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1 Motivation

Designing autonomous agents that do the right thing in changing and in-
completely known environments is challenging. The agent needs to adapt to
changing environment conditions and user objectives. Architectures based on
classical planning can provide flexibility and adaptability, but they often end
up being too demanding computationally. Our approach of high-level pro-
gram execution [61] aims for a middle ground between classical planning and
normal programming. The idea, roughly, is that instead of searching for a
sequence of actions that would take the agent from an initial state to some
goal state, the task is to find a sequence of actions that constitutes a le-
gal execution of some sketchy high-level non-deterministic program involving
domain specific actions and tests. As in planning, to find a sequence that
constitutes a legal execution of a high-level program, it is necessary to reason
about the preconditions and effects of the actions within the body of the
program. However, if the program happens to be almost deterministic, very
little searching is required; as more and more non-determinism is included,
the search task begins to resemble traditional planning. Thus, in formulat-
ing a high-level program, the programmer gets to control the search effort
required.

The high-level program execution approach to agent programming was
concretely realized in the Golog programming language [62], a procedural
language defined on top of the situation calculus [71, 82], a predicate logic
framework for reasoning about action. Golog (the name stands for “alGOl
in LOGic”) provides a full set of procedural constructs including condition-
als, loops, recursive procedures, as well as several nondeterministic choice
constructs. The interpreter for the language uses a situation calculus action
theory representing the agent’s beliefs about the state of the environment
and the preconditions and effects of the actions to reason and find a provably
correct execution of the program.

An extension of Golog called ConGolog (Concurrent Golog) [24] was later de-
veloped to provide concurrent programming facilities. Then, more recently,
in IndiGolog (incremental deterministic Golog) [26, 87, 28], the framework was
generalized to allow the programmer to control planning/lookahead and sup-
port online execution, sensing the environment, and execution monitoring.

In addition to these, there have been other proposals of languages based on
the high-level program execution approach. One is Thielscher’s FLUX language
[99], which uses the fluent calculus as its formal foundation. As well, decision
theoretic versions of the approach have been proposed yielding languages
such as DTGolog [14, 97, 34].

In this chapter, we will focus our presentation on IndiGolog, briefly men-
tioning how it differs from Golog and ConGolog as we go along. The high level
program execution approach is related to work on planning with domain spe-
cific control information, such as hierarchical task network (HTN) planning
[33], and planning with temporal logic control specifications [3].
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The Golog family of high level agent programming languages can be con-
trasted with the more mainstream BDI agent programming languages/ar-
chitectures, such as PRS [39] and its various successors, such as AgentSpeak
[78], Jason [11], Jack [17], and JAM [45], as well as the closely related 3APL [44].
These were developed as a way of enabling abstract plans written by program-
mers to be combined and used in real-time, in a way that was both flexible
and robust. These BDI agent programming languages were conceived as a
simplified and operationalized version of the BDI (Belief, Desire, Intention)
model of agency, which is rooted in philosophical work such as Bratman’s
[15] theory of practical reasoning and Dennet’s theory of intentional systems
[31]. In the BDI paradigm, agents are viewed, as well as built, as entities
whose (rational) actions are a consequence of their mental attitudes, beliefs,
desires, obligations, intentions, etc. Theoretical work on the BDI model has
focused on the formal specification of the complex logical relationships among
these mental attitudes (e.g., [22, 79]). But more practical work in the area
has sought to develop BDI agent programming languages that incorporate a
simplified BDI semantics basis that has a computational interpretation.

An important feature of BDI-style programming languages and platforms
is their interleaved account of sensing, deliberation, and execution [76]. In
BDI systems, abstract plans written by programmers are combined and exe-
cuted in real-time. By executing as they reason, BDI agents reduce the likeli-
hood that decisions will be made on the basis of outdated beliefs and remain
responsive to the environment by making adjustments in the steps chosen
as they proceed. Because of this, BDI agent programming languages are well
suited to implementing systems that need to operate more or less in real time
(e.g., air traffic control and unmanned aerial vehicles (UAVs), space shuttle
monitoring, search and rescue co-ordination, internet electronic business, and
automated manufacturing [66, 7, 32, 9]). Unlike in classical planning-based
architectures, ezecution happens at each step, and there is no lookahead to
check that the selected plan can be successfully expanded and executed. The
assumption is that the careful crafting of plans’ preconditions to ensure the
selection of appropriate plans at execution time, together with a built-in
mechanism for trying alternative options, will usually ensure that a success-
ful execution is found, even in the context of a changing environment. The
approach works well if good plans can be specified for all objectives that the
agent may acquire and all contingencies that may arise. However, there are
often too many possible objectives and contingencies for this to be practical.
Trying alternative options may not work in an environment where choices
cannot be “undone.” Thus supplying some form of lookahead planning in an
agent programming language remains valuable provided it can be effectively
controlled.

Various proposals have been made to incorporate planning (at execu-
tion time) in BDI agent programming languages. [89, 90] have proposed the
CANPlan and CanPlan2 languages, that incorporate an HTN planning mecha-
nism [33] into a classical BDI agent programming language. Earlier less formal
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work on this topic is reviewed in [89]. We will come back to the relationship
between our high level agent programming approach and other work on agent
programming languages in the final section of the chapter.

The rest of the chapter is organized as follows. In the next section, we
present the syntax and semantics of IndiGolog and discuss the basis of the
whole approach. In Section 3, we discuss in details our platform for high-level
program execution supporting IndiGolog. In Section 4, we briefly survey some
of the applications that have been developed using it. After that, we conclude
by discussing the distinguishing features of our approach and issues for future
work.

2 Language
2.1 Specifications and Syntactical Aspects

The Situation Calculus and Basic Action Theories

Our approach to agent programming relies on the agent being able to reason
about its world and how it can change, whether for planning/lookahead, for
updating its knowledge after executing an action or observing an exogenous
action/event, for monitoring whether its actions are having the expected
effects, etc. More specifically, we assume that the agent has a theory of action
for the domain in which it operates, a theory which is specified in the situation
calculus [71], a popular predicate logic formalism for representing dynamic
domains and reasoning about action.

We will not go over the situation calculus in detail. We merely note the
following components. There is a special constant Sy used to denote the ini-
tial situation, namely that situation in which no actions have yet occurred.
There is a distinguished binary function symbol do, where do(a, s) denotes
the successor situation to s resulting from performing the action a. For exam-
ple, in a Blocks World, the situation term do(put(A, B), do(put(B,C), Sp)),
could denote the situation where the agent has done the actions of first
putting block B on block C' and then putting block A on block B, after
starting in the initial situation Sy. Relations (resp. functions) whose values
vary from situation to situation, are called fluents, and are denoted by pred-
icate (resp. function) symbols taking a situation term as their last argument.
Thus, for example, we might have that block B was initially on the table,
i.e. OnTable(B, Sp), and after the agent put it on C, it no longer was, i.e.
=OnTable(B,do(put(B,C), Sp)). There is also a special predicate Poss(a, s)
used to state that action a is executable in situation s.

Within this language, we can formulate action theories which describe how
the world changes as the result of the available actions in the domain. Here,
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we use basic action theories [82], which include the following types of axioms:

e Axioms describing the initial situation, Sj.

e Action precondition axioms, one for each primitive action a, characterizing
Poss(a, s).

e Successor state axioms, one for each relational fluent F' (resp. functional
fluent f), which characterize the conditions under which F(x,do(a,s))
holds (resp. f(x,do(a,s)) =v) in terms of what holds in situation s; these
axioms may be compiled from effects axioms, but provide a solution to the
frame problem [81].

e Unique names axioms for the primitive actions.

e A set of foundational, domain independent axioms for situations X' as in
[82].

Various ways of modeling sensing in the situation calculus have been pro-
posed. One is to introduce a special fluent SF(a, s) (for sensed fluent value)
and axioms describing how the truth value of SF becomes correlated with
those aspects of a situation which are being sensed by action a [58]. For
example, the axiom

SF(senseDoor(d),s) = Open(d, s)

states that the action senseDoor(d) tells the agent whether the door is open
in situation s. For actions with no useful sensing information, one writes
SF(a,s) = True. In general, of course, sensing results are not binary. For
example, reading the temperature could mean returning an integer or real
number. See [93] on how these can be represented.

