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Abstract. We present a hybrid discrete-continuous extension of Reiter’s
temporal situation calculus, directly inspired by hybrid systems in con-
trol theory. While keeping to the foundations of Reiter’s approach, we
extend it by adding a time argument to all fluents that represent con-
tinuous change. Thereby, we ensure that change can happen not only
because of actions, but also due to the passage of time. We present a
systematic methodology to derive, from simple premises, a new group
of axioms which specify how continuous fluents change over time within
a situation. We study regression for our new hybrid action theories and
demonstrate what reasoning problems can be solved. Finally, we show
that our hybrid theories indeed capture hybrid automata.
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1 Introduction

Adding time and continuous change to situation calculus (SC) action theories
has attracted a lot of interest over the years. A seminal book [16], refining the
ideas of [13], extends situation calculus with continuous time. For each contin-
uous process, there is an action that initiates the process at a moment of time,
and there is an action that terminates it. A basic tenet of Reiter’s temporal SC
is that all changes in the world, including continuous processes such as a vehicle
driving in a city or water flowing down a pipe, are the result of named discrete
actions. Consequently, in his temporal extension of SC, fluents remain atempo-
ral, while each instantaneous action acquires a time argument. As a side effect of
this ontological commitment, continuously varying quantities do not attain val-
ues until the occurrence of a time-stamped action. For example, in Newtonian
physics, suppose a player kicks a football, sending it on a ballistic trajectory.
The question might be: given the vector of initial velocity, when will the ball
be within 10% of the peak of its trajectory? In order to answer such questions
either a natural, or an exogenous action, depending on the query, has to occur
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to deem the moment of interest for the query. Thus, before one can answer such
questions, one needs the ability to formulate queries about the height of the ball
at arbitrary time-points, which is not directly possible without an explicit action
with a time argument, if the query is formed over atemporal fluents.

In Reiter’s temporal SC, to query about the values of physical quantities in
between the actions (agent’s or natural), one could opt for an auxiliary exogenous
action watch(t) [18], whose purpose is to fix a time-point t to a situation when
it occurs, and then pose an atemporal query in the situation which results from
executing watch(t). Similarly, one can introduce an exogenous action waitFor(φ)
that is executed at a moment of time when the condition φ becomes true, where
φ is composed of functional fluents that are interpreted as continuous functions
of time. This approach has proved to be quite successful in cognitive robotics
[8] and was used to provide a SC semantics for continuous time variants of the
popular planning language PDDL [3].

In this paper we study a new variant of temporal SC in which we can directly
query continuously changing quantities at arbitrary points in time without intro-
ducing any actions (natural or exogenous or auxiliary) that supply the moment
of time. Our approach is query-independent. For doing so we take inspiration
from the work on hybrid systems in control theory [4,12], which are based on
discrete transitions between states that continuously evolve over time. Following
this idea, the crux of our proposal is to add a new kind of axioms called state evo-
lution axioms (SEA) to Reiter’s successor state axioms (SSA). The SSA specify,
as usual, how fluents change when actions are executed. Informally, they char-
acterize transitions between different states due to actions. The state evolution
axioms specify how the flow of time can bring changes in system parameters
within a given situation while no actions are executed. Thus, we maintain the
fundamental assumption of SC that all discrete change is due to actions, though
situations now include a temporal evolution.

Reiter [16] shows how the SSA can be derived from the effect axioms in
normal form by making the causal completeness assumption. We do similar
work w.r.t. state evolution axioms, thus providing a precise methodology for
axiomatization of continuous processes in SC in the spirit of hybrid systems.
One of the key results of SC is the ability to reduce reasoning about a future
situation to reasoning about the initial state by means of regression [16]. We
show that a suitable notion of regression can be defined despite the continuous
evolution within situations.

In hybrid automata, while continuous change is dealt with thoroughly, the
discrete description is limited to finite state machines, i.e., it is based on a propo-
sitional representation of the state. SC, instead, is based on a relational represen-
tation. There are practical examples that call for an extension of hybrid systems
where states have an internal relational structure and the continuous flow of time
determines the evolution within the state [20]. Our proposal can readily capture
these cases, by providing a relational extension to hybrid automata, which ben-
efits from the representational richness of SC. Thus, our work can help to bring
together KR and Hybrid Control, getting from the former the semantic richness
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of relational states and from the latter a convenient treatment of continuous
time. The proofs of our theorems are available in [1].

