
Online Situation-Determined Agents and their Supervision

Bita Banihashemi
York University

Toronto, ON, Canada
bita@cse.yorku.ca

Giuseppe De Giacomo
Sapienza Università di Roma

Roma, Italy
degiacomo@dis.uniroma1.it

Yves Lespérance
York University
Toronto, Canada

lesperan@cse.yorku.ca

Abstract

Agent supervision is a form of control/customization where a
supervisor restricts the behavior of an agent to enforce certain
requirements, while leaving the agent as much autonomy as
possible. This is done in a setting based on the situation cal-
culus and a variant of the ConGolog programming language
that is situation-determined, i.e., the remaining program is a
function of the action performed. When an agent may ac-
quire new knowledge about her environment during execu-
tion, for example, by sensing, being situation-determined is
not sufficient to ensure a unique remaining program. In such
cases we need to consider an agent’s online executions, where
as she executes the program, at each time point she must
make decisions on what to do next based on what her cur-
rent knowledge is. In this work, we define a notion of on-
line situation-determined agent program that ensures unique
remaining configuration in online executions. Moreover, we
formalize the definition of the online maximally permissive
supervisor, and discuss its properties.

1 Introduction
In many settings, an agent’s behavior needs to be restricted
to conform to a set of specifications. For instance, the ac-
tivities of agents in an organization have to adhere to some
business rules and privacy/security protocols. One form of
this is customization, where a generic process for perform-
ing a task or achieving a goal is refined to satisfy a client’s
constraints or preferences. Process customization includes
personalization (e.g. of travel planning agents) and configu-
ration (e.g. of e-commerce sites for each service provider).

A key challenge in such settings is ensuring conformance
to specifications while preserving the agent’s autonomy.
Motivated by this and inspired by supervisory control of dis-
crete event systems (Wonham and Ramadge 1987) De Gi-
acomo, Lespérance and Muise (De Giacomo, Lespérance,
and Muise 2012) (DLM) proposed agent supervision as a
form of control/customization of an agent’s behavior. The
DLM framework is based on the situation calculus (Mc-
Carthy and Hayes 1969; Reiter 2001) and a variant of the
ConGolog (De Giacomo, Lespérance, and Levesque 2000)
programming language that is situation-determined, i.e.,

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

while allowing nondeterminism, requires the remaining pro-
gram to be a function of the action performed. DLM rep-
resent the agent’s possible behaviors as a nondeterministic
ConGolog process. Another ConGolog process represents
the supervision specification, i.e., which behaviors are ac-
ceptable/desirable.

If it is possible to control all of the agent’s actions,
then it is easy to obtain the behaviors of the supervised
agent through a kind of synchronous concurrent execution of
the agent process and the supervision specification process.
However, some of the agent’s actions may be uncontrollable.
DLM formalize a notion of maximally permissive supervisor
that minimally constrains the behavior of the agent in the
presence of uncontrollable actions so as to enforce the de-
sired behavioral specifications. The original DLM account
of agent supervision assumes that the agent does not ac-
quire new knowledge about her environment while execut-
ing. This means that all reasoning is done using the same
knowledge base. The resulting executions are said to be of-
fline executions.

In this paper, we investigate how we can apply DLM’s
framework in cases where an agent may acquire new knowl-
edge about her environment during execution, for example,
by sensing. Thus the knowledge base used by the agent in
her reasoning needs to be updated during the execution. In
such cases, being situation-determined is not sufficient to en-
sure a unique remaining program, as at each time point, the
knowledge base used by the agent to deliberate about the
next action is different. For example, consider a travel plan-
ner agent that needs to book a seat on a certain flight. Only
after querying the airline web service offering that flight will
the agent know if there are seats available on the flight.

Technically this requires switching from offline execu-
tions to online executions (De Giacomo and Levesque 1999;
Sardiña et al. 2004). [??Knowledge change in online execu-
tions may be modeled by adding an epistemic accessibility
relation?] (Scherl and Levesque 2003). [Here, we use a dif-
ferent approach and define it meta-theoretically?]. We de-
fine a notion of online situation-determined agent program
that ensures unique remaining configuration in online exe-
cutions. Moreover, we formalize the definition of the online
maximally permissive supervisor, and discuss its properties.