To describe an execution of a sequence of actions together with their sens-
ing results, one can use the notion of a history, i.e., a sequence of pairs (a, )
where a is a primitive action and p is 1 or 0, a sensing result. Intuitively,
the history o = (a1, p1) - ... (an, pn) is one where actions aq, ..., a, happen
starting in some initial situation, and each action a; returns sensing result ;.
We can use end|o] to denote the situation term corresponding to the history
o, and Sensed[o] to denote the formula of the situation calculus stating all
sensing results of the history o. Formally,

end|e] = Sp, where € is the empty history; and
end|o - (a, n)] = do(a, end[o]).

Sensed[e] = True;
Sensed[o - (a,1)] = Sensed|o] A SF(a, end[o]);
Sensed|o - (a,0)] = Sensed[o] A ~SF(a, end[o]).

We illustrate how a domain is specified by giving a partial specification of
the Wumpus World domain [92]:



LocAgent(Sy) = (1,1),
HasArrow(Sp),
DirAgent(Sg) = right,

Poss(pickGold, s) = IsGold(LocAgent(s),s),

DirAgent(do(a,s)) =y =
(a = turnRight A DirAgent(s) = down Ay = left) V
.V (a # turnRight A a # turnLeft A DirAgent(s) = y).

Thus, the agent is initially on the (1,1) square, facing in the right direction,
and it has some arrows to shoot at the Wumpus. It is possible for the agent
to perform the pickGold action in a situation s if there is a gold coin where
the agent is located in s. The direction of the agent is y in the situation that
results from action a being performed in situation s if and only if the action
was to turn in the right direction (i.e. clockwise) and the agent was facing
down in s and the new direction y is left, or any of several other cases of
the agent doing a turning action (we leave out the details), or the agent’s
direction was already y in s and the action a is neither turning right nor
turning left.

The IndiGolog Programming Constructs
Next we turn to programs. IndiGolog provides the following rich set of program-

ming constructs (most of which are inherited from Golog [62] and ConGolog
[24]):

a, primitive action
7, test/wait for a condition
01; 09, sequence
01 | 62, nondeterministic branch
Tx.d, nondeterministic choice of argument
0%, nondeterministic iteration
if ¢ then 6; else J; endlIf, conditional
while ¢ do 6 endWhile, while loop
01 || 9, concurrency with equal priority
01 )) 02, concurrency with d; at a higher priority
sl concurrent iteration
(¢ — 9), interrupt
proc P(x) é endProc, procedure definition
P(6), procedure call
X(0), search operator

In the first line, a stands for a situation calculus action term where the
special situation constant now may be used to refer to the current situation
(i.e. that where a is to be executed). Similarly, in the line below, ¢ stands for
a situation calculus formula where now may be used to refer to the current
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situation, for example OnTable(block, now). We use a[s] (¢[s]) for the action
(formula) obtained by substituting the situation variable s for all occurrences
of now in functional fluents appearing in a (functional and predicate fluents
appearing in ¢). Moreover when no confusion can arise, we often leave out
the now argument from fluents altogether; e.g. write OnTable(block) instead
of OnTable(block, now). In such cases, the situation suppressed version of the
action or formula should be understood as an abbreviation for the version
with now.

Among the constructs listed, we notice the presence of nondeterministic
constructs. These include (47 | d2), which nondeterministically chooses be-
tween programs §; and d2, 7 x.d, which nondeterministically picks a binding
for the variable  and performs the program ¢ for this binding of =, and §*,
which performs § zero or more times. wx1,...,%,.0 is an abbreviation for

Test actions ¢? can be used to control which branches may be executed,
e.g., [(¢7;01) | (m¢?;062)] will perform 6, when ¢ is true and do when ¢ is
false (we use [...] and (...) interchangeably to disambiguate structure in
programs). A test can also be used to constrain the value of a nondeterminis-
tically bound variable, e.g., 7w x. [¢(z)?; §(z)] will perform §(z) with = bound
to a value that satisfies ¢(x) (or fail if no such value exists). Finally, as we
discuss below, tests can also be used to synchronize concurrent processes.

The constructs if ¢ then §; else J> endIf and while ¢ do § endWhile
are the synchronized versions of the usual if-then-else and while-loop. They
are synchronized in the sense that testing the condition ¢ does not involve a
transition per se: the evaluation of the condition and the first action of the
branch chosen are executed as an atomic unit. So these constructs behave in a
similar way to the test-and-set atomic instructions used to build semaphores
in concurrent programming.!

We also have constructs for concurrent programming. In particular (d; ||
02) expresses the concurrent execution (interpreted as interleaving) of the
programs/processes d; and Jo. Observe that a process may become blocked
when it reaches a primitive action whose preconditions are false or a test/wait
action ¢? whose condition ¢ is false. Then, execution of the program may
continue provided that another process executes next. When the condition
causing the blocking becomes true, the no longer blocked process can resume
execution.

Another concurrent programming construct is (6; )) d2), where §; has
higher priority than ds, and J> may only execute when d; is done or blocked.
sl is like nondeterministic iteration ¢*, but the instances of & are executed
concurrently rather than in sequence.

1 In [62], non-synchronized versions of if-then-elses and while-loops are intro-
def

duced by defining: if ¢ then §; else d2 endIf = [(¢7;01) | (—¢?;d2)] and
while ¢ do § endWhile & [(¢7;6)*; =¢?]. The synchronized versions of these con-
structs introduced here behave essentially as the non-synchronized ones in absence of

concurrency. However the difference is significant when concurrency is allowed.



Finally, one may include interrupts in a concurrent program to immedi-
ately “react” to a condition becoming true. An interrupt (¢ — 0) has a
trigger condition ¢, and a body §. If the interrupt gets control from higher
priority processes and the condition ¢ is true, the interrupt triggers and the
body is executed, suspending any lower priority processes that may have
been executing. Once the interrupt body completes execution, the suspended
lower priority processes may resume. The interrupt may also trigger again
(when its condition becomes true). (x : ¢ — 4) is an abbreviation for
(Ix.¢ — mx.[¢7;d]). The language also allows for recursive procedures, and
other convenient constructs can easily be defined, usually as abbreviations.

Finally, the search operator X(§) is used to specify that lookahead should
be performed over the (nondeterministic) program ¢ to ensure that nondeter-
ministic choices are resolved in a way that guarantees its successful comple-
tion. When a program is not in a search block, nondeterministic choices are
resolved externally from the program executor, and hence, to the executor,
look like they are made in an arbitrary way. The search operator can thus be
used by the programmer to control the scope of lookahead search (this is a
new feature in IndiGolog [26, 87]; in Golog and ConGolog lookahead search over
the whole program is automatically performed). We discuss the semantics of
the search operator in the next section.

Some Examples

We illustrate how one specifies an agent’s behavior in IndiGolog with some
examples from the Wumpus World application [92]. If the Wumpus is known
to be alive at a location [ which is aligned with the agent’s location, then the
agent executes procedure shoot(d) with the direction d at which the Wumpus
is known to be. The procedure is in charge of aiming and shooting the arrow
at direction d; it is defined using a search block as follows:

proc shoot(d)

X|(turnRight™ | turnLeft™); (DirAgent = d)?; shootFwd|

endProc
The agent’s main control procedure, which is to be executed online is as
follows:
proc mainControl

(d,1: LocWumpus =l A Alive Wumpus = true A

Aligned(LocAgent, d, Loc Wumpus) — shoot(d))
)

(IsGold(LocAgent) = true — pickGold)
)

N~

(InDungeon = true —
smell; senseBreeze; senseGold;
[(mHoldingGold?; explore) | (HoldingGold?; goto({1,1)); climb)])
endProc
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Here, we use a set of prioritized interrupts to ensure that the agent reacts
immediately to threats/opportunities: if the agent comes to know that the
Wumpus is in shooting range (highest priority interrupt), it interrupts what-
ever it was doing and immediately executes the procedure “shoot” with the
appropriate direction argument; otherwise, if it comes to know that there
is gold at the current location (medium priority interrupt), it immediately
picks it up; otherwise, finally, if it is in the dungeon (lowest priority interrupt),
it senses its surroundings and then either executes the “explore” procedure
when it is not yet carrying gold or exits the dungeon otherwise. The program
terminates when the conditions of all the interrupts become false, i.e., when
the agent is no longer in the dungeon.

