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Abstract—We devise a succinct knowledge representation
framework based on a nondeterministic variant of a well-known
Artificial Intelligence formalism, called PDDL, for representing
dynamic domains in Planning. We represent the environment and
the agents’ (high-level) behavior as distinct PDDL action domains
and exploit service composition techniques, to compose agent
behaviors so as to realize a collective behavior of interest to the
user. Specifically, we characterize the computational complexity
of the problem and give effective algorithms for solving it, taking
advantage of the succinct representation in PDDL. We explore the
visualization of service composition over this framework based
on the videogame metaphor of virtual worlds using a popular
engine. The execution then of agents as game characters provides
a form of procedural attachment of atomic actions to concrete
interactions within a realistic 3D space.

I. INTRODUCTION

The goal of the line of research followed in this paper
is to explore videogame technology as a setting for studying
the new generation of interactive spaces. Smart spaces, virtual
environments, and mixed-reality applications are becoming
more ubiquitous and sophisticated. In such applications devices
and agents, which can be either real or virtual, behave and
interact with users in a complex way. Here, we explore the idea
of introducing succinct knowledge representation elements as
a high-level layer for enabling advanced forms of service
composition for components in these environments.

We consider a standard videogame engine provided with
models for the physical world and non-player characters (NPC)
acting in it. We see NPCs as agents, operating in a shared vir-
tual environment, which export their behavior as conversational
services. To formally model them, we devise a knowledge
representation framework, e.g., based on a planning domain
formalism [1] and action theories in Al [2]. NPCs are thought
of as agents whose behavior is modeled in terms of high-
level actions that represent “physical” action and interaction
points. Note that such high-level actions correspond in general
to complex operations. For instance, a vacuum cleaner could be
instructed to execute a clean operation, which includes moving
around in a room, sensing dust, and cleaning dirty areas.

In other words, we map atomic high-level actions of agents
into complex low-level behaviors that are influenced by the
sensors and actuators on board of the agents, as well as by
the “physical laws” they must obey in the virtual space of
the game engine environment. This can be thought of as a
sort of concrete procedural attachment [3] to the high-level
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actions. Our intention then is to study the new generation of
interactive smart spaces in virtual environments that simulate
the low-level details and also allow for user-friendly human
interaction with the virtual world and devices as agents.

In particular, we represent the environment as an action
domain, expressed in a nondeterministic variants of the well-
known formalism PDDL [4], [5], which describes precondi-
tions and effects of actions in terms of fluents, i.e., predicates
whose value changes from state to state. We also use pre-
conditions and effects to compactly describe the high-level
behavior of each agent in terms of how its internal state
evolves, again using nondeterministic PDDL. Agent actions are
coupled with environment actions so that they have an effect
on the environment. Using this framework we study how to
compose agent behaviors so as to realize a desired collective
behavior of interest to the user, by exploiting recent literature
on service composition [6], [7], [8], [9].

Notably, differently from the literature above, here we
represent both environment and agent behavior succinctly,
taking advantage of PDDL. In spite of this, we show that
composition remains EXPTIME-complete even though the
action domain and the behavior of agents are compactly
expressed in terms of actions and fluents. We implemented
the framework in the game engine Unity (unity3d.com), where
the execution of agents as NPCs provides a form of procedural
attachment of atomic actions in the specification to concrete
interactions, within a simulated realistic 3D space, as well as
under the effect of humans that may participate as players in
the traditional sense or through mixed reality interfaces.

II. VIRTUAL ENVIRONMENTS AND GAME ENGINES

Perhaps the most successful example of virtual environ-
ments are video-games. The video game industry is driving
globally an enormous amount of human players of all ages to
spend many hours per week in virtual game-worlds interacting
with virtual devices and characters through many platforms.
One interesting feature of the videogame engines, on which
these virtual environments are built, is that they offer a pow-
erful development framework and an execution engine which
allows one to easily implement virtual agents and run them in a
very realistic environment that accurately simulates real-world
lights, movements, and general physics, among other things.