2 Preliminaries
The situation calculus (SC) is a well known predicate logic
language for representing and reasoning about dynamically
changing worlds. Within the language, one can formulate
action theories that describe how the world changes as the
result of actions (Reiter 2001). We assume that there is
a finite number of action types A. Moreover, we assume
that the terms of object sort are in fact a countably infi-
nite set N of standard names for which we have the unique
name assumption and domain closure. As a result a basic
action theory (BAT) D is the union of the following dis-
joint sets: the foundational, domain independent, (second-
order, or SO) axioms of the situation calculus (Σ), (first-
order, or FO) precondition axioms stating when actions can
be legally performed (Dposs), (FO) successor state axioms
describing how fluents change between situations (Dssa),
(FO) unique name axioms for actions and domain closure
on action types (Dca); (SO) unique name axioms and do-
main closure for object constants (Dcoa); and (FO) axioms
describing the initial configuration of the world (DS0). A
special predicate Poss(a, s) is used to state that action a
is executable in situation s; precondition axioms in Dposs

characterize this predicate. The abbreviationExecutable(s)
means that every action performed in reaching situation
s was possible in the situation in which it occurred. In
turn, successor state axioms encode the causal laws of the
world being modeled; they replace the so-called effect ax-
ioms and provide a solution to the frame problem. We write
do([a1, a2, . . . , an−1, an], s) as an abbreviation for the situ-
ation term do(an, do(an−1, . . . , do(a2, do(a1, s)) . . .)).

To represent and reason about complex actions or pro-
cesses obtained by suitably executing atomic actions, vari-
ous so-called high-level programming languages have been
defined. Here, we concentrate on (a fragment of) ConGolog
that includes the following constructs:

δ ::= α | ϕ? | δ1; δ2 | δ1|δ2 | πx.δ | δ∗ | δ1‖δ2 | δ1& δ2

In the above, α is an action term, possibly with parameters,
and ϕ is situation-suppressed formula, i.e., a SC formula
with all situation arguments in fluents suppressed. As usual,
we denote by ϕ[s] the formula obtained from ϕ by restoring
the situation argument s into all fluents in ϕ. Program δ1|δ2
allows for the nondeterministic choice between programs δ1
and δ2, while πx.δ executes program δ for some nondeter-
ministic choice of a legal binding for variable x (observe
that such a choice is, in general, unbounded). δ∗ performs
δ zero or more times. Program δ1‖δ2 represents the inter-
leaved concurrent execution of programs δ1 and δ2. The in-
tersection/synchronous concurrent execution of programs δ1
and δ2 (introduced by DLM) is denoted by δ1& δ2.

Formally, the semantics of ConGolog is specified
in terms of single-step transitions, using two predi-
cates (De Giacomo, Lespérance, and Levesque 2000): (i)
Trans(δ, s, δ′, s′), which holds if one step of program δ in
situation s may lead to situation s′ with δ′ remaining to be
executed; and (ii)Final(δ, s), which holds if program δ may
legally terminate in situation s. The definitions of Trans
and Final we use are as in (De Giacomo, Lespérance, and
Pearce 2010); differently from (De Giacomo, Lespérance,

and Levesque 2000), the test construct ϕ? does not yield
any transition, but is final when satisfied. Thus, it is a syn-
chronous version of the original test construct (it does not
allow interleaving). As a result, in our version of ConGolog,
every transition involves the execution of an action. Predi-
cateDo(δ, s, s′) means that program δ, when executed start-
ing in situation s, has as a legal terminating situation s′,
and is defined as Do(δ, s, s′) .

= ∃δ′.T rans∗(δ, s, δ′, s′) ∧
Final(δ′, s′) where Trans∗ denotes the reflexive transitive
closure of Trans.

A ConGolog program δ is situation-determined (SD) in
a situation s (De Giacomo, Lespérance, and Muise 2012) if
for every sequence of transitions, the remaining program is
determined by the resulting situation, i.e.,

SituationDetermined(δ, s)
.
= ∀s′, δ′, δ′′.