To further illustrate how the search operator can be used, consider the
following example (adapted from one in [57]) of an iterative deepening search
procedure to find a robot delivery schedule/route that serves all clients and
minimizes the distance traveled by the robot; one calls the procedure using
X (minimizeDistance(0)):

proc minimizeDistance(dist)
serveAllClientsWithin(dist) % try to serve all clients in at most dist
| minimizeDistance(dist + 1) % otherwise increment dist
endProc

proc serveAllClientsWithin(dist)
((—3c) ClientToServe(c))? % when all clients served, exit
| % otherwise pick a client
mwe, d.] (ClientToServe(c) A DistanceTo(c) = d A d < dist)?;
goTo(c); serve(c); % serve selected client
serveAllClientsWithin(dist — d)] % serve remaining clients
endProc

Note that in “minimizeDistance,” we rely on the fact that the IndiGolog im-
plementation tries nondeterministic branches left-to-right, in Prolog fashion.
It is possible to define a “try §; otherwise d5” construct that eliminates the
need for this assumption.

As a final example of the use of the search operator, consider the following
procedures, which implement a generic iterative deepening planner (adapted
from [82]):

proc IDPlan(maxl) % main iterative deepening planning procedure
IDPlan2(0, maxl)
endProc

proc IDPlan2(l, maxl)
BDFPlan(l) % try to find a plan of length [
| [(I < mazxl)?; IDPlan2(l 4+ 1, maxl)] % else increment I up to mazxl
endProc
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procBDFPlan(l) % a bounded depth first planning procedure
(Goal)? |
[(I >0)?; ma.(Acceptable(a))?; a; BDFPlan(l — 1)]
endProc

One calls the planning procedure using X (IDPlan(/N)) where N is a plan
length bound; Goal is a defined predicate specifying the goal and Acceptable
is another defined predicate that can be used to filter what actions are con-
sidered in a given situation.

2.2 Semantics and Verification

Reasoning about Action: Projection via Regression and
Progression

Our “high level program execution” framework requires reasoning about ac-
tion. The executor must reason to check that its actions are possible and to
determine whether the tests in the high-level program hold. This reasoning
is required whether the agent is actually executing the program online or
performing lookahead/planning to find a successful execution offline. So let’s
begin by discussing reasoning about action.

There are two well known reasoning tasks that our executor must perform.
The main one is called the (temporal) projection task: determining whether or
not some condition will hold after a sequence of actions has been performed
starting in some initial state. The second one is called the legality task: de-
termining whether a sequence of actions can be performed starting in some
initial state. Assuming we have access to the preconditions of actions, legality
reduces to projection, since we can determine legality by verifying that the
preconditions of each action in the sequence are satisfied in the state just
before the action is executed. Projection is a very basic task since it is nec-
essary for a number of other larger tasks, including planning and high-level
program execution, as we will see later in the chapter.

We can define projection in the situation calculus as follows: given an
action theory D, a sequence of ground action terms, a = [ay,...,a,], and a
formula ¢[s] that is uniform in s (i.e. roughly where the only situation term
that appears is s), the task is to determine whether or not

D ': ¢[d0(aa SO)]

Reiter [81] has shown that the projection problem can be solved by regression:
when D is an action theory (as specified earlier), there is a regression operator
R, such that for any ¢ uniform in s,

D E ¢ldo(a, Sp)] iff Dyne UDs, = ¢'[So],
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where Dg, is the part of D that characterizes Sy, Dynq is the set of unique
name axioms for primitive actions, and ¢’ = R(¢,a). So to solve the projec-
tion problem, it is sufficient, to regress the formula using the given actions,
and then to determine whether result holds in the initial situation, a much
simpler entailment.

Regression has proved to be a powerful method for reasoning about a
dynamic world, reducing it to reasoning about a static initial situation. How-
ever, it does have a serious drawback. Imagine a long-lived agent that has
performed thousands or even millions of actions in its lifetime, and which
at some point, needs to determine whether some condition currently holds.
Regression involves transforming this condition back through those many ac-
tions, and then determining whether the transformed condition held initially.
This is not an ideal way of staying up to date.

The alternative to regression is progression [65]. In this case, we look for a
progression operator P that can transform an initial database Dg, into the
database that results after performing an action. More precisely, we want to
have that

D E ¢[do(a, Sp)] iff Dyna UD] E ¢[So),

where Dg, is the part of D that characterizes Sy, Dynq is the set of unique
name axioms for primitive actions, and Dj = P(Ds,,a). The idea is that as
actions are performed, an agent would change its database about the initial
situation, so that to determine if ¢ held after doing actions a, it would be
sufficient to determine if ¢ held in the progressed situation (with no further
actions), again a much simpler entailment. Moreover, unlike the case with
regression, an agent can use its mental idle time (for example, while it is
performing physical actions) to keep its database up to date. If it is unable
to keep up, it is easy to imagine using regression until the database is fully
progressed.

There are, however, drawbacks with progression as well. For one thing, it is
geared to answering questions about the current situation only. In progressing
a database forward, we effectively lose the historical information about what
held in the past. It is, in other words, a form of forgetting [64, 47]. While
questions about a current situation can reasonably be expected to be the
most common, they are not the only meaningful ones.

A more serious concern with progression is that it is not always possible.
As Lin and Reiter show [65], there are simple cases of basic action theories
where there is no operator P with the properties we want. (More precisely,
the desired Df, would not be first-order definable.) To have a well-defined
projection operator, it is necessary to impose further restrictions on the sorts
of action theories we use, as we will see below.
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Reasoning with Closed and Open World Knowledge Bases

So far, we have assumed like Reiter, that Dg, is any collection of formulas
uniform in Sy. Regression reduces the projection problem to that of calculat-
ing logical consequences of Dg, . In practice, however, we would like to reduce
it to a much more tractable problem than ordinary first-order logical entail-
ment. It it is quite common for applications to assume that Dg, satisfies
additional constraints: domain closure, unique names, and the closed-word
assumption [80]. With these, for all practical purposes, Dg, does behave like
a database, and the entailment problem becomes one of database query eval-
uation. Furthermore, progression is well defined, and behaves like an ordinary
database transaction.

Even without using (relational) database technology, the advantage of hav-
ing a Dg, constrained in this way is significant. For example, it allows us to
use Prolog technology directly to perform projection. For example, to find out
if (¢ V 9) holds, it is sufficient to determine if ¢ holds or if ¢ holds; to find
out if —¢ holds, it is sufficient to determine if ¢ does not hold (using negation
as failure), and so on. None of these are possible with an unconstrained Dg, .

This comes at a price, however. The unique name, domain closure and
closed-world assumptions amount to assuming that we have complete knowl-
edge about Sp: anytime we cannot infer that ¢ holds, it will be because we
are inferring that —¢ holds. We will never have the status of ¢ undecided.
This is obviously a very strong assumption. Indeed we would expect that a
typical agent might start with incomplete knowledge, and only acquire the
information it needs by actively sensing its environment as necessary.

A proposal for modifying Reiter’s proposal for the projection problem
along these lines was made by De Giacomo and Levesque [27]. They show
that a modified version of regression can be made to work with sensing in-
formation. They also consider how closed-world reasoning can be used in
an open world using what they call just-in-time queries. In a nutshell, they
require that queries be evaluated only in situations where enough sensing
has taken place to give complete information about the query. Overall, the
knowledge can be incomplete, but it will be locally complete, and allow us
to use closed-world techniques.

Another independent proposal for dealing effectively with open-world rea-
soning is that of Liu and Levesque [106]. (Related proposals are made by Son
and Baral [96] and by Amir and Russell [2].) They show that what they call
proper knowledge bases represent open-world knowledge. They define a form
of progression for these knowledge bases that provides an efficient solution
to the projection problem that is always logically sound, and under certain
circumstances, also logically complete. The restrictions involve the type of
successor-state axioms that appear in the action theory D: they require ac-
tion theories that are local-effect (actions only change the properties of the
objects that are parameters of the action) and context-complete (either the
actions are context-free or there is complete knowledge about the context of
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the context-dependent ones). Vassos and Levesque [102] extended this ap-
proach to more general theories, while relying on the assumption that there
is a finite domain and a restricted form of disjunctive knowledge in the ini-
tial database in order to remain first-order and tractable. In [103], they also
show that an alternative definition of progression that is always first-order is
nonetheless correct for reasoning about a large class of sentences. As well, in
[101] they reconsider Lin and Reiter’s progression (actually a slight variant
that solves a few problems) and show that in case actions have only local
effects, this form of progression is always first-order representable; moreover,
for a restricted class of local-effect axioms they show how to construct a
progressed database that remains finite.

The Offline Execution Semantics

Now let’s return to the formal semantics of IndiGolog. This semantics is based
on that of ConGolog, so we will go over the latter first. In [24], a single step
structural operational (transition system) semantics in the style of [75] is
defined for ConGolog programs. Two special predicates Trans and Final are
introduced. Trans(d,s,d’,s’) means that by executing program ¢ starting
in situation s, one can get to situation s’ in one elementary step with the
program ¢’ remaining to be executed. F'inal(d, s) means that program § may
successfully terminate in situation s.