2 Background

Situation Calculus. The situation calculus has three basic sorts (situation,
action, object); formulas can be constructed over terms of these sorts. Reiter
[16] shows that to solve many reasoning problems about actions, it is convenient
to work with SC basic action theories (BATs) that have the following ingredi-
ents. For each action function A(x̄), an action precondition axiom (APA) has
the syntactic form Poss(A(x̄), s) ↔ ΠA(x̄, s), meaning that the action A(x̄) is
possible in situation s if and only if ΠA(x̄, s) holds in s, where ΠA(x̄, s) is a for-
mula with free variables among x̄=(x1, . . . , xn) and s. A situation is a first-order
(FO) term describing a unique sequence of actions. The constant S0 denotes the
initial situation, the function do(α, σ) denotes the situation that results from
performing action α in situation σ, and do([α1, . . . , αn], S0) denotes the situa-
tion obtained by consecutively performing α1, . . . , αn in S0. The notation σ′ � σ
means that either situation σ′ is a subsequence of σ or σ=σ′. The abbreviation
executable(σ) captures situations σ all of whose actions are consecutively possi-
ble. Objects are FO terms other than actions and situations that depend on the
domain of application. Above, ΠA(x̄, s) is a formula uniform in situation argu-
ment s: it talks only about situation s and uses only domain-specific predicates
(see [16]). For each relational fluent F (x̄, s) and each functional fluent f(x̄, s),
respectively, a successor state axiom (SSA) has the form

F (x̄, do(a, s)) ↔ ΦF (x̄, a, s) or f(x̄, do(a, s))=y ↔ φf (x̄, y, a, s),

where ΦF (x̄, a, s) and φf (x̄, y, a, s) are formulas uniform in s. A BAT D also
contains the initial theory : a finite set DS0 of FO formulas uniform in S0. Finally,
BATs include a set Duna of unique name axioms for actions (UNA). If a BAT
has functional fluents, it is required to satisfy an explicit consistency property
whereby each functional fluent is always interpreted as a function.

BATs enjoy the relative satisfiability property: a BAT D is satisfiable when-
ever Duna ∪ DS0 is. This property allows one to disregard the problematic parts
of a BAT, like the second order (SO) foundational axioms Σ for situations, when
checking satisfiability. BATs benefit from regression, a reasoning mechanism for
answering queries about the future (thereby solving the projection problem).
The regression operator R is defined for sufficiently specific (regressable) queries
about the future. R[ϕ] is obtained from a formula ϕ by a syntactic manipula-
tion (see Defn. 4.7.4 in [16]). By a seminal result in [16], regression reduces SO
entailment from a BAT D to FO entailment by compiling dynamic aspects of
the theory into the query.

To accommodate time, Reiter adds a temporal argument to all actions and
introduces two special functions: time(a) refers to the time of occurrence of the
action a, and start(s) refers to the starting time of situation s, i.e., the time of
the latest action of s. The points constituting the timeline with dense linear order



176 V. Batusov et al.

are assumed to have the standard interpretation (along with +, <, etc [16]). To
model exogenous events, Reiter develops a theory of natural actions—non-agent
actions that occur spontaneously as soon as their precondition is satisfied. Such
actions are marked using the symbol natural, and their semantics are encoded
by a modification of executable(s). We use natural actions to induce relational
change based on the values of the continuous quantities.

Hybrid Systems. Hybrid automata are mathematical models used ubiquitously
in control theory for analyzing dynamic systems which exhibit both discrete and
continuous dynamics. [4] define a basic hybrid automaton (HA) as a system H
consisting of: a finite set Q of discrete states; a transition relation E ⊆ Q×Q; a
continuous state space X ⊆ R

n; for each q ∈ Q, a flow function ϕq : X ×R �→ X
and a set Invq ⊆ X called the domain of permitted evolution; for each (q, q′) ∈ E,
a reset relation Rq,q′ ⊆ X×P(X); a set Init ⊆ ∪q∈Q({q}×Invq) of initial states.