Trans∗(δ, s, δ′, s′) ∧ Trans∗(δ, s, δ′′, s′) ⊃ δ′ = δ′′,

For example, program (a; b) | (a; c) is not SD, while a; (b |
c) is (assuming the actions involved are always executable).
Thus, a (partial) execution of a SD program is uniquely de-
termined by the sequence of actions it has produced. Hence
a program in a starting situation generates a set/language of
action sequences, its executions, and operations like inter-
section and union become natural.

In the rest, we use C to denote the axioms defining the
ConGolog programming language.

3 Online Situation-Determined Agents
In our account of agent supervision, we want to accommo-
date agents that can acquire new knowledge about their en-
vironment during execution, for example by sensing, and
where their knowledge base is updated with this new knowl-
edge. Thus we consider an agent’s online executions, where,
as she executes the program, at each time point, she makes
decisions on what to do next based on what her current
knowledge is.

Sensing. A crucial aspect of online executions is that
the agent can take advantage of sensing. Similarly to
(Lespérance, De Giacomo, and Ozgovde 2008), we model
sensing as an ordinary action which queries a sensor, fol-
lowed by the reporting of a sensor result, in the form of an
exogenous action.

Specifically, to sense whether fluent P holds within a pro-
gram, we use a macro:

SenseP
.
= QryIfP ; (repV alP (1) | repV alP (0)),

where QryIfP is an ordinary action that is always executable
and is used to query (i.e., sense) if P holds and repV alP (x)
is an exogenous action with no effect that informs the agent
if P holds through its precondition axiom, which is of the
form:

Poss(repV alP (x), s) ≡ P (s) ∧ x = 1 ∨ ¬P (s) ∧ x = 0.

Thus, we can understand that SenseP reports value 1
through the execution of repV alP (1) if P holds, and 0
through the execution of repV alP (0) otherwise.

For example, consider the following agent program:

δi = SenseP ; [P?;A] | [¬P?;B]

and assume the agent does not know if P holds initially.
Initially we have D ∪ C |= Trans(δi, S0, δ

′, S1) where
S1 = do(QryIfP , S0) and δ′ = nil; (repV alP (1) |
repV alP (0))); [P?;A] | [¬P?;B]. At S1, the agent knows
either of the exogenous actions repV alP (0) or repV alP (1)
could occur, but does not know which. After the occurrence
of one of these actions, the agent learns whether P holds. For
example, if repV alP (1) occurs, the agent’s knowledge base
is now updated to D ∪ C ∪ {Poss(repV alP (1), S1)}. With
this updated knowledge, she knows which action to do next:
D ∪ C ∪ Poss(repV alP (1), S1) |= Trans(nil; [P?;A] |
[¬P?;B], do(repV alP (1), S1), nil, do([repV alP (1), A], S1)).

Notice that with this way of doing sensing, we essentially
store the sensing results in the situation (which includes all
actions executed so far including the exogenous actions used
for sensing). In particular the current KB after having per-
formed the sequence of actions ~a is:

D ∪ C ∪ {Executable(do(~a, S0)}.

Note that this approach also handles the agent’s acquiring
knowledge from an arbitrary exogenous action.

Agent online configurations and transitions. We denote
an agent by σ, which stands for a pair 〈D, δi〉, where δi is the
initial program of the agent expressed in ConGolog and D is
a BAT that represents the agent’s initial knowledge (which
may be incomplete). We assume that we have a finite set
of primitive action types A, which is the disjoint union of
a set of ordinary primitive action types Ao and exogenous
primitive action types Ae.

An agent configuration is modeled as a pair 〈δ,~a〉, where
δ is the remaining program and ~a is the current history, i.e,
the sequence of actions performed so far starting from S0.
The initial configuration ci is 〈δi, ε〉, where ε is the empty
sequence of actions.

The online transition relation between agent configura-
tions is (a meta-theoretic) binary relation between configu-
rations defined as follows:
〈δ,~a〉 →A(~n) 〈δ′,~aA(~n)〉

if and only if
either A ∈ Ao, ~n ∈ N k and
D ∪ C ∪ {Executable(do(~a, S0))} |=

Trans(δ, do(~a, S0), δ
′, do(A(~n), do(~a, S0)))

or A ∈ Ae, ~n ∈ N k and
D ∪ C ∪ {Executable(do(~a, S0)),
T rans(δ, do(~a, S0), δ

′, do(A(~n), do(~a, S0)))} is satisfiable.