Note that this semantics requires quantification over programs. To allow
for this, [24] develops an encoding of programs as first-order terms in the
logical language (observe that programs as such, cannot in general be first-
order terms, since they mention formulas in tests, and the operator 7 in 7x.§
is a sort of quantifier, hence an encoding is needed).? Encoding programs as
first-order terms, although it requires some care (e.g. introducing constants
denoting variables and defining substitution explicitly in the language), does
not pose any major problem.? In the following we abstract from the details
of the encoding as much as possible, and essentially use programs within
formulas as if they were already first-order terms. The full encoding is given
in [24]. (In [36], an approach to handling ConGolog programs that does not
rely on any type of encoding is presented. There, high-level programs are
compiled into standard situation calculus basic action theories such that the
executable situations are exactly those that are permitted by the program.)

2 In the original presentation of Golog [62], a simpler semantics was given where
Do(é,s,s") was only an abbreviation for a formula ®(s,s’) that did not mention
the program ¢ (or any other programs), thus avoiding the need to reify programs.
However, when dealing with concurrency, it is more convenient to use a transition
semantics.

3 Observe that we assume that formulas that occur in tests never mention programs,
so it is impossible to build self-referential sentences.



14

The predicate Trans for programs without procedures is characterized by
the following set of axioms 7 (here as in the rest of the chapter, free variables
are assumed to be universally quantified):

1. Empty program:
Trans(nil,s,d’,s") = False.

2. Primitive actions:
Trans(a, s,d',s") = Poss(a[s],s) A& = nil A s" = do(as], s).
3. Test/wait actions:
Trans(¢?,5,6',8") = ¢[s] A8 =nilAs =s.
4. Sequence:

Trans(d1;02,8,6",8') =
3v.8" = (73 62) A Trans(61,s,7,s") V Final(61,s) A Trans(dz,s,8",s").

5. Nondeterministic branch:
Trans(0y | 62,8,08',8") = Trans(61,s,0’,s")V Trans(d2,s,68',s").
6. Nondeterministic choice of argument:
Trans(mv.d,s,8',s'") = Jw.Trans(6Y,s,8',s").
7. Nondeterministic iteration:
Trans(6*,s,0',8") = Fy.(0' = ~v;0%) A Trans(d, s,v,s).
8. Synchronized conditional:

Trans(if ¢ then §; else J, endIf,s,d',s’) =
¢[s] A Trans(61,,0",8") V =d[s] A Trans(ds, 3,8, s").

9. Synchronized loop:

Trans(while ¢ do 6 endWhile, s,¢,s') =
3v.(8" = y; while ¢ do §) A ¢[s] A Trans(d, s, v, s").

10. Concurrent execution:

Trans(6y || 02,,0",s") =
Fv.8" = (7 || 62) A Trans(d1,s,7,s") V 37.0" = (61 || v) A Trans(da, 5,7, ).

11. Prioritized concurrency:
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Trans(0y ) d2,5,8',8') =
Fy.6" = (v ) 82) A Trans(61,s,7,5") V
3y.8" = (61 ) v) A Trans(da, 5,7, ) A =3¢, s”. Trans(61, s, ¢, s").

Concurrent iteration:
Trans(6l, 5,6 s") = 3v.08" = (v || 61) A Trans(3, s, 7, s").

The assertions above characterize when a configuration (4, s) can evolve

(in a single step) to a configuration (&', s’). Intuitively they can be read as
follows:

1.
2.

(nil, s) cannot evolve to any configuration.

(a, s) evolves to (nil, do(a[s], s)), provided that als] is possible in s. After
having performed a, nothing remains to be performed and hence nil is
returned. Note that in Trans(a, s,d’,s’), a stands for the program term
encoding the corresponding situation calculus action, while Poss and do
take the latter as argument; we take the function -[-] as mapping the pro-
gram term a into the corresponding situation calculus action a[s], as well
as replacing now by the situation s. The details of how this function is
defined are in [24].

(47, s) evolves to (nil,s), provided that ¢[s] holds, otherwise it cannot
proceed. Note that the situation remains unchanged. Analogously to the
previous case, we take the function -[-] as mapping the program term for
condition ¢ into the corresponding situation calculus formulas ¢[s], as well
as replacing now by the situation s (see [24] for details).

(61502, 8) can evolve to (81;0d2,8"), provided that (d1,s) can evolve to
(61,8"). Moreover it can also evolve to (85, "), provided that (d1,s) is a
final configuration and (d2, s) can evolve to (85, s).

(61 | b2,8) can evolve to (§',s"), provided that either (41, s) or (d2,s) can
do so.

(mv.4,8) can evolve to (§',s"), provided that there exists an x such that
(62, s) can evolve to (&', s'). Here § is the program resulting from § by
substituting v with the variable z.4

(6%, s) can evolve to (0’;6*,s") provided that (d,s) can evolve to (¢',s').
Observe that (6*,s) can also not evolve at all, (6*,s) being final by defi-
nition (see below).

(if ¢ then ¢&; else d5 endlIf, s) can evolve to (&', '), if either ¢[s] holds
and (41, s) can do so, or —¢[s] holds and (d2, ) can do so.

(while ¢ do § endWhile, s) can evolve to (6’; while ¢ do 6 endWhile, s),
if ¢[s] holds and (4, s) can evolve to (¢, s').

4 More formally, in the program term §, v is substituted by a term of the form
nameOf(x), where nameOf is used to convert situation calculus objects/actions into
program terms of the corresponding sort (see [24]).
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10. You single step (81 || d2) by single stepping either d; or dy and leaving the
other process unchanged.

11. The (071 )) d2) construct is identical, except that you are only allowed to
single step d9 if there is no legal step for ¢;. This ensures that ¢; will
execute as long as it is possible for it to do so.

12. Finally, you single step dl by single stepping d, and what is left is the
remainder of § as well as 6l itself. This allows an unbounded number of
instances of  to be running.

Observe that with (81 || d2), if both §; and d2 are always able to execute,
the amount of interleaving between them is left completely open. It is legal
to execute one of them completely before even starting the other, and it also
legal to switch back and forth after each primitive or wait action.®

Final(0, s) tells us whether a program § can be considered to be already
in a final state (legally terminated) in the situation s. Obviously we have
Final(nil, s), but also Final(6*,s) since 0* requires 0 or more repetitions of §
and so it is possible to not execute § at all, the program completing immedi-
ately.

The predicate Final for programs without procedures is characterized by
the set of axioms F:

1. Empty program:
Final(nil,s) = True.

2. Primitive action:

Final(a,s) = False.

3. Test/wait action:
Final(¢?,s) = False.

4. Sequence:
Final(§1;62,8) = Final(61,s) A Final(dz, s).

5. Nondeterministic branch:
Final(61 | d2,s) = Final(d1,s) V Final(dz, s).
6. Nondeterministic choice of argument:
Final(nv.d,s) = Fz.Final(§y, s).
7. Nondeterministic iteration:

Final(6*,s) = True.

o

. Synchronized conditional:

5 Tt is not hard to define new concurrency constructs ||min and |maez that require
the amount of interleaving to be minimized or maximized respectively.
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Final(if ¢ then §; else d; endIf s) =
@[s] A Final(d1, 8) V —d[s] A Final(d2, s).

Synchronized loop:
Final(while ¢ do § endWhile,s) = —¢[s] V Final(d, s).
Concurrent execution:
Final(61 || 92, s) = Final(d1,s) A Final(d2, s).
Prioritized concurrency:
Final(61 ) 02, 8) = Final(d1, s) A Final(d2, s).

Concurrent iteration:
Final(6!, s) = True.

The assertions above can be read as follows:

(nil, s) is a final configuration.

(a, s) is not final, indeed the program consisting of the primitive action a
cannot be considered completed until it has performed a.

(47, 8) is not final, indeed the program consisting of the test action ¢?
cannot be considered completed until it has performed the test ¢?.
(61592, s) can be considered completed if both (d1,s) and (42, s) are final.
(61 | 02, s) can be considered completed if either (d1,s) or (d2, s) is final.
(mv.d, s) can be considered completed, provided that there exists an x such
that (82, s) is final, where 62 is obtained from § by substituting v with x.
(6%, s) is a final configuration, since 6* is allowed to execute 0 times.