Like a discrete automaton, a HA has discrete states and a state transition
graph, but within each discrete state its continuous state evolves according to
a particular flow, e.g., it can be an implicit solution to a system of differential
equations. The domain of permitted evolution delineates the boundaries which
the continuous state X of the automaton cannot cross while in state q, i.e.,
ϕq(X, t) ∈ Invq. The reset relation helps to model discrete jumps in the value of
the continuous state which accompany discrete state switching. A trajectory of a
hybrid automaton H is a sequence η = 〈Δi, qi, νi〉i∈I , with I = {1, 2, . . .}, where
Δi is the duration, qi is a state from Q, and νi : [0,Δi] �→ X is a continuous curve
along the flow ϕqi

(refer to [4] for details). A trajectory captures an instance of
a legal evolution of a hybrid automaton over time. Duration Δi is the time spent
by the automaton in the i-th discrete state it reaches while legally traversing the
transition graph, obeying the reset relation. A trajectory is finite if it contains
a finite number |I| of steps and the sum Σi∈IΔi is finite.

3 Hybrid Temporal Situation Calculus

In our quest for a hybrid temporal SC, we reuse the temporal machinery intro-
duced into BATs by Reiter, namely: all actions have a temporal argument and
the functions time and start are axiomatized as before. We preserve atemporal
fluents, but no longer use them to model continuously varying physical quanti-
ties. Rather, atemporal fluents serve to specify the context in which continuous
processes operate. For example, the fluent Falling(b, s) holds if a ball b is in
the process of falling in situation s, indicating that, for the duration of s, the
position of the ball should be changing as a function of time according to the
equations of free fall. The fluent Falling(b, s) may be directly affected by instan-
taneous actions drop(b, t) (ball begins to fall at the moment t) and catch(b, t)
(ball stops at t), but the effect of these actions on the position of the ball comes
about only indirectly, by changing the context of a continuous trajectory and
thus switching the continuous trajectory that the ball can follow. Thus, a falling
ball is one context, and a ball at rest is another. In general, there are finitely
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many parametrized context types which are pairwise mutually exclusive when
their parameters are appropriately fixed, and each context type is characterized
by its own continuous function that determines how a physical quantity changes.

To model continuously varying physical quantities, we introduce new func-
tional fluents with a temporal argument. We imagine that these fluents can
change with time, and not only as a direct effect of actions. For example, for the
context where the ball is falling, the velocity of the ball at time t represented
by fluent vel(b, t, s) can be specified as [Falling(b, s) ∧ y = vel(b, start(s), s)−g·
(t−start(s))] → vel(b, t, s) = y. Notice that this effect axiom does not mention
actions and describes the evolution of vel within a single situation.

Deriving State Evolution Axioms. Our starting point is a temporal change axiom
(TCA) which describes a single law governing the evolution of a particular tem-
poral fluent due to the passage of time in a particular context of an arbitrary
situation. An example of a TCA was given above for vel(b, t, s). We assume that
a TCA for a temporal functional fluent f has the general syntactic form

γ(x̄, s) ∧ δ(x̄, y, t, s) → f(x̄, t, s)=y, (1)

where t, s, x̄, y are variables and γ(x̄, s), δ(x̄, y, t, s) are formulas uniform in s
whose free variables are among those explicitly shown. We call γ(x̄, s) the context,
as it specifies the condition under which the formula δ(x̄, y, t, s) is to be used to
compute the value of fluent f at time t. Note that contexts are time-independent.
The formula δ(x̄, y, t, s) encodes a function (e.g., a solution to the initial value
problem for a system of the ordinary differential equations [19]) which specifies
y in terms of the values of other fluents at s, t. For each TCA (1) to be well-
defined, we require that the background theory entails γ(x̄, s) → ∃y δ(x̄, y, t, s).
In other words, whatever the circumstance, the TCA must supply a value for the
quantity modelled by f if its context is satisfied. A set of k well-defined temporal
change axioms for some fluent f can be equivalently expressed as an axiom of
the form (2) below, where Φ(x̄, y, t, s) is

∨
1≤i≤k(γi(x̄, s)∧ δi(x̄, y, t, s)). For each

such axiom, we require that the background theory entails the condition (3).