From an abstract point of view, these game engines provide
means to describe (i) a game-world that simulates a “physical”



space, subject to precise physics laws; (if) game-objects that
lie in the space such as walls, stairs, containers, that interact
following the physical laws of the space; and (iii) non-player
characters (NPCs), essentially autonomous agents that can be
programmed to follow a desired behavior.

Non-player characters are special game-objects. On the
one hand, they are complex objects with joints and several
degrees of freedom, e.g., humanoids or robots or complex
mobile machines, subject to physical laws of the space; on the
other hand, they are equipped with a set of physical behavioral
capabilities such as moving, standing, picking up objects,
aiming, shooting, each of which is connected to an appropriate
animation rendered by the game engine.

NPCs are situated in the game-world in the sense that they
can see and act based on their field of view that provides a space
for interacting with the environment. For example, an NPC
may be informed of game-objects entering their field of view
which may trigger a reactive response. Essentially, each NPC
features a repository of programmed routines that describe
conceptual atomic actions that can be performed during the
execution of the NPC in the game-world. These actions can
be used to program complex behaviors that describe the life-
time of NPCs, typically following reactive paradigms such as
finite state machines [10] and behavior trees [11].

We may consider the representation as formed by two
levels: a low-level that handles the game-world, game-objects,
and NPCs at the level of the physics, and what we may
call a middle-level which is a sort of symbolic account of
the game environment. This essentially includes a network of
points of interest, the conceptual properties of points of interest
and game-objects, and the repositories of conceptual atomic
actions of NPCs. This middle-layer representation is in fact
implicit in the details of the game engine data structures and
programs in the implementation of the game setting. What we
do here is to systematize this middle-level into a high-level
based on knowledge representation principles focusing on an
action-driven account of NPCs, that can be used for principled
deliberation based on automated reasoning (and in particular
in this work, based on agent behavior composition).

We consider as objects relevant game-objects, NPCs and
points of interest. We map relevant properties over these
objects as fluents, i.e., predicates that may change their truth
value during execution. We map relevant conceptual atomic
actions in the repositories attached to NPCs to actions over
these fluents. A natural separation between common fluents and
private fluents for each NPC arises, emphasizing the distinction
a shared environment and internal stateful behaviors for NPCs.
Actions are described in terms of preconditions and effects
over the fluents of the shared domain as well as preconditions
and effects over the internal states of NPCs.

Note that the representation is through the eyes of the
designer who has complete information over the state of the
shared environment and the internal states of NPCs. It is
certainly interesting to attach knowledge directly to NPCs but
this is not in the scope of this work. Observe also that this high-
level domain is in fact finite, hence the representation can be
propositional. This enables us to use the standard knowledge
representation formalism of the Planning Domain Definition
Language (PDDL) [12] as the basis of our formalization.

Finally, observe that we do not use PDDL for planning
purposes, but as a concrete formalism for compactly describing
action domains and NPCs behavior.

Nonetheless we need to consider two sources of nonde-
terminism for the high-level representation. First, conceptual
actions of NPCs may involve randomized outcomes, for exam-
ple examining a facility may give different readings. Second,
as many of the low-level details are abstracted, even an atomic
conceptual action that in the low-level is deterministic, in the
high-level may become nondeterministic. For example, moving
from one location to another may involve the discharge of
battery levels for an NPC robot, which is precisely handled in
the low-level representation of the game setting, but may be
abstracted to simply three states of “low/medium/full”.

III. KNOWLEDGE REPRESENTATION FRAMEWORK

As high-level action description formalism we use a nonde-
terministic variant of PDDL, formalized as follows. An action
domain specification is a tuple D = (P, so, Act), where:

e P is a finite set of propositions;

e sy C P is the domain’s initial state;

e Act is a finite set of actions, each specified by an
expression of the form [a : ¢, 7], where:

o a is the action name (unique in D)

o  is the action precondition, i.e., a propositional for-
mula over P, and

o n is the nondeterministic conditional effect of a, i.e.,
an expression of the form (oneof ney,...,ne,) with
each ne; a list (ce;1,...,cein,) of expressions ce;;
of the form (when 1);;, (add;;, del;;)), where t;; is
a propositional formula over P and add;;, del;; C P.