(if ¢ then 0; else d2 endlIf, s) can be considered completed, if either ¢]s]
holds and (41, s) is final, or if —¢[s] holds and (2, s) is final.

(while ¢ do § endWhile, s) can be considered completed if either —¢|[s]
holds or (4, s) is final.

(61 || 92) can be considered completed if both §; and d2 are final.

(61 )) 62) is handled identically with the previous case.

6l is a final configuration, since ! is allowed to execute 0 instances of 6.

The ConGolog semantics handles procedure definitions and procedure calls

in a standard way with call-by-value parameter passing and lexical scoping.
We leave out the axioms that handle this; they can be found in [24].

In the following we denote by C the set of axioms for Trans and Final plus

those needed for the encoding of programs as first-order terms.

6 Note that when the number of recursive calls is unbounded, this requires defining
Trans and Final using a second order formula. In ConGolog a procedure call is not a
transition (only primitive actions and tests are), so one must allow for an arbitrarily
large but finite number of procedure calls in a transition; see [24].
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Regarding interrupts, it turns out that these can be explained using other
constructs of ConGolog:

(p—10) &' while Interrupts_running do
if ¢ then 0 else False? endIf
endWhile

To see how this works, first assume that the special fluent Interrupts_running
is identically True. When an interrupt (¢ — 0) gets control, it repeatedly ex-
ecutes & until ¢ becomes false, at which point it blocks, releasing control
to any other process in the program that is able to execute. Note that ac-
cording to the above definition of Trans, no transition occurs between the
test condition in a while-loop or an if-then-else and the body. In effect, if
¢ becomes false, the process blocks right at the beginning of the loop, until
some other action makes ¢ true and resumes the loop. To actually terminate
the loop, we use a special primitive action stop_interrupts, whose only ef-
fect is to make Interrupts_running false. Thus, we imagine that to execute
a program ¢ containing interrupts, we would actually execute the program
{start_interrupts; (§ )) stop_interrupts)} which has the effect of stopping
all blocked interrupt loops in § at the lowest priority, i.e. when there are no
more actions in § that can be executed.

Offtine executions of programs, which are the kind of executions origi-
nally proposed for Golog [62] and ConGolog [24], are characterized using the
Do(é, s, s") predicate, which means that there is an execution of program 4§
that starts in situation s and terminates in situation s':

Do(6,s,8') = 38 Trans*(6,s,8',s") A Final(8',s'),

where Trans* is the reflexive transitive closure of Trans.” Thus there is an
execution of program § that starts in situation s and terminates in situation
s’ if and only if we can perform 0 or more transitions from program ¢ in
situation s to reach situation s’ with program ¢’ remaining, at which point
one may legally terminate.

An offline execution of § from s is a sequence of actions aq, ..., a, such
that: DUC |= Do(d, s,do(an, . ..,do(a1,s)...)), where D is an action theory
as mentioned above, and C is a set of axioms defining the predicates Trans
and Final and the encoding of programs as first-order terms [24].

7 Trans* can be defined as the (second-order) situation calculus formula:
Trans*(6,s,08",5") €ef vI.[... D T(4,s,48,s)],

where . .. stands for the conjunction of the universal closure of the following implica-

tions:
True O T(d,s,6,s),
Trans(6,s,8",8""YNT(8",s",8",8") D T(8,s,8,s").
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The Online Execution Semantics

The offline execution model of Golog and ConGolog requires the executor to
search over the whole program to find a complete execution before performing
any action. As mentioned earlier, this is problematic for agents that are long
lived or need to sense their environment as they operate. The online execution
model of IndiGolog [26, 87] addresses this. Imagine that we started with some
program Jy in Sy, and that at some later point we have executed certain
actions ag,...ax and have obtained sensing results p1, ..., from them, i.e.
we are now in history o = (a1, 1) - ... (ag, 4k ), with program ¢ remaining
to be executed. The online high-level program execution task then is to find
out what to do next, defined by:

e stop, if DUCU{Sensed[o]} = Final(d, end[o]);
e return the remaining program §’, if

DUC U{Sensedo]} = Trans(d, end|c],d’, end|o]),

and no action is required in this step;
e return action a and ¢’, if

D UC U {Sensedo]} | Trans(§, end|c],d’, do(a, end[o])).

So the online version of program execution uses the sensing information that
has been accumulated so far to decide if it should terminate, take a step
of the program with no action required, or take a step with a single action
required. In the case that an action is required, the agent can be instructed
to perform the action, gather any sensing information this provides, and the
online execution process iterates.

As part of this online execution cycle, one can also monitor for the occur-
rence of exogenous actions/events. When an exogenous action is detected it
can be added to the history o, possibly causing an update in the values of var-
ious fluents. The program can then monitor for this and execute a “reaction”
when appropriate (e.g. using an interrupt).

The IndiGolog semantics of [26] defines an online ezecution of a pro-
gram § starting from a history o, as a sequence of online configurations
(6 = 6,00 =0),...,(0n,0n) such that for i =0,...,n—1:

DUC U{Sensed|o;]} E Trans(d;, end[o;], 01, end[oi11]),

] . g; if 67Ld[0'7;+1] = end[ai],
T+ T oy (a, p) if end|o;11] = do(a, end|o;]) and a returns p.

An online execution successfully terminates if

DUCU{Sensedlo,]} = Final(,, end[oy)).
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Note that this definition assumes that exogenous actions do not occur; one
can easily generalize the definition to allow them.

The Search Operator

The online execution of a high-level program does not require a reasoner to
determine a lengthy course of action, formed perhaps of millions of actions,
before executing the first step in the world. It also gets to use the sensing
information provided by the first n actions performed so far in deciding what
the (n + 1)’th action should be. On the other hand, once an action has been
executed in the world, there may be no way of backtracking if it is later found
out that a nondeterministic choice was resolved incorrectly. As a result, an
online execution of a program may fail where an offline execution would
succeed.

To cope with the fact that it may be impossible to backtrack on actions
executed in the real world, IndiGolog incorporates a new programming con-
struct, namely the search operator. The idea is that given any program § the
program X'(§) executes online just like ¢ does offline. In other words, before
taking any action, it first ensures using offline reasoning that this step can be
followed successfully by the rest of §. More precisely, according to [26], the
semantics of the search operator is that

Trans(X(5),s,X(8"),s") = Trans(d,s,8',s") A Is*.Do(d8', s, s%).

If § is the entire program under consideration, X'(§) emulates complete offline
execution. But consider [01 ; d2]. The execution of X([d7 ; d2]) would make any
choice in §; depend on the ability to successfully complete d5. But [X(d7) ; 2]
would allow the execution of the two pieces to be done separately: it would be
necessary to ensure the successful completion of d; before taking any steps,
but consideration of &y is deferred. If we imagine, for example, that s is a
large high-level program, with hundreds of pages of code, perhaps containing
X operators of its own, this can make the difference between a scheme that
is practical and one that is only of theoretical interest.

Being able to search still raises the question of how much offline reasoning
should be performed in an online system. The more offline reasoning we do,
the safer the execution will be, as we get to look further into the future in
deciding what choices to make now. On the other hand, in spending time
doing this reasoning, we are detached from the world and will not be as
responsive. This issue is very clearly evident in time-critical applications such
as robot soccer [34] where there is very little time between action choices to
contemplate the future. Sardina has cast this problem as the choice between
deliberation and reactivity [86], and see also [6].

Another issue that arises in this setting is the form of the offline reason-
ing. Since an online system allows for a robot to acquire information during
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execution (via sensing actions, or passive sensors, or exogenous events), how
should the agent deal with this during offline deliberation [23]. The simplest
possibility is to say that it ignores any such information in the plan for the
future that it is constructing. This is essentially what the semantics for the
search operator given above does. It ensures that there exist a complete ex-
ecution of the program (in the absence of exogenous actions), but it does
not ensure that the agent has enough information to know what to do. For
example, consider the program

Y((a | sensep);if P then b else ¢ endIf)

and an agent that does not know initially whether P hold. The search se-
mantics given above says that the agent may do action a, since it knows
that afterwards there will be some way to successfully complete the execu-
tion. But in fact the agent will then get stuck not knowing which branch to
take. A more adequate deliberation mechanism would require the execution
of sensep as the first step, since it does guarantee the complete executability
of the program, unlike action a.