Φ(x̄, y, t, s) → f(x̄, t, s)=y, (2)
Φ(x̄, y, t, s) ∧ Φ(x̄, y′, t, s) → y=y′. (3)

Condition (3) guarantees the consistency of the axiom (2) by preventing a contin-
uous quantity from having more than one value at any moment of time. Provided
(3), we can assume w.l.o.g. that all contexts in the given set of TCA are pairwise
mutually exclusive w.r.t. the background theory D.

Having combined all laws which govern the evolution of f with time into
a single axiom (2), we can make a causal completeness assumption: there are
no other conditions under which the value of f can change in s from its initial
value at start(s) as a function of t. We capture this assumption formally by the
explanation closure axiom

f(x̄, t, s) 
= f(x̄, start(s), s) → ∃y Φ(x̄, y, t, s). (4)
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Theorem 1. Let Ψ(x̄, s) denote
∨

1≤i≤k γi(x̄, s). The conjunction of axioms (2)
and (4) in the models of (3) is logically equivalent to

f(x̄, t, s)=y ↔ [Φ(x̄, y, t, s) ∨ y=f(x̄, start(s), s) ∧ ¬Ψ(x̄, s)]. (5)

We call the formula (5) a state evolution axiom (SEA) for the fluent f . Note
what the SEA says: f evolves with time during s according to some law whose
context is realized in s or stays constant if no context is realized. The assumption
(4) simply states that all reasons for change have been already accounted for in
(2) and nothing is missed. It is important to realize that Dse, a set of SEAs,
complements the SSAs derived in [16] using a similar technique.

Hybrid Basic Action Theories. The SEA for a temporal fluent f does not com-
pletely specify the behaviour of f because it talks only about change within a
single situation s. To complete the picture, we need a SSA describing how the
value of f changes (or does not change) when an action is performed. A straight-
forward way to accomplish this would be by an axiom which would enforce con-
tinuity, e.g., f(x̄, time(a), do(a, s))=f(x̄, time(a), s). However, this choice would
preclude the ability to model action-induced discontinuous jumps in the value
of the continuously varying quantities, such as the sudden change of accelera-
tion from 0 to −9.8m/s2 when an object is dropped. To circumvent this, for
each temporal functional fluent f(x̄, t, s), we introduce an auxiliary atemporal
functional fluent finit(x̄, s) whose value in s represents the value of the quantity
modelled by f in s at the time instant start(s). We axiomatize finit using a
SSA derived from an effect axiom for finit(x̄, s) and a frame axiom of the form
¬∃y(e(x̄, y, a, s)) → finit(x̄, do(a, s)) = f(x̄, time(a), s) stating that if no rele-
vant effect is invoked by the action a, finit assumes the most recent value of f .
The SSA for finit has standard syntax and describes how the initial value of f
in do(a, s) relates to its value at the same time instant in s (i.e., prior to a).
To establish a consistent relationship between temporal fluents and their init-
counterparts, we require that, in an arbitrary situation, the continuous evolution
of each temporal fluent f starts with the value computed for finit by its successor
state axiom.

A hybrid basic action theory is a collection of axioms D = Σ ∪ Dss ∪ Dap ∪
Duna ∪ DS0 ∪ Dse such that

1. Every action mentioned in D is temporal;
2. Σ ∪Dss ∪Dap ∪Duna ∪DS0 constitutes a BAT as per Definition 4.4.5 in [16];
3. Dse is a set of SEA of the form f(x̄, t, s)=y ↔ ψf (x̄, t, y, s) where ψf (x̄, t, y, s)

is uniform in s, such that Dss contains an SSA for finit;
4. For each SEA of the form above, Duna ∪ DS0 entails

∀x̄∀t. ∃y(ψf (x̄, t, y, s)) ∧ ∀y∀y′(ψf (x̄, t, y, s) ∧ ψf (x̄, t, y′, s) → y=y′), (6)
∃y(finit(x̄, s)=y ∧ ψf (x̄, start(s), y, s)); (7)

A set Dse of SEA is stratified iff there are no temporal fluents f1, . . . , fn such
that f1 � f2 � . . . � fn � f1 where f � f ′ holds iff there is a SEA in Dse where
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f appears on the left-hand side and f ′ on the right-hand side. A hybrid BAT is
stratified iff its Dse is.