Here, 〈δ,~a〉 →A(~n) 〈δ′,~aA(~n)〉 means that configuration
〈δ,~a〉 can make a single-step online transition to configu-
ration 〈δ′,~aA(~n)〉 by performing action A(~n). If A(~n) is an
ordinary action, the agent must know that the action is exe-
cutable and know what the remaining program is afterwards.
If A(~n) is an exogenous action, the agent need only think
that the action may be possible with δ′ being the remaining
program, i.e., it must be consistent with what she knows that
the action is executable and δ′ is the remaining program.

As part of the transition, the theory is (implicitly) updated
in that the new exogenous action A(~n) is added to the ac-
tion sequence, and Executable(do([~a,A(~n)], S0)) will be
added to the theory when it is queried in later transitions,
thus incorporating the fact that Poss(A(~n), do(~a, S0)) is
now known to hold.

The (meta-theoretic) relation c →∗~a c′ is the reflexive-
transitive closure of c→A(~n) c

′ and denotes that online con-
figuration c′ can be reached from the online configuration c
by performing a sequence of online transitions involving the
sequence of actions ~a.

We also define a (meta-theoretic) predicate cX meaning
that the online configuration c is known to be final:

〈δ,~a〉X if and only if
D ∪ C ∪ {Executable(do(~a, S0))} |= Final(δ, do(~a, S0)).

Online situation determined agents. In this paper, we are
interested in programs that are SD, i.e., given a program, a
situation and an action, we want the remaining program to be
determined. However this is not sufficient when considering
online executions. We want to ensure that the agent always
knows what the remaining program is after any sequence of
actions. We say that an agent is online situation-determined
(online SD) if for any sequence of actions that the agent can
perform online, the resulting agent configuration is unique.
Formally, an agent σ = 〈D, δi〉 with initial configuration
ci = 〈δi, ε〉 is online SD if and only if for all sequences of
action ~a, if ci →∗~a c′ and ci →∗~a c′′ then c′ = c′′.

We say that an agent σ = 〈D, δi〉 always knows the re-
maining program after an exogenous action if and only if

for all action sequences ~a,A ∈ Ae, ~n ∈ N k

if D ∪ C ∪ {Executable(do(~a, S0)),
T rans(δ, do(~a, S0), δ

′, do([~a,A(~n)], S0) is satisfiable,
then there exists a program δ′ such that
D ∪ C ∪ {Executable(do([~a,A(~n)], S0))} |=

Trans(δ, do(~a, S0), δ
′, do([~a,A(~n)], S0)).

Essentially, this states that whenever the agent considers it
possible that an exogenous action may occur, then she knows
what the remaining program is afterwards if it does occur.

Finally, we say that an agent σ = 〈D, δi〉 with initial con-
figuration ci = 〈δi, ε〉 is online SD if and only if for all se-
quences of action ~a, if ci →∗~a c′ and ci →∗~a c′′ then c′ = c′′.
We can show that:

Theorem 1 For any agent σ = 〈D, δi〉, if δi is known to be
SD in D, i.e., D∪C |= SituationDetermined(δi, S0) and if
σ always knows the remaining program after an exogenous
action, then σ is online SD.

Online Runs. For an agent σ that is online SD, online ex-
ecutions can be succinctly represented by runs formed by
the corresponding sequence of actions. The set RR(σ) of
(partial) runs of an online SD agent σ with starting config-
uration ci is the sequences of actions that can be produced
by executing ci from S0: RR(σ) = {~a | ∃c.ci →∗~a c}. A
run is complete if it reaches a final configuration. Formally
we define the set CR(σ) of complete runs as: CR(σ) = {~a |

∃c.ci →∗~a c ∧ cX}. Finally we say that a run is good if it
can be extended to a complete run. Formally we define the
set GR(σ) of good runs as: GR(σ) = {~a | ∃c, c′, ~a′.ci →∗~a
c ∧ c→∗~a′ c

′ ∧ c′X}.