An even more sophisticated deliberation approach would have the agent
construct a plan that would prescribe different behaviors depending on the
information acquired during execution. This is conditional planning (see, for
example, [10, 73]). For the example above, this would produce a plan that
requires the agent to first do sensep, and then if it had sensed that P held,
to do b and otherwise to do c; then the agent is guaranteed to always know
what action to perform to complete the execution. One form of this has been
incorporated in high-level execution by Lakemeyer [48] and Sardina [84]. In
[87], a semantics for such a sophisticated search operator is axiomatized in
a version of the situation calculus extended with a possible-world model of
knowledge. [25] and [88] develop non-epistemic, metatheoretic accounts of
this kind of deliberation, and discuss difficulties that arise with programs
involving unbounded iteration.

Another possibility is to attempt to simulate what will happen external
to the agent including exogenous events, and use this information during the
deliberation [56]. This is a kind of contingency planning [77]. In [41], this idea
is taken even further: at deliberation time a robot uses, for example, a model
of its navigation system by computing, say, piece-wise linear approximations
of its trajectory; at execution time, this model is then replaced by the real
navigation system, which provides position updates as exogenous actions.
[54] develops an account of deliberation where the agent’s high level program
must be executed against a dynamic environment also modeled as a nonde-
terministic program. Deliberation must produce a deterministic conditional
plan that can be successfully executed against all possible executions of the
environment program.

Another issue arises whenever an agent performs at least some amount
of lookahead in deciding what to do. What should the agent do when the
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world (as determined by its sensors) does not conform to its predictions (as
determined by its action theory)? First steps in logically formalizing this
possibility were taken by De Giacomo et al. [30] in what they call execution
monitoring. The deliberation model formalized in [87] incorporates execution
monitoring and replanning. Lastly, a search operator that deliberates on a
program relative to a set of goals is described in [91].

As we have seen, it is possible to define different search/deliberation con-
structs with varying degrees of sophistication. For many cases, however, the
simple search operator defined above suffices, and implementations for it can
easily be developed; these are provably correct under some plausible assump-
tions (for instance, when the truth value of all tests in a program will be
known by the time they are evaluated, as in the “just-in-time histories” of
(26, 28]).

We close the section by noting that Shapiro et. al [95, 94] have developed a
verification environment, CASLve, for an extension of ConGolog that supports
multiagent plans and modeling agents’ knowledge and goals, based on the
PVS theorem proving/verification system.® Some non-trivial programs have
been formally verified.

2.3 Software Engineering Issues and Other Features of
the Language

At this point, our language offers only limited support for building large
software systems. It supports procedural abstraction, but not modules. Very
complex agents can be decomposed into simpler agents that cooperate, and
each can be implemented separately. One important feature that we do offer
is that the agent’s beliefs are automatically updated based on a declarative
action theory, which supports the use of complex domain models, and helps
avoid the errors that typically occur when such models are manually updated.

Our language/platform is implemented in SWI-Prolog, which provides flex-
ible mechanisms for interfacing with other programming languages such as
Java or C, and for socket communication. There are also libraries for inter-
facing with the JADE and OAA multiagent platforms; see the end of Section 3
for details.

Note that ConGolog has been used as a formal specification/modeling lan-
guage for software requirements engineering [50, 104]. Such ConGolog spec-
ifications can be validated by simulated execution or verification. One may
even use them for early prototyping. IndiGolog could be used in a requirements-
driven approach to software development such as Tropos [19].

Our approach provides for a high degree of extensibility. The declara-
tive language definition supports the easy addition of new programming con-

8 http://pvs.csl.sri.com/
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structs. The underlying situation calculus framework supports many exten-
sions in the way change is modeled, e.g. continuous change, stochastic effects,
simultaneous actions, etc. [82] Evidence for this extensibility is that the lan-
guage has been extended numerous times. Note that there is currently no
specific built-in support for mobile agents.

What we have seen so far, is the formal specification of our language. If one
wants to actually run an agent programmed in IndiGolog in the real-world, one
needs to address many practical issues that are not dealt with in the formal
account. For instance, when an action transition step is performed in an online
execution, the action ought to be carried out in the environment where it is
supposed to occur, and its sensing outcome needs to be extracted as well.
Similarly, a mechanism for recognizing and assimilating external exogenous
events needs to be developed. All this requires a framework in which an online
execution is realized in the context of a real (external) environment. In the
next section, we describe a platform that does exactly this.

3 Platform

We now turn to describing what is probably the most advanced IndiGolog
based platform currently available. This platform® was originally developed at
the University of Toronto and is based on LeGolog [60], which is in turn based
on a proof-of-concept simple implementation originally written by Hector
Levesque. The platform is a logic-programming implementation of IndiGolog
that allows the incremental execution of high-level Golog-like programs [85].
This is the only implementation of IndiGolog that is modular and easily ex-
tensible so as to deal with any external platform, as long as the suitable
interfacing modules are programmed (see below). Among others, the system
has been used to control the LEGO MINDSTORM [60] and the ER1 Evo-
lution!® robots, as well as other software agents [92], to coordinate mobile
actors in pervasive scenarios [52], and to incorporate automated planning into
cognitive agents [21, 20].

Although most of the code is written in vanilla Prolog, the overall architec-
ture is written in the well-known open source SWI-Prolog!! [105]. SWI-Prolog
provides flexible mechanisms for interfacing with other programming lan-
guages such as Java or C, allows the development of multi-threaded applica-
tions, and provides support for socket communication and constraint solving.

Generally speaking, the IndiGolog implementation provides an incremental
interpreter of high-level programs as well as a framework for dealing with
the real execution of these programs on concrete platforms or devices. This

9 Available at http://sourceforge.net/projects/indigolog/.
10 nttp://www.evolution.com/erl/
1 http://www.swi-prolog.org/
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Fig. 1 The IndiGolog implementation architecture. Links with a circle ending repre-
sent goal posted to the circled module.

amounts to handling the real execution of actions on concrete devices (e.g.,
a real robot platform), the collection of sensing outcome information (e.g.,
retrieving some sensor’s output), and the detection of exogenous events hap-
pening in the world. To that end, the architecture is modularly divided into
six parts, namely, (i) the top-level main cycle; (i) the language semantics;
(#i) the temporal projector; (vi) the environment manager; (v) the set of
device managers; and finally (vi) the domain application. The first four mod-
ules are completely domain independent, whereas the last two are designed
for specific domain(s). The architecture is depicted in Figure 1.

The Top-Level Main Cycle and Language Semantics
The top-level main cycle implements the IndiGolog online execution account

explained in Section 2.2. It realizes the sense-think-act loop well-known in
the agent community [46].
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The main predicate of the main cycle is indigo/2; a goal of the form
indigo (E, H) states that the high-level program E is to be executed online
at history H. As in the definition of online executions, the main cycle strongly
relies on the meaning of the language constructs. Hence, clauses for relations
Trans and Final are needed for each of the constructs. These two relations
are modeled with Prolog predicates trans/4 and final/2 and are defined
in the language semantics module (see below).

The following is a simplified version of the top-level main cycle:

indigo (E, H) : - handle_exogenous (H,H2), !, indigo(E,H2).

indigo (E,H) :— handle_rolling(H,H2), !, indigo(E,H2).

indigo(E, H) :— catch(final(E,H), exog, indigo(E,H)).

indigo(E,H) :— catch(trans(E,H,E1,Hl), exog, indigo(E,H)),
(var (H1) -> true ;

H1=H -> indigo(E1l,H) ;
H1=[A|H] -> exec(A,S), handle_sensing(H,A,S,H2), indigo(El,H2)).

The first thing the main cycle does is to assimilate all exogenous events
that have occurred since the last execution step. To that end, predicate
handle_exogenous/2, provided by the environment manager (see below),
is used to transform the current history H into the new history H2 containing
the new exogenous events—if no exogenous actions occurred during the cycle,
then handle_exogenous/2 just fails.

In the second clause, predicate handle_rolling/2 may “roll forward”
the current history H, for example, if its length has exceeded some threshold,
yielding then the new (shorter) history H2. This amounts to doing progression
of the current history [65, 101]. Since progressing the current history is a task
related to the background action theory being used to execute the program,
the predicate handle_rolling/2 is implemented by the temporal projector
(see below).