Theorem 2. A stratified hybrid BAT D is satisfiable iff Duna ∪ DS0 is.

Example 1. (See [1] for an illustartion and additional details). Consider a macro-
scopic urban traffic domain along the lines of [20]. For simplicity, we consider a
single intersection of two 2-lane roads. Facing the intersection i are 4 incoming
and 4 outgoing road segments. Depending on the traffic light, a car may turn
left, turn right, or drive straight from an incoming lane to an outgoing lane.
Each lane is denoted by a constant and each path through the intersection i is
encoded using the predicates st(i, r1, r2) (straight connection from lane r1 to r2

at intersection i), lt(i, r1, r2) (left turn), and rt(i, r1, r2) (right turn). The num-
ber of cars per unit of time that can pass through each connection is specified
by the function flow(i, r1, r2).

The outgoing lanes are of infinite capacity and are not modelled. The traffic
lights are controlled by a simple looping automaton with the states Green(i, r, s)
(from lane r, go straight or turn right), followed by RArr(i, r, s) (right arrow, i.e.,
only turn right), followed by Red(i, r, s) (stop), and then LArr(i, r, s) (only turn
left), such that mutually orthogonal directions are in antiphase to each other.
The switching between states for all r is triggered by the action switch(i, t) with
precondition Poss(switch(i, t), s) ↔ start(s)≤ t via a set of simple SSA.

The continuous quantity we wish to model is the number of cars at intersec-
tion i queued up in lane r. For that, we use the temporal fluent que(i, r, t, s)
and its atemporal counterpart queinit(i, r, s). Since the lane r may run dry, we
call on the natural action empty(i, r, t) to change the relational state:

Poss(empty(i, r, t), s) ↔ start(s)≤ t ∧ que(i, r, t, s)=0,
a=empty(i, r, t) ∧ y=0 → queinit(i, r, do(a, s))=y,

a 
=empty(i, r, t) ∧ y=que(i, r, time(a), s) → queinit(i, r, do(a, s))=y.

We can now formulate the TCA for que according to traffic rules. Cars do not
move at a red light: [Red(i, r, s) ∧ y=queinit(i, r, s)] → que(i, r, t, s)=y. When a
non-empty lane r sees the left (or right) arrow, its queue decreases linearly with
the rate associated with the left (resp., right) turn. For the signal Green(i, r, s),
the queue decreases with a combined rate of the straight connection and the
right turn, i.e. y=(queinit(i, r, s) − (flow(i, r, r′)+flow(i, r, r′′))·(t−start(s)).

From these TCA, by Theorem 1, we obtain a SEA below (simplified for
brevity). Notice that the last line comes not from the TCA but from the expla-
nation closure (4) enforced by Theorem 1 and asserts the constancy of que in
the context which the TCA did not cover (movement is allowed but the lane is
empty). In general, the modeller only needs to supply the TCA for the contexts
where the quantity changes with time.
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que(i, r, t, s)=y ↔ (∃τ∃q0∃rL∃rS∃rR).
τ =(t−start(s)) ∧ q0 =queinit(i, r, s) ∧ lt(i, r, rL) ∧ st(i, r, rS) ∧ rt(i, r, rR) ∧
[
LArr(i, r, s) ∧ q0 
=0 ∧ y=(q0−flow(i, r, rL) · τ) ∨
Green(i, r, s) ∧ q0 
=0 ∧ y=(q0−(flow(i, r, rS)+flow(i, r, rR)) · τ) ∨
RArr(i, r, s) ∧ q0 
=0 ∧ y=(q0−flow(i, r, rR) · τ) ∨
Red(i, r, s) ∧ y=q0 ∨ ¬Red(i, r, s) ∧ q0 =0 ∧ y=0

]
.