4 Online Agent Supervision
Agent supervision aims at restricting an agent’s behavior to
ensure that it conforms to a supervision specification while
leaving it as much autonomy as possible. DLM’s account
of agent supervision is based on offline executions and does
not accommodate agents that acquire new knowledge during
a run. DLM assume that the agent’s possible behaviors are
represented by a (nondeterministic) SD ConGolog program
δi relative to a BAT D. The supervision specification is rep-
resented by another SD ConGolog program δs. First note
that if it is possible to control all the actions of the agent,
then it is straightforward to specify the result of supervision
as the intersection of the agent and the specification pro-
cesses (δi& δs). However in general, some of agent’s actions
may be uncontrollable. These are often the result of interac-
tion of an agent with external resources, or may represent as-
pects of agent’s behavior that must remain autonomous and
cannot be controlled directly. This is modeled by the spe-
cial fluent Au(a, s) that means action a is uncontrollable in
situation s.

DLM say that a supervision specification δs is control-
lable wrt the agent program δi in situation s iff:

∀~aau.∃~b.Do(δs, s, do([~a,~b], s)) ∧Au(au, do(~a, s)) ⊃
(∃~d.Do(δi, s, do([~a, au, ~d], s)) ⊃ ∃~b′.Do(δs, s, do([~a, au, ~b′], s))),

i.e., if we postfix an action sequence ~a that is good offline
run for δs (i.e., such that ∃~b.Do(δs, s, do([~a,~b], s)) holds)
with an uncontrollable action au which is good for δi, then
au must also be good for δs.

Then, DLM define the offline maximally permissive su-
pervisor (offline MPS)mpsoffl(δi, δs, s) of the agent behav-
ior δi which fulfills the supervision specification δs as:

mpsoffl(δi, δs, s) = set(
⋃

E∈E E) where

E = {E | ∀~a ∈ E ⊃ Do(δi & δs, s, do(~a, s))
and set(E) is controllable wrt δi in s}

This says that the offline MPS is the union of all sets of ac-
tion sequences that are complete offline runs of both δi and
δs (i.e., such that Do(δi & δs, s, do(~a, s))) that are control-
lable for δi in situation s.

The above definition uses the set(E) construct intro-
duced by DLM, which is a sort of infinitary nondetermin-
istic branch; it takes an arbitrary set of sequences of actions
E and turns it into a program. We define its semantics as
follows:
Trans(set(E), s, δ′, s′) ≡ ∃a,~a.a~a ∈ E ∧ Poss(a, s) ∧

s′ = do(a, s) ∧ δ′ = set({~a | a~a ∈ E ∧ Poss(a, s)})
Final(set(E), s) ≡ ε ∈ E

Therefore set(E) can be executed to produce any of the se-
quences of actions in E.1

1Obviously there are certain sets that can be expressed directly

DLM show that their notion of offline MPS,
mpsoffl(δi, δs, s), has many nice properties: it always
exists and is unique, it is controllable wrt the agent behavior
δi in s, and it is the largest set of offline complete runs of
δi that is controllable wrt δi in s and satisfy the supervision
specification δs in s, i.e., is maximally permissive. However,
the notion of offline MPS is inadequate in the context of
online execution, as the following example shows.

Example 1 Suppose that we have an agent that does not
know whether P holds initially, i.e., D 6|= P (S0) and D 6|=
¬P (S0). Suppose that the agent’s initial program is:

δi4 = [P?; ((A; (C | U)) | (B;D))] |
[¬P?; ((A;D) | (B; (C | U)))]

where all actions are ordinary, always executable, and con-
trollable except for U , which is always uncontrollable. Sup-
pose that the supervision specification is:

δs4 = (πa.a 6= U?; a)∗

i.e., any action except U can be performed. It is easy to show
that the offline MPS obtained using DLM’s definition is dif-
ferent depending on whether P holds or not:

D ∪ C |= (P (S0) ⊃ mpsoffl(δi4, δ
s
4, S0) = set({[B;D]})) ∧

(¬P (S0) ⊃ mpsoffl(δi4, δ
s
4, S0) = set({[A;D]}))

For models of the theory where P holds, the offline MPS is
set({B;D}), as the set of complete offline runs of δs4 in S0

is {[B;D], [A;C]} and set({[A;C]}) is not controllable wrt
δi4 in S0. For models where P does not hold, the offline MPS
is set({A;D}), since the set of complete offline runs of δs4
in S0 is {[A;D], [B;C]} and set({[B;C]}) is not control-
lable wrt δi4 in S0. Since it is not known if P holds, it seems
that a correct supervisor should neither allow A nor B.