After all exogenous actions have been assimilated and the history pro-
gressed as needed, the main cycle goes on to actually executing the high-level
program E. First, if the current program to be executed is terminating in the
current history, then the top-level goal indigo/2 simply succeeds (third
clause). Otherwise, the interpreter checks whether the program can evolve a
single step (fourth clause) by relying on predicate trans/4 (explained be-
low). If the program evolves without executing any action, then the history
remains unchanged and we continue to execute the remaining program from
the same history. If, however, the step involves performing an action, then this
action is executed and incorporated into the current history, together with
its sensing result (if any), before continuing the execution of the remaining
program. The actual execution of the action is implemented via predicate
exec/2, provided by the environment manager (described below), which
returns the sensing outcome of the action. Finally, handle_sensing/4 re-
turns the new history obtained by incorporating the executed action and its
sensing outcome into the current history (this predicate is provided by the
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temporal projector, to allow for alternative implementations, e.g. through
progression).

Note that, in the third and fourth clauses above, goals final/2 and
trans/4 are posted within a catch/3 extra-logical predicate.'? The point
is that proving final/2 or trans/4 could be time consuming, as there may
be substantial reasoning involved. If, during such reasoning, an exogenous
event happens, such reasoning is not guaranteed to be adequate anymore, as
the history of events has changed. In that case, the interpreter simply aborts
the single-step reasoning (i.e., goal f£inal/2 or trans/4) and re-starts the
cycle, which in turn will first assimilate the just occurred events.

As mentioned above, the top-level loop relies on two central predicates,
namely, final/2 and trans/4. These predicates implement relations
Trans and Final, giving the single step semantics for each of the constructs
in the language. It is convenient, however, to use an implementation of these
predicates defined over histories instead of situations. So, for example, these
are the corresponding clauses for sequence (represented as a list), nondeter-
ministic choice of programs, tests, and primitive actions:
final ([E|L],H) :- final(E,H), final(L,H).

trans([E|L],H,E1,Hl) :- final(E,H), trans(L,H,E1,H1).
trans([E|L],H, [E1|L],Hl) :- trans(E,H,E1,H1).

final (ndet (E1,E2),H) :- final(E1l,H) ; final (E2,H).
trans (ndet (E1,E2),H,E,Hl) :- trans(El,H,E,H1).
trans (ndet (E1,E2),H,E,Hl) :- trans(E2,H,E,H1).

trans(? (P),H,[]1,H) :- eval(P,H,true).
trans(E,H, [], [E|H]) :- action(E), poss(E,P), eval(P,H,true).
/* Obs: no final/2 clauses for action and test programs =/

As is easy to observe, these Prolog clauses are almost directly “lifted” from
the corresponding axioms for Trans and Final. Predicates action/1 and
poss/2 specify the actions of the domain and their corresponding precon-
dition axioms; both are defined in the domain axiomatization (see below).
More importantly, eval/3 is used to check the truth of a condition at a
certain history, and is provided by the temporal projector, described next.
A naive implementation of the search operator would deliberate from
scratch at every point of its incremental execution. It is clear, however, that
one can do better than that, and cache the successful plan obtained and avoid
replanning in most cases:
final (search(E),H) :- final(E,H).

trans (search(E),H,path(E1l,L),Hl) :-
trans(E,H,E1,Hl), findpath(E1,H1,L).

12 catch(:Goal, +Catcher, :Recover) behaves as call/1l, except that if an
exception is raised while Goal executes, and the Catcher unifies with the exception’s
name, then Goal is aborted and Recover is called.
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/* findpath(E,H,L): solve (E,H) and store the path in list L =/
/* L = list of configurations (Ei,Hi) expected along the path x/
findpath(E,H, [(E,H)]) :- final(E,H).

findpath(E,H, [(E,H) |L]) :- trans(E,H,E1,H1), findpath(E1l,H1,L).

/* When we have a path(E,L), try to advance using list L =/
final (path (E [(E H)]),H) := !. /% last step */

final (path(E,_),H) :— final(E,H). /* off path; re-check */
trans(path(E,[(E H), (E1,H1)|L]),H,path(El, [ (El,H1) |L]),Hl) := !.
trans (path(E,_),H,E1,Hl) :-

trans(search( ),H,E1,HL) . /* redo search =/

So, when a search block is first solved, the whole solution path found is stored
as the sequence of configurations that are expected. If the actual configura-
tions reached match, then steps are performed without any reasoning (first
final/2 and trans/4 clauses for program path (E, L) ). If, on the other
hand, the actual configuration does not match the one expected next, for ex-
ample, because an exogenous action occurred and the history thus changed,
replanning is performed to look for an alternative path (second final/2 and
trans/4 clauses for program path (E, L) ). Other variants of the search op-
erator are provided, such as a searchc (E) construct in the spirit of [48, 84]
that constructs a conditional plan that solves E.

Finally, we point out that by decoupling trans/4 and final/2 from
the main cycle and the temporal projector, one can change the actual high-
level programming language used. In that way, one could use the architec-
ture to execute any agent language with a single-step operational semantics.
For example, one could use the architecture to execute AgentSpeak agents
[78], by suitably recasting the derivation rules of such BDI languages into
trans/4 and final/2 clauses—in this case, the program E would stand
for the agent’s current active intentions and H for the history of executed
actions and external events.

The Temporal Projector

The temporal projector is in charge of maintaining the agent’s beliefs about
the world and evaluating a formula relative to a history. It could be realized
with standard database technology (see [29]) or with an evaluation procedure
for some reasoning about action formalism. In the context of the situation
calculus, for instance, one could use temporal projectors for basic action the-
ories [74], guarded theories [27], or even fluent calculus theories of action [98].
The only requirement for the projector module is to provide an implementa-
tion of predicate eval/3: goal eval (+F, +H, ?B) states that formula F has
truth value B, usually true or false, at history H.

Within the architecture, the projector is used in two places. First, pred-
icate eval/3 is used to define trans/4 and final/2, as the legal evo-
lutions of high-level programs may often depend on what things are be-
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lieved true or false. Furthermore, as seen above, the temporal projector pro-
vides a number of auxiliary tools used by the top-level loop for bookkeeping
tasks. For instance, the top-level cycle is agnostic on how sensing results
are incorporated into the belief structure of the agent; this is handled by
the handle_sensing/4 predicate defined in the projector. Similarly, the
projector may provide progression facilities by implementing the predicate
handle_rolling/2.

We illustrate the projector module by briefly describing the one used for
modeling the Wumpus World domain [92]. This projector is an extension of
the classical formula evaluator used for Golog in [62, 24], so as to handle some
limited forms of incomplete knowledge. To that end, the evaluator deals with
the so-called possible values that (functional) fluents may take at a certain
history. We say that a fluent is known at h only when it has exactly one
possible value at h. For a detailed description and semantics of this type of
knowledge-based theories we refer to [100, 59].

We assume then that users provide definitions for each of the following
predicates for fluent f, action a, sensing result r, formula w, and arbitrary
value v:

fluent(f), f isa ground fluent;

action(a), a isa ground action;

init(f,v), initially, v is a possible value for f;

poss(a,w), it is possible to execute action a provided formula w is known

to be true;

e causes(a, f,v,w), action a affects the value of f: when a occurs and w
is possibly true, v is a possible value for f;

e settles(a,r, f,v,w), action a with result r provides sensing information
about f: when this happens and w is known to be true, v is the only
possible value for f;

e rejects(a,r, f,v,w), action a with result r provides sensing information

about f: when w is known to be true, v is not a possible value for f.

Formulas are represented in Prolog using the obvious names for the logical
operators and with all situations suppressed; histories are represented by lists
of the form o(a,r) where a represents an action and r a sensing result. We
will not go over how formulas are recursively evaluated, but just note that the
procedure is implemented using the following four predicates: (i) kTrue(w, h)
is the main and top-level predicate and it tests if the formula w is known to
be true in history h; (ii) mTrue(w, h) is used to test if w is possibly true at h;
(i4i) subf(wy,ws,h) holds when wy is the result of replacing each fluent in
wy by one of its possible values in history h; and (iv) mval(f,v,h) calculates
the possible values v for fluent f in history A and is implemented as follows:

mval (F,V, []) :— init(F,V).
mval (F,V, [o(A,R) |H]) :-
causes (A, F,_,_), !, causes(A,F,V,W), mTrue(W,H).
nmval (F,V, [0(A,R) |H]) :- settles(A,R,F,V1,W), kTrue(W,H), !, V=V1.
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mval (F,V, [o(A,R) |H]) :-
mval (F,V,H), \+(rejects(A,R,F,V,W), kTrue(W,H)).