4 Regression

Projection is a ubiquitous computational problem concerned with establishing
the truth value of a statement after executing a given sequence of actions. We
solve it with the help of regression. The notions of uniform and regressable
formulas trivially extend to hybrid BATs. The regression operator R as defined
for atemporal BATs in Definition 4.7.4 of [16] can be extended to hybrid BATs
in a straightforward way. When R is applied to a regressable formula W , R[W ]
is determined relative to a hybrid BAT. We extend R as follows.

Let D be a hybrid BAT, and let W be a regressable formula. If W is a non-
fluent atom that mentions start(do(α, σ)), then R[W ] = R[W |start(do(α,σ))

time(α) ]. If
W is a non-Poss atom and mentions a functional fluent uniform in σ, then this
term is either atemporal or temporal. The former case is covered by Reiter. In
the latter case, the term is of the form f(C̄, τ�, σ) and has a SEA f(x̄, t, s) =
y ↔ ψf (x̄, t, y, s), so we rename all quantified variables in ψf (x̄, t, y, s) to avoid
conflicts with the free variables of f(C̄, τ�, σ) and define R[W ] to be R[∃y. (τ� =
start(σ)∧y=finit(x̄, σ)∨τ� 
=start(σ)∧ψf (C̄, τ�, y, σ))∧W |f(C̄,τ�,σ)

y ], where y is
a new variable not occurring free in W , C̄, τ�, σ. Intuitively, this transformation
replaces the temporal fluent f with either the value of finit if f is evaluated
at the time of the last action or, otherwise, with the value determined by the
right-hand side of the SEA for f .

Theorem 3. If W is a regressable sentence of SC and D is a stratified hybrid
basic action theory, then D |= W iff DS0 ∪ Duna |= R[W ].

Example 2. Let the initial state in the previous example entail the following:

start(S0) = 0, Red(I, in1, S0), queinit(I, in1, S0) = 100,
f low(I, in1, out2) = 5, f low(I, in1, out3) = 15, f low(I, in1, out4) = 10.

Let W be que(I, in1, 3, σ) < 95, i.e., there are fewer than 95 cars in lane in1

at time 3 in situation σ, where σ is do([switch(I, 1), switch(I, 2)], S0). In this
narrative, the lane in1 sees the red light, which at t=1 switches to the left arrow,
and at t=2 to green. To check if D |= W , we use Theorem 3 to reduce W to an
equivalent statement about S0:

R[que(I, in1, 3, σ) < 95] = queinit(I, in1, S0) − 10(2 − 1) − (15 + 5)(3 − 2) < 95.
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The resulting query can be answered by FO means by plugging 100 for the initial
number of cars at in1: 100 − 10 − 20 = 70 < 95, so the statement is true.

Regression can also be a powerful diagnostic tool. By analyzing the results
of partial regression of a temporal query, one can attribute its validity to a
particular action of the narrative. Let Rσ′

be a variant of R which does not
regress beyond σ′. We can establish whether Rσ′

[W ] is true for each σ′ � σ
as before. In our example, the query holds during and after switch(I, 2) but
is false before and at the instant of switch(I, 1). We conclude that the action
switch(I, 1) as well as the time that has passed since t=1 up to the time when
Rdo(switch(I,1),S0)[W ] became true are responsible for the fact that W holds at
σ. Note that W can be an arbitrary regressable property of the dynamic system.

5 Comparison with Previous Approaches

Considering that discrete-continuous systems have been a hot topic for decades,
it is impossible to fairly compare hybrid situation calculus to a representative
subset of all work in that area. Hence, we draw comparisons only to approaches
from the same paradigm.