Essentially, D represents an action domain in the usual sense,
where actions have nondeterministic conditional effects.

For example, consider a domain with a number of
patrolling robots and binary predicates At(r,loc) and
Battery(r,lev), representing, respectively, the location and
the battery level of each robot. We adopt the typical prefix
notation of PDDL and denote these as (at ?r ?loc) and
(battery ?r ?lev), where ?r, ?loc and ?lev are vari-
ables, denoted in PDDL with a preceding question mark.
Assuming a finite number of robots, e.g., rl, r2, loca-
tions, e.g., locl, loc2, loc3, loc4, and battery levels, e.g.,
high, med, low, and no other predicates, a corresponding
set of propositions P for this domain can be defined as the
set of all combinations of ground instances for predicates
(at ?r ?loc) and (at ?r ?loc) for appropriate objects,
including for instance (at rl locl), (at rl loc2), etc,
and (battery rl high), (battery rl low), etc.

A state is a set of propositions that describe the state of
affairs in the domain. For instance, the initial state sy for
this simple domain could be {(at rl1 locl), (at r2 locl),
(battery rl full), (battery r2 full)}, representing
that both robots are fully charged and located at 1oc1 . Actions
operate on a state by looking into the propositions the state
consists of and manipulating them using “templates” based on
variables: the action precondition specifies whether the action
is executable in a state, and effects of the action specify how
the state is transformed after the execution of the action. For



example, consider an action goto(r, oldloc, newloc), denoted
in PDDL as (goto ?r ?oldloc ?newloc), which is in-
tended to represent that robot ?r moves from location 7oldloc
to location ?newloc. The following is a PDDL specification
of the intended effect according to the previous definition:

[(goto ?r ?oldloc ?newloc)
(not (battery ?r low)) ,
(when true (and (at ?r ?newloc)
(not (at ?r ?oldloc))))]

In this action there is the precondition that the robot
should not have low energy and two (deterministic) effects,
namely that the proposition stating the old location is removed
from the state description and the new location is added;
the negative effect (not (at ?r ?oldloc)) is denoted with
logical negation and is considered to be in the “delete list” del
of the action, while the positive effect (at ?r ?newloc) is
considered to be in the “add list” add of the action.!

The domains we consider allow also for nondeterministc
effects of actions, therefore have a particular structure in order
to specify each of the potential effects be means of specifying
a set of potential effect specifications. These are denoted by
using the oneof notation for a collection of conditional effect
description like the one we specified in the goto action, e.g., a
repair action that potentially drops the battery level of a robot
when performed. We will see such an example later.

Formally, a state s is a subset of P associated with the
propositional assignment v, s.t. vs(p) = T iff p € P. A
transition s = s’ for action [a : ¢, 7] in state s exists iff: a is
executable in s according to its precondition, i.e., vs = ¢; and
there exists some ne; € n s.t. s = (s\ del;) Uadd,, for del; =
U{C.ei‘jeeilvs‘:wij}de.lij all.d add; = U{CeijEt?ilvs\:wi»'}add.ij'
Intuitively, when action a is executed, one of its nondetermin-
istic effects ne; is nondeterministically chosen, then all of its
conditional effects ce;; whose condition ;; is satisfied in the
current state are selected, and, for all of these, the propositions
in del;; are removed from the current state, and those in add,;
are added. Deletions are performed first, at once.

We appeal to this compact way in order to model the
high-level shared environment and agent behaviors as action
domains. We assume a system S consisting of a domain
E = (Pg, seo, Acte), representing the shared environment, and
n distinct domains, representing the behavior of the agents
acting in &, B; = (P; U Pg, 840, Act;), st. P,N Pg = () and
names(Act;) C names(Actg), with names(Act) denoting
the set of action names occurring in a set of actions Act. Notice
that agents have a set P; of local propositions which accounts
for their internal states.

