems EngineeriaiBE03)

Grosskreutz, H. and G. Lakemeyer [2003, March). ccgologegiél language dealing
with continuous changé.ogic Journal of the IGPL 1(P), 179-221.

Levesque, H. J. and G. Lakemeyer [200}e Logic of Knowledge BaseSambridge,
Massachusetts: MIT Press.

Giuseppe de Giacomo and Maurice Pagnucco

Levesque, H. J., R. Reiter, Y. Lespérance, F. Lin, and Re8{1097]. GOLOG: A logic
programming language for dynamic domaidsurnal of Logic Programming 31
59-84.

McCarthy, J. [1963]. Situations, actions, and causal laveshnical report, Stanford
University Atrtificial Intelligence Project.

McCarthy, J. and P. Hayes [1969]. Some philosophical problizom the standpoint of
artificial intelligence. In D. Michie and B. Meltzer (EdsNlachine Intelligence 4
pp. 463-502. University of Edinburgh Press.

McDermott, D. [1982]. A temporal logic for reasoning abougesses and planSog-
nitive Science 6101-155.

Pinto, J. [1997]. Integrating discrete and continuous geaim a logical framework.
Computational Intelligence 14).

Plotkin, G. [1981]. A structural approach to operationahsaetics. Technical Report
DAIMI-FN-19, Computer Science Dept., Aarhus Universitgminark.

Reiter, R. [1996]. Natural actions, concurrency and cardirs change in the situa-
tion calculus. InProceedings of the Fifth International Conference on Pipies
of Knowledge Representation and Reasongpg 2—13.

Reiter, R. [1998]. Sequential, temporal golog Aroceedings of the Sixth International
Conference on Principles of Knowledge Representation aaséhing

Reiter, R. [2001]Knowledge in Action: Logical Foundations for Describingdaimple-
menting Dynamical SystemdIT Press.