As the above example illustrates, we have an offline MPS
for each model of the theory. Instead, we want a single on-
line MPS that works for all models and includes sensing in-
formation when acquired.

Online Maximally Permissive Supervisor. In our ac-
count of supervision, we want to deal with agents that may
acquire knowledge through sensing and exogenous actions
as they operate and make decisions based on what they
know, and we model these as online SD agents. Let’s see
how we can formalize supervision for such agents. Assume
that we have an online SD agent σ = 〈D, δi〉 whose behav-
ior we want to supervise. Let’s also suppose that we have a
supervision specification δs of what behaviors we want to
allow in the supervised system, where δs is a SD ConGolog
program relative to the BAT D of the agent. In fact, we as-
sume that the system 〈D, δs〉 is also online SD. We say that
a specification δs is online controllable wrt online SD agent
σ = 〈D, δi〉 iff:

in ConGolog, e.g., when E is finite. However in the general case,
the object domain may be infinite, and set(E) may not be repre-
sentable as a finitary ConGolog program.

∀~aau.~a ∈ GR(〈D, δs〉) and
D ∪ {Executable(do(~a, S0))} 6|= ¬Au(au, do(~a, S0)) implies

if ~aau ∈ GR(σ) then ~aau ∈ GR(〈D, δs〉).

This says that if we postfix a good online run ~a for 〈D, δs〉
with an action au that is not known to be controllable
which is good for σ (and so ~a must be good for σ as
well), then au must also be good for 〈D, δs〉. (Note that
~aau ∈ GR(σ) and ~aau ∈ GR(〈D, δs〉) together imply that
~aau ∈ GR(〈D, δi& δs〉).) This definition is quite similar to
DLM’s. But it differs in that it applies to online runs as op-
posed to offline runs. Moreover it treats actions that are not
known to be controllable as uncontrollable, thus ensuring
that δs is controllable in all possible models/worlds com-
patible with what the agent knows. Note that like DLM, we
focus on good runs of the process, assuming that the agent
will not perform actions that don’t lead to a final configura-
tion of δi. The supervisor only ensures that given this, the
process always conforms to the specification.

Given this, we can then define the online maximally per-
missive supervisor mpsonl(δ

s, σ) of the online SD agent
σ = 〈D, δi〉 which fulfills the supervision specification δs:

mpsonl(δ
s, σ) = set(

⋃
E∈E E) where

E = {E | E ⊆ CR(〈D, δi & δs〉)
and set(E) is online controllable wrt σ}

i.e., the online MPS is the union of all sets of action se-
quences that are complete online runs of both δi and δs that
are online controllable for the agent σ. Again, our definition
is similar to DLM’s, but applies to online runs, and relies on
online (as opposed to offline) controllability. For the maxi-
mally permissive supervisormpsonl(δ

s, σ) of the online SD
agent σ = 〈D, δi〉 which fulfills the supervision specifica-
tion δs, where 〈D, δs〉 is also online SD, the following prop-
erties hold: it always exists and is unique, it is online SD,
it is online controllable wrt σ, it is non-blocking, and it is
maximally permissive.

Example 2 If we return to the agent of Example 1, who
does not know whether P holds initially, it is easy to show
that our definition of online MPS yields the correct result,
i.e. mpsonl(δ

s
4, 〈D, δi4〉) = set({ε}).