The executability and the effects of actions of an agent in an
environment £ depend on and affect both the state of the agent
and that of the environment. For instance, in a blocks-world
scenario, an agent that has the arm ready to pick up a block
(precondition on local state), can do so only if the block is
free (precondition on environment state). Similarly, executing

I As the specification of effects requires that they are formed as conditional
effects in the general case, here we also followed the (when condition
effects) pattern to denote the effects of this action using true for the
condition and the logical and connective for the effects.

an action yields effects on both the agent and the environment,
according to the respective specifications. To capture this, we
define the execution of a behavior B; on the environment £ as
the transition system Df = (X£, 0§, —¢), where:

o %f C 2P x 2P is the set of states of Df;
e 05 = (sg0, 8i0) is the initial state of Df;
o —f C %f x names(Actg) x {1,...,n} x X, is the
transition relation of DY, s.t. o 2% o iff:
o 0= (sg,s)and o' = (sg,s},);
o there exists an action [a : g, ne] € Actg and an action
[a: @i,mi] € Act; st sg 2 se and s; 2 s5.

Notice that every agent action is paired, through the name,
with (exactly) one in the environment. Such pairing accounts
for the causal relationships between the environment and an
agent, when the latter executes an action. Observe, however,
that the effects of actions on the environment, do not depend
on the specific agent that executed the action: as far as the
shared environment is concerned, some agent will execute a
given action. We stress that agents are the only entities able to
execute actions, and thus trigger changes in the environment.

IV. AGENT BEHAVIOR COMPOSITION

Next we turn to agent behavior composition [6], [7], [9].
We define a target behavior 7 over an environment &£ as
T = (Pr U Og, s79, Actr). The target behavior represents
the desired behavior that a user would like to interact with
(over &), which in general is not available in S. Notice that
we allow for nondeterminism in the target behavior assuming
that the client executing the target can actually choose not only
the action to execute next but also the next state in the target
behavior, like in [8]. In this way we can model decisions that
the client can make because of the result of actions. Notice
that all results in [7] continue to hold in this extension.

The goal of behavior composition is to build an executable
controller that coordinates the available behaviors in an ap-
propriate way, so as to simulate the execution of the target
behavior over £. [7] formalizes this intuition and shows a
solution based on the notion of simulation [13]. This technique
relies on a fixpoint computation that returns a finite-state
automaton, called the controller generator (CG), which is able
to generate at runtime any controller that can make S evolve
so as to simulate the execution of 7 over £.

Specifically, given the system S and a target behavior T
over &, let D5 and Df be the executions of 7 and of B; over
&, respectively. Moreover, let s = (sg, $1,...,5n) € 2P %
271 % ... x 2P be a state of the whole system S, and t =
(se,s7) a state of D? (notice that s¢ matches in s and t).
Then, s is said to ND-simulate t, written s <yp t, iff for
every transition ¢ = ¢/ in D%, with ¢/ = (8%, s%), there exists
a behavior B; such that:

e there exists a transition (sg,s;) — (sk, s}) in Df;
e for every such transition, it is the case that
(8581558, 50) 2ND (8&, 7).
Finally, S is said to ND-simulate T (on &), written S <yp T
iff it is the case that (sgo, S10,- - -, Sn0) SND (850, S70)-

Intuitively, starting with system S and target behavior 7
in their respective initial states (observe that this fixes also the



state of the environment), for any transition with a given action
that 7 can execute, based on its current state and that of the
environment, there exists some behavior [3; that can execute
the same action, and that, no matter how £ and 5; happen to
evolve, this property propagates to the successor states of the
target behavior and the system.