A seminal work by Sandewall [17] points out that discarding information
from a theory cannot lead to better inferences. He argues that differential calcu-
lus is the perfect language for modelling continuous change and that the essen-
tial task in describing physical systems is to provide a logical foundation for
discrete state transitions. Pinto [13] presents initial proposals to introduce time
into the situation calculus; these works focuse on a so-called actual sequence of
actions and introduced representation for occurrences of actions w.r.t. an exter-
nal time-line. Ch. 6 of [13] discusses examples of continuous change and natu-
ral events following [17], but without using Sandewall’s non-monotonic solution
to the frame problem. It also introduces a class of objects called parameters
that are used to name continuously varying properties such that each parameter
behaves according to a unique function of time during a fixed situation. It is
mentioned that parameters can be replaced with functional fluents of time, but
this direction was not elaborated. Building on earlier work of [11,13,17] intro-
duces time-independent fluents and situation-independent parameters that can
be regarded as functions of time, but provides only an example, and no general
methodology. [16] provides the modern axiomatization of time, concurrency, and
natural actions in SC. However, [16] allows only atemporal fluents in contrast to
[13]. For this reason, [18] proposes an auxiliary action watch(t) (see below).

The example in Sect. 3 helps illustrate the differences with our approach.
Consider Reiter’s temporal SC [16]: since fluents are atemporal, the TCA above
are replaced by effect axioms for the atemporal fluent que(i, r, s), e.g.,

a=switch(i, t) ∧ [
LArr(i, r, s) ∧ que(i, r, s) 
=0 ∧ ∃r′[lt(i, r, r′) ∧

y=(que(i, r, s)−flow(i, r, r′)·(time(a)−start(s))]
] → que(i, r, do(a, s))=y.

Note that, in effect axioms, the change in que is associated with a named
action. The modeller must replicate this axiom for each action which might
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affect the context LArr(i, r, s) ∧ que(i, r, s) 
= 0, and likewise for all other con-
texts and TCA. In our approach, the change in context is handled separately and
does not complicate the axiomatization of continuous dynamics. The right-hand
side of the resulting SSA, γque(i, r, y, s) ∨ que(i, r, s) = y ∧ ¬∃y′γque(i, r, y′, s),
can be obtained from the right-hand side of the SEA above by replacing t
with time(a), queinit(i, r, s) with que(i, r, s), and the last line by que(i, r, s) =
y ∧ ¬∃y′γque(i, r, y′, s). Notice that the expression γque(i, r, y, s) occurs twice—
first due to the effect axiom (in a normal form) and then again due to explanation
closure—see examples in Sect. 3.2.6 in [16]. In our approach, only the essential
atemporal part of that expression appears. Furthermore, Reiter’s version of the
precondition axiom for empty(i, r, t) is necessarily cumbersome because it men-
tions que(i, r, t, s), whose evolution (and thus the value at t) depends on the
current relational state of s. Therefore, the modeller must include the right-hand
side of the SSA in the precondition, thereby increasing the size of the axioms by
roughly the size of the SSA for the continuous fluent F for every occurrence of F
in a precondition axiom while not adding any new information. Moreover, since
fluents are atemporal, evaluating them at arbitrary moments of time t requires
an auxiliary action.

The approach due to [18] introduces the special action watch(t) to
advance time to the time-point t. This allows one to access continuous flu-
ents in between the agent actions, but at a cost: replacing que(i, r, t, s) by
que(i, r, do(watch(t), s)) in the precondition axiom makes the right-hand side
non-uniform in s, violates Defn. 4.4.3 in [16], and thus steps outside of the
well-studied realm of BATs. A later proposal due to [8] considers fluents whose
values range over functions of time, but neither the fluents nor the actions have
a temporal argument. Domain actions occur at the same instant as the pre-
ceding situation, and the mechanism for advancing time is the special action
waitFor(φ) which simulates the passage of time until the earliest time-point
where φ holds. Aimed specifically at robotic control, this approach relies on a
cc-Golog program to trigger the waitFor action.

Finzi and Pirri [6] introduce temporal flexible situation calculus, a dialect
aimed to provide formal semantics and a Golog implementation for constraint-
based interval planning which requires dealing with multiple alternating time-
lines. To represent processes, they introduce fluents with a time argument. How-
ever, this time argument marks the instant of the process’ creation and is not
associated with a continuous evolution.