Example 3 Supervision can also depend on the informa-
tion that the agent acquires as it executes. Again, suppose
that we have an agent that does not know whether P holds
initially. Suppose also that the agent’s initial program is
δi5 = SenseP ; δi4. We can show that:

D ∪ C |= (P (S0) ⊃ mpsoffl(δi5, δ
s
4, S0) =

set({[QryIfP , repV alP (1), B,D]})) ∧
(¬P (S0) ⊃ mpsoffl(δi5, δ

s
4, S0) =

set({[QryIfP , repV alP (0), A,D]}))

Again, we have different offline MPSs depending on
whether P holds. But since the exogenous report makes the
truth value of P known after the first action, we get one on-
line MPS for this agent as follows:

mpsonl(δ
s
4, 〈D, δi5〉) = set({[QryIfP , repV alP (1), B,D],

[QryIfP , repV alP (0), A,D]})

Because the agent queries if P holds, the supervisor has
enough information to decide the maximal set of runs from
then on in each case. So if the reported value of P is true,
then the online supervisor should eliminate the complete run
[A,C] as it is not controllable, and if P does not hold, the
run [B,C] should be eliminated for the same reason.

As well, an action’s controllability or whether it satisfies
the specification may depend on a condition whose truth
only becomes known during the execution. Such cases can-
not be handled by DLM’s original offline account but our
online supervision account does handle them correctly.

5 Discussion
In this paper we have formalized the notion of online SD
programs and defined online maximally permissive super-
visor for agents that execute online and can acquire new
knowledge as they operate. Our definition requires the use
of program construct set which is mostly of theoretical in-
terest. In future work, we focus on meta-theoretically defin-
ing a program construct (i.e. supervision operator) for online
supervised execution that given the agent and specification,
executes them to obtain only runs allowed by the maximally
permissive supervisor. We also plan to define a new looka-
head search construct that ensures the agent can successfully
complete the execution (i.e., ensures nonblockingness).

If the object domain is finite, then finite-state techniques
developed for discrete events systems (Wonham and Ra-
madge 1987) can be adapted to synthesize a program that
characterizes the online MPS. It should also be possible
to effectively synthesize supervisors for agents that use
bounded action theories (De Giacomo, Lespérance, and Pa-
trizi 2013; De Giacomo et al. 2014); verification of temporal
properties over such agents is known to be decidable.

References
De Giacomo, G., and Levesque, H. J. 1999. An incremental
interpreter for high-level programs with sensing. In Logical
Foundations for Cognitive Agents: Contributions in Honor
of Ray Reiter. 86–102.
De Giacomo, G.; Lespérance, Y.; Patrizi, F.; and Vassos, S.
2014. LTL verification of online executions with sensing in
bounded situation calculus. In ECAI, volume 263, 369–374.
De Giacomo, G.; Lespérance, Y.; and Levesque, H. J. 2000.
ConGolog, a concurrent programming language based on
the situation calculus. Artif. Intell. 121(1–2):109–169.
De Giacomo, G.; Lespérance, Y.; and Muise, C. J. 2012.
On supervising agents in situation-determined ConGolog. In
AAMAS, 1031–1038.
De Giacomo, G.; Lespérance, Y.; and Patrizi, F. 2013.
Bounded epistemic situation calculus theories. In IJCAI.
De Giacomo, G.; Lespérance, Y.; and Pearce, A. R. 2010.
Situation calculus based programs for representing and rea-
soning about game structures. In KR.
Lespérance, Y.; De Giacomo, G.; and Ozgovde, A. N. 2008.
A model of contingent planning for agent programming lan-
guages. In AAMAS, 477–484.

McCarthy, J., and Hayes, P. J. 1969. Some Philosophi-
cal Problems From the StandPoint of Artificial Intelligence.
Machine Intelligence 4:463–502.
Reiter, R. 2001. Knowledge in Action: Logical Foundations
for Specifying and Implementing Dynamical Systems. The
MIT Press.
Sardiña, S.; De Giacomo, G.; Lespérance, Y.; and Levesque,
H. J. 2004. On the semantics of deliberation in Indigolog
- from theory to implementation. Ann. Math. Artif. Intell.
41(2-4):259–299.
Scherl, R. B., and Levesque, H. J. 2003. Knowledge, action,
and the frame problem. Artif. Intell. 144(1-2):1–39.
Wonham, W., and Ramadge, P. 1987. On the supremal con-
trollable sub-language of a given language. SIAM Journal
on Control and Optimization 25(3):637–659.