Next, we provide some insights on the execution of the
CG. Essentially, the CG is a finite-state transducer interposed
between the client and the behaviors, whose task is to receive
target transitions requests from the client and appropriately
delegate the execution of the action therein to agents. This
can be recorded as a look-up table to be used at runtime to
execute the CG. Assume that, in the current state s of S, the
client requests an transition ¢ — t' executable in the current
state t of 7. Then, the CG returns one among the indices
in the table associated with s, ¢, ¢’ and a, i.e., the indices
of the behaviors that can execute a while guaranteeing the
possibility of serving all future action requests compliant with
T. Let B; be the selected behavior. After executing a, 5; and £
(nondeterministically) move to a possible successor state. The
CG then progresses the state of 7 to ¢'. When a new target
transition is requested, the CG observes the current state of
the system S, selects a new behavior for executing the action
(which is guaranteed to exist given the previous choice), the
system progresses again, the CG progresses the target behavior,
and a new iteration can take place.

Notice that [7] uses an explicit representation for the
involved behavior and the environment, while here we adopt
a compact representation formalism for a slightly generalized
problem. It is interesting then to understand the complexity of
computing the ND-simulation and the CG in our case.

Theorem 1: Given a system S, consisting of an environ-
ment £ and a set of available behaviors By, ..., B,, and a tar-
get behavior T, all compactly represented as action domains,
the largest ND-simulation relation between S and 7 can be
computed in time polynomial in 27|+ Pil+- -+ Pul+Pr]

In other words we are exponential in the size of the
representation. Notice this is the same complexity as e.g.,
model checking in terms of compact representation, the so
call “program-complexity”, see e.g., [14]. Interestingly the
original problem in [7] which use explicit representation of
states (exponentially larger than a compact representation)
is also exponential, though only in the number of available
behaviors. Notice that in our compact formalism, the size of
the state space of each structure is (at most) exponential in the
number of propositions. Thus, with a compact representation
formalism, one might expect a further exponential blowup in
the complexity. However, this is not the case, as the above
theorem shows. Finally, notice that the composition problem
is EXPTIME-complete already for much simpler cases [15].

V. THE POWER PLANT SURVEILLANCE SCENARIO

We consider a case of a hypothetical power plant and
a surveillance scenario with n multi-purpose robots that are
able to navigate to a number of designated areas, and perform
security-related operations. In this scenario, the power plant is
the virtual environment possibly simulating a real setting. The
atomic conceptual actions of the NPC robots are (i) modeled

mathematically as available behaviors in the behavior compo-
sition framework that we described in the previous section,
and (if) implemented as NPCs in the 3D game world provided
by a game engine. As we will be relying on the Unity game
engine for our implemented system, for illustration purposes
we adapted the 3D game-world of the action mini-game “An-
gry Bots” (unity3d.com/gallery/demos/live-demos#angrybots)
to act as the power plant simulated virtual environment.

The modeling is done from the point of view of a human
security manager who receives information from the NPC
robots and decides on next operations to be carried out based
on a predefined security protocol. There are four points of
interest as far as the NPC robots and the target protocol
are concerned, namely rooms A, B,C and a charging station
CS. The NPC robots are able to move to these areas and
perform a measurement of the radiation levels. Under certain
circumstances the manager may instruct an adjusting operation
in the equipment of the area.

Each of these robots is self-powered using batteries. Battery
levels are follow a discrete scale and are represented by
the objects high, medium, low. Adjusting the equipment
deterministically reduces the battery level of the NPC from
high to medium and non-deterministically from medium to
low. The inspect and move actions on the other hand require
little power and for simplification purposes are not considered
in the modeling. Recharging is possible by going to the
charging station. Note that the characteristics of this scenario
are modeled at a different level of detail: (i) the high-level as a
shared environment and agent behaviors; and (i7) the middle-
level and low-level as appropriate an implementation in the
Unity game engine.