6 Modelling Hybrid Automata

Hybrid BATs introduced here are naturally suitable for capturing hybrid
automata [12]. Given an arbitrary basic hybrid automaton H, c.f., Sect. 2, we
proceed as follows. For every discrete state in the set Q, we introduce a constant
qi with 1 ≤ i ≤ |Q| and let DS0 contain unique name axioms for all qi. The
transition relation E is encoded by a finite set of facts E(q, q′). Each flow ϕq is
encoded by the function flow such that flow(q, x, t) = y iff ϕq(x, t) = y. Each
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set of invariant states Invq is encoded by the predicate Inv(q, x) which holds
iff x ∈ Invq. Each reset relation Rq,q′ is encoded by the predicate R(q, q′, x, y)
which holds iff y ∈ Rq,q′(x). The set of initial states Init is encoded by the
predicate Init(q, x) which holds iff (q, x) ∈ Init.

Let Q(s) denote the discrete and X(t, s) the continuous state. Let tr(q, q′, y, t)
be the action representing a transition from state q to q′ at time t while resetting
the continuous state to the value y. The automaton can be described as

Poss(tr(q, q′, y, t), s) ↔ Q(s)=q ∧ E(q, q′) ∧ R(q, q′,X(t, s), y) ∧ Inv(q′, y),
Q(do(a, s))=q ↔ ∃q′, y, t(a= tr(q′, q, y, t)) ∨ Q(s)=q ∧ ¬∃q′, y, t(a= tr(q, q′, y, t)),
Xinit(do(a, s))=x ↔ ∃q∃q′∃t(a= tr(q, q′, x, t)),

X(t, s)=x ↔ ∨k
i=1[Q(s)=qi ∧ x=flow(qi,Xinit(s), t)].

Theorem 4. Let D be a satisfiable hybrid BAT axiomatizing a hybrid automaton
H as above, let σ be an executable ground situation and let τ ≥ start(σ). Then

D |= Init(Q(S0),Xinit(S0)) ∧ (∀a, s, t)
[
do(a, s)�σ ∧ start(s)≤ t≤ time(a) ∨

s=σ ∧ start(σ) ≤ t ≤ τ
] → Inv(Q(s),X(s, t))

if and only if a finite trajectory of H can be uniquely constructed from σ and τ .

Clearly, this axiomatization rules out non-trivial queries about the content
of the states because its discrete states are a finite set without objects, relations,
etc. A general hybrid BAT does not have this limitation. While classic HA are
based on a finite representation of states and atomic state transitions, richer
representations began to attract the interest of the hybrid system community.
Of particular interest is the work by Platzer [15] based on FO dynamic logic
extended to handle differential equations for describing continuous change. Our
work contributes to this line of research by providing a very rich representation
of the discrete states described relationally in FOL. Both [14] and our paper
propose to go beyond finite-state HA. The key advantage of our work is in the
availability of situation terms, and therefore, the regression operator. Thus, the
usual SC-based reasoning tasks [16] can be solved in our hybrid BATs.

7 Conclusion

Inspired by hybrid systems, we have proposed a temporal extension of SC with a
clear distinction between atemporal fluents, responsible for transitions between
states, and temporal fluents, representing continuous change within a state.
While this paper focuses on semantics, the connection with hybrid systems estab-
lished here opens new perspectives for future work on automated reasoning as
well. In hybrid systems, the practical need for robust specification and verifi-
cation tools for HA resulted in the development of a multitude of logic-based
approaches (see [4] for an overview). More recently, [7] show that certain classes
of decision problems belong to reasonable complexity classes. These results pro-
vide foundations for verification of robustness in hybrid systems [9]. Platzer’s
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work offers some decidability results for verification based on quantifier elimi-
nations [14,15]. Note that the quantified differential dynamic logic [14], which
focuses on functions and does not allow for arbitrary relations on objects, cannot
encode SC action theories in an obvious way, i.e., it includes only one primitive
action (assignment), but BATs provide agent actions that can model a system
at a higher level of abstraction. Nevertheless, it may be interesting to study the
reductions of fragments of Golog [10] and BATs with or without continuous time
to such a dynamic logic, to exploit existing [14] and future decidability results.

On the other hand, while research in hybrid systems focuses on certain ver-
ification problems, the present paper, due to regression, proposes an approach
to solve other reasoning problems that cannot be formulated in hybrid systems.
Recent work on bounded theories [2,5] provides promising means to study decid-
able cases in this realm, which could be of interest to hybrid systems as well.
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