The shared environment has three fluents: (at ?r ?7a)
capturing the location of robots, (power ?n) capturing the
overall power level of the system in terms of discrete objects

for ¢ € {1,...,2n}, and (alert ?a) capturing whether
area 7a has high radiation levels. Also objects npc; for
i €{1,...,n} are included in the domain. The actions of the

shared environment are the following: (goto ?a), capturing
that some robot is instructed to move to area ?a, (inspect
7a) capturing that some robot inspects the radiation levels of
area 7a, (adjust ?7a) capturing that some robot adjusts the
equipment in area 7a, and (recharge) capturing that one
robot with low battery is instructed to get to the charge station
and recharge. Each adjust action deterministically drops the
overall power by one, contextually dropping the battery level of
the robot performing the action, and representing a pessimistic
estimation of the overall power status of the whole system,
while every recharge action increases it by one (appropriate
fluents are used to formalize the ordering of the battery and
power levels but are omitted here for brevity). Moreover, each
NPC has one internal fluent (battery ?1) that holds the
internal level in terms of objects high, medium, low.

Consider a target behavior that involves two internal states
represented by the fluent red. In normal mode the user can
request a (goto ?7a) followed by an (inspect ?7a) action for
some area 7a, or recharge. In the red mode he can request
a (goto ?a) followed by an (adjust ?a) action for some
area 7a, or recharge. One changes from normal mode to
red mode through the non-deterministic effects of a inspect
action which includes a decision by the user to move red mode.



In red mode one moves deterministically back to normal mode
once all necessary adjusting has been performed.

The PDDL specifications of the main actions are provided
in Table I. Observe that the NPCs and the target behavior
share the same actions with the environment, however the
preconditions and the effects vary to capture the corresponding
behavior. Moreover, the fluents of the environment are acces-
sible from all the other behaviors, while the fluents of all the
other behaviors are accessible only to them. Also, note that the
red mode raised by the target does not depend on the current
result of the inspection, but requires that at least one area was
in alert mode before executing the action.

It can be shown that the CG can be computed for realizing
the target using the available NPCs in the shared environment.
For illustration purposes, Table II shows a small part of the
CG for the case of two NPCs. The PDDL files and output can
be found at jaco.dis.uniromal.it/#example4.

VI. THE SYSTEM

Our system is based on the game engine Unity (http:
/lunity3d.com), an integrated game developing environment
that includes a high-quality physics and rendering engine. For
implementing NPCs we chose to realize a basic action-driven
architecture. For this architecture we relied on the basic low-
level features of Unity related to the “physical” properties of
game-objects, i.e., meshes, skeletons, joints, colliders, light
shaders, etc, but also introduced a simple sense-think-act
architecture in order to model the NPC behavior in terms of
named, actions, conditions, and a precise representation for
the internal state of the NPC. The implemented architecture
consists of four basic components as follows.

e The perception component is responsible for identifying
objects in the field of view of the NPC, including con-
ditions or events that occur, which can be useful for the
deliberation component. In the typical case it is attached
to a mesh object surrounding the NPC, e.g., a sight cone
positioned on the head of a robotic device.

e The deliberation component is responsible for deciding
the immediate action that should be performed by the
NPC by taking into account the input from the perception
component as well as the internals of this component.
This component can be used to abstract the behavior
that the NPC should follow, which could be for instance
expressed in terms of reactive or proactive behavior or
in our case a combination of these along with a set of
commands that are given as instructions to the NPC.

e The control component is going over a loop that passes
information between the perception and deliberation com-
ponents, and handling the execution of actions as they are
decided. In particular, the controller is agnostic of the way
that perception, deliberation and action is implemented,
but is responsible for coordinating the information be-
tween the components while handling exceptions, moni-
toring conditions and actions, and allocating resources to
the deliberation component accordingly.

e The action component is responsible for realizing the
actions that are decided by the deliberation component in
the game-world and provide information about the state
of action execution, e.g., success or failure.
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Fig. 1. A patrolling robot in the virtual environment.

Essentially the perception and action components provide a
bridge between the low-level aspect of NPCs and the middle-
level of symbolic properties and conceptual atomic actions
that were discussed in the beginning of the paper. For the
scope of our agent composition framework one can think of
the deliberation component as adding a high-level knowledge
representation and reasoning layer by means of the computed
CG: the deliberation component simply acquires orders cor-
responding to the user choices through a dashboard that will
be described next, following them in a reactive fashion. Note
though that each conceptual atomic action may be a complex
procedure that handles low-level details or even includes a
behavior strategy expressed as a nested deliberation instance.

As far as the power plant scenario is concerned, each of
the patrolling robots is implemented as a group of game-
objects that model the moving parts of the device also with
corresponding meshes and textures. For simplicity a model
of a small robot that is available in the Angry Bots project
was used. As far as the internal state of the patrolling NPC is
concerned, each NPC has a battery level that ranges from 0
to 100. Each time a low-level action is executed, the battery
level goes down by a fixed value that depends on the action
following the details of the scenario. A snapshot of one of
the NPC robots can be seen in Figure 1; visualized on top
of the robot one can see both its low-level and its abstracted
high-level internal state.

In our system the target behavior is represented as a stateful
dashboard such at every point in time the available actions
are presented as selectable options and the feedback from the
system is shown on the screen. This target is actually realized
through the controller generator (CG). In particular, when the
next action is selected, the system uses the CG as a look-up
table that, given the current state of affairs and the chosen
action, specifies which NPCs may be selected to realize the
chosen action, and randomly picks one of them to execute
it (without showing the internal CG options to the user). The
NPC is instructed to execute the chosen action, and after action
execution is finished, the dashboardd is notified of the resulting
state for the NPC and the shared environment and new choices
are presented to the user.

A so-called “composer” module is in charge of comput-
ing the CG. Actually this component does not need to be
embedded to the Unity-based virtual environment, but can
be deployed to the cloud and used through a web-service



TABLE 1.

PDDL SPECIFICATION OF THE ACTIONS FOR EACH BEHAVIOR

Environment NPC Target
goto ?a
preconditions: | () 0 0
effects: 0O (forall (?b) (when (at npc ?b) 0
(and (at npc ?a) (not (at npc ?b)))))
inspect ?a
preconditions: (exists (7r) (at ?r ?a)) (at npc ?a) (not (is-red))
effects: (oneof 0 (oneof
(alert ?a) (when (exists (?b) (alert ?b)) (is-red))
(0)] (0)]
adjust ?a
preconditions: (and (alert ?a)(exists (?r) (at ?r ?a))) (and (at npc ?a) (not (battery low))) (and (power ?c) (gt ?c N) (is-red))
effects: (not (alert ?a)) (oneof (and
(and (when (battery high) (when (forall (?b)
(and (battery med) (not (battery high)))) (or (not (alert ?b)) (= ?a ?b)))
(when (battery med) (not (is-red)))
(and (battery low) (not (battery med))))) (forall (?c 2d)
(when (battery high) (when (and (power ?c) (succ ?d ?c))
(and (battery med) (not (battery high))))) (and (power ?d) (not (power ?¢))))))
recharge
preconditions: 0O 0 (not (power 2N))
effects: ¢) (forall (?b) (when (at npc ?b) (forall (?c ?d)
(and (at npc CS) (battery high) (when (and (power ?c) (succ ?c ?d))
(not (at npc ?b)) (not (battery med)) (and (power 2d) (not (power ?c)))))
(not (battery low)))))
TABLE II. PART OF THE COMPUTED CONTROLLER GENATOR FOR A SCENARIO WITH TWO NPCs.
Target Environment NPCl1 (rl) NPC2 (r2) Action Allocation
O (at rl a), (at r2 c), (power 2) (battery med) (battery high) (inspect c¢) r2
(is-red) (at rl c), (at r2 a), (alert c), (power 4) (battery high) (battery high) (adjust <) rl
(is-red) (at rl a), (at r2 c), (alert b), (alert c), (power 2) (battery med) (battery med) (goto b) rl

interface. This is exactly what happens in our system where
the composer is available as a cloud web-service that, given
the PDDL specification for a set of available behaviors, a
shared environment, and a target behavior, it computes and
returns the CG (when one exists). The composer is based
on a Java-based synthesis general-purpose engine called JTLV
(http://jtlv.ysaar.net), that essentially performs fixpoint compu-
tations over game structures [16] in a (space-)efficient way, by
exploiting symbolic techniques.

VII. RELATED WORK

Regarding simulating smart spaces, there is ongoing work
related to virtual environments such as UbiREAL (ubireal.org)
[17] which is a framework for building virtual smart spaces,
and DIVAS (mavs.utdallas.edu/projects/divas) [18], a plugin-
based multi-agent 3D simulation framework for large scale
events. Compared to the direction of our work, one observation
is that these platforms come from a research community in
which the focus is mostly on different aspects such as the
generation and analysis of synthetic low-level sensor data.
Instead, in this work we aim for composing behaviors of NPCs
wrt a desired target process.

As far as video games are concerned, there is a lot of
related work for coordinating non-player characters in the
context of interactive storytelling [19]. In terms of character
autonomy [20] and the strong story / strong autonomy spec-
trum our approach lies closer to the former end, as NPCs
are allowed to act as autonomous entities but only as long
as they do not change their internal state captured in the
corresponding behavior. Perhaps closest to our Al technique
are those approaches that employ STRIPS and HTN planning,
such the work of Porteus et al. [21], which makes use of PDDL

with constraints to characterize the sequencing of events in the
intended storyline, as well as systems Mimesis [22], GADIN
[23], MIST [24], Zbcalo [25], and FAtiMA [26] that employ
some form of planning for coordinating NPCs. Nonetheless,
there are differences as we explain next.

First note that we use PDDL as a concrete syntax for action
theories, e.g., ala [2], exploiting its capability to formalize
preconditions and effects of actions. In particular, we use
PDDL to model how the environment and the internal states
of characters change — not to describe a planning problem.
Note also that we extend PDDL to handle nondeterminism
in order to model the uncertainty generated by the low-level
interactions in the virtual environment.

Second, although we use PDDL, here the goal is radically
different from reachability planning: the target behavior in our
framework is not a specification of a goal state to reach but,
rather, a description of a process one would like to be able to
carry out at runtime. At every step there is possibly more than
one action that can be carried out leaving the choice to the
executor. Further, a target behavior may contain loops, which
are typically ruled out in planning, similar to an IndiGolog
program [27], i.e., a high-level procedure definable on top of
a planning domain, for which one is typically interested to find
an executable realization at runtime.

Each of the aforementioned systems uses additional fea-
tures for selecting appropriate actions, e.g., FAtiMA focuses
on a simple way of representing priorities among actions, and
[28] requires that the choice of actions be intentional for NPCs.
We stress that the aim here is not to achieve an emergent
believable behavior for the NPC community according to the
author’s requirements; instead we aim at a provably correct



coordination strategy that would in fact work over any infinite
horizon that fits in the specification of the target behavior. In
particular compared then to ABL-like approaches [29] that are
able to form joint goals for ensuring appropriate interaction
of characters, our work is different in that (i) it decouples all
“storyline” requirements from the behavior of NPCs into a
target behavior for the entire system and (if) it guarantees at
design time whether it can be always enforced (and how) by
means of the computed CG.

Finally, we borrow the notion of behavior composition
from the literature, but not the typical representation of com-
ponents as explicit-state transition systems. Here instead, we
represent the environment and characters’ behavior compactly
through PDDL action specification. This gives rise to a com-
plexity analysis that is different than the original one: It is
actually then surprising that the problem remains EXPTIME-
complete in spite of the exponentially smaller specification of
the components. This is also reflected on the implementation
for computing the composition in our system.

VIII. CONCLUSION

We have presented a system for modeling agents and
devices in a virtual environment based on videogame tech-
nology enhanced with a high-level knowledge representation
layer for enabling automated reasoning over the environment
and the agents therein. In particular, we focused on behavior
composition, however we see this approach as general in the
sense that other forms of reasoning, planning, and automated
synthesis can be handled in the same framework. Also, for
now the space remains virtual in the game-world. Nonetheless,
we envision that virtual environments can be attached to real
smart spaces, becoming an intuitive and human-friendly way
of controlling and visualizing real-world devices.
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