So for the empty history, we use the initial possible values. Otherwise, for
histories whose last action is a with result r, if f is changed by a with result
r, we return any value v for which the condition w is possibly true; if a with
result r senses the value of f, we return the value v for which the condition
is known; otherwise, we return any value v that was a possible value in the
previous history h and that is not rejected by action a with result r. This
provides a solution to the frame problem: if a is an action that does not affect
or sense for fluent f, then the possible values for f after doing a are the same
as before.
Finally, the interface of the module is defined as follows:

eval (F,H,true) :- kTrue(F,H).
eval (F,H, false) :- kTrue(neg(F),H).

The Environment Manager and the Device Managers

Because the architecture is meant to be used with concrete agent/robotic
platforms, as well as with software/simulation environments, the online exe-
cution of IndiGolog programs must be linked with the external world. To that
end, the environment manager (EM) provides a complete interface with all
the external devices, platforms, and real-world environments that the appli-
cation needs to interact with.

In turn, each external device or platform that is expected to interact with
the application (e.g., a robot, a software module, or even a user interface)
is assumed to have a corresponding device manager, a piece of software that
is able to talk to the actual device, instruct it to execute actions, as well as
gather information and events from it. The device manager understands the
“hardware” of the corresponding device and provides a high-level interface to
the EM. For example, the device manager for the Wumpus World application
is the code responsible for “simulating” an actual Wumpus World environ-
ment. It provides an interface for the execution of actions (e.g., moveFwd,
smell, etc.), the retrieval of sensing outcomes for action smell, and the
detection of occurrences of exogenous events (e.g., scream). In our case, the
device is also in charge of depicting the world configuration in a Java applet.

Because actual devices are independent of the IndiGolog application and
may be in remote locations, device managers are meant to run in different
processes and, possibly, on different machines; they communicate then with
the EM via TCP/IP sockets. The EM, in contrast, is part of the IndiGolog
agent architecture and is tightly coupled with the main cycle. Still, since the
EM needs to be open to the external world regardless of any computation
happening in the main cycle, the EM and the main cycle run in different
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(but interacting) threads, though in the same process and Prolog run-time
engine.'?

So, in a nutshell, the EM is responsible of executing actions in the real
world and gathering information from it in the form of sensing outcome and
exogenous events by communicating with the different device managers. More
concretely, given a domain high-level action (e.g., moveFwd(2m)), the EM
is in charge of: (i) deciding which actual “device” should execute the action;
(ii) ordering its execution by the device via its corresponding device man-
ager; and finally (%) collecting the corresponding sensing outcome. To realize
the execution of actions, the EM provides an implementation of exec/2 to
the top-level main cycle: exec (+A, -S) orders the execution of action A,
returning S as its sensing outcome.

Besides the execution of actions, the EM continuously listens to the exter-
nal devices, that is to their managers, for the occurrence of exogenous events.
When a device manager reports the occurrence of one or more exogenous ac-
tions in its device (e.g., the robot bumped into an object), the EM stores
these events in the Prolog database so that the main cycle can later assimilate
them all. Moreover, if the main cycle is currently reasoning about a possible
program transition (i.e., it is trying to prove a trans/4 or £inal/2 goal),
the EM raises an exception named “exog” in the main cycle thread. As al-
ready mentioned, this will cause the main cycle to abort its reasoning efforts,
re-start its loop, and assimilate the pending events.

The Domain Application

From the user perspective, probably the most relevant aspect of the architec-
ture is the specification of the domain application. Any domain application
must provide:

1. An aziomatization of the dynamics of the world. The exact form of such
an axiomatization would depend on the temporal projector used.

2. One or more high-level agent programs that specify the different agent be-
haviors available. In general, these will be IndiGolog programs, but they
could be other types of programs under different implementations of
trans/4 and final/2.

3. All the necessary execution information to run the application in the ex-
ternal world. This amounts to specifying which external devices the ap-
plication relies on (e.g., the device manager for the ER1 robot), and how
high-level actions are actually executed on these devices (that is, by which
device each high-level action is to be executed). Information on how to
translate high-level symbolic actions and sensing results into the device
managers’ low-level representations, and vice-versa, could also be provided.

13 SWI-Prolog provides a clean and efficient way of programming multi-threaded
Prolog applications.
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We illustrate the modeling of an application domain using our running
example for the Wumpus domain (we only give a partial specification for the
sake of brevity):

fluent (locAgent) .

fluent (isGold (L)) :— loc(L).

init (locAgent,cell(1,1)).

init (hasArrow, true) .

init (locWumpus, L) :— loc (L), not L=cell(l,1).

action (pickGold) .
poss (pickGold, isGold(locAgent)=true).

causes (moveFwd, locAgent, Y, and(dirAgent=up, up(locAgent,Y))).
causes (moveFwd, locWumpus, Y, or(Y=locWumpus, adj(locWumpus,Y)).

rejects
rejects
settles
settles

smell, 0, locW, Y, adj(locAgent, Y)).

smell, 1, locW, Y, neg(adj(locAgent, Y))).
senseGold, 1, isGold(L), true, locAgent=L).
senseGold, 0, isGold(L), false, locAgent=L).

The first block defines two (functional) fluents: locAgent stands for the
current location of the agent; 1sGold (L) states whether location L is known
to have gold. Initially, the agent is in location cell (1, 1) and is holding an
arrow. More interestingly, the Wumpus is believed to be somewhere in the
grid but not in ce11 (1, 1) . The second block defines the action of picking up
gold, which possible only if the agent believes that there is gold its current
location The two clauses shown for causes/4 state possible ways fluents
locAgent and locWumpus may change when the agent moves forward.
First, if the agent is aiming north, then the new location of the agent is
updated accordingly. Second, whenever the agent moves, the Wumpus will
either stay still or move to an adjacent cell. Observe that even if at some
point the agent knows exactly where the Wumpus is located (that is, there
is only one possible value for fluent 1ocWumpus), after moving forward the
agent considers several possible values for the location of the Wumpus. The
remaining clauses specify how sensing actions affect the possible values of the
relevant fluents. Fluent 1locWumpus is sensed by the smell action: if there
is no stench (i.e., the sensing result is 0) then each of the agent’s adjacent
locations is not a possible value for fluent 1ocWumpus, otherwise the opposite
holds. Fluent 1 sGoldL is sensed by the senseGold action which settles the
value of the fluent depending on the sensing result.

Available Tools and Documentation
The platform distribution includes documentation and examples that, though

simple, have allowed new users to learn how to effectively develop new appli-
cations. Currently, there are no tools developed specifically for the platform.
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For debugging, tracing facilities are provided; Prolog facilities can also be used.
This is an area where more work is needed.

Standards Compliance, Interoperability and Portability

There has been some work on interfacing IndiGolog with commonly used mul-
tiagent platforms and supporting the use of standard agent communication
languages. This can support the development of multiagent systems that
incorporate planning and reasoning agents implemented in IndiGolog. The
IG-OAAlib library [49] supports the inclusion of IndiGolog agents in systems
running under SRI’s Open-Agent Architecture (OAA) [67]. Another library,
IG-JADE-PKSIib [69, 68] supports the inclusion of IndiGolog agents in systems
running under JADE [8], which is FIPA-compliant and more scalable. This li-
brary allows IndiGolog agents to use the FIPA agent communication language
and run standard agent interaction protocols (e.g. contract net).

Other Features of the Platform

Our platform is an advanced stable prototype and is currently hosted
as an open source project at SourceForge (http://sourceforge.net/
projects/indigolog/). It is designed in a modular way and is easily
extensible, though this requires expertise in Prolog.

No detailed analysis regarding the number of agents that could be run effi-
ciently or the number of messages that could be handled has been performed
so far. For use in robotic architectures or workflow management, performance
has not been a problem.

4 Applications Supported by the Language and/or the
Platform

Among some of the applications built using the “high level program execution
approach”, we can mention an automated banking agent that involved a 40-
page Golog program [55, 83]. This is an example of high-level specification that
would have been completely infeasible formulated as a planning problem.

A number of cognitive robotic systems have been implemented on a variety
of robotic platforms, using Golog-family languages. For a sampling of these
systems, see [57, 34, 18, 35]. Perhaps the most impressive demonstration to
date was that of the museum tour-guide robot reported in [16]. Borzenko
et al. [13] have used IndiGolog to develop a high-level controller for a vision-
based pose estimation system. They have also developed an IndiGolog library
for knowledge-based control of vision systems called INVICON [12].
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Mcllraith and Son [72] have adapted ConGolog to obtain a framework for
performing web service composition and customization, an approach that has
been very influential. Martinez and Lespérance [69, 68, 70] have developed
a library and toolkit that combines IndiGolog, the JADE multiagent platform
[8], and the PKS planner [73] for performing web service composition. As
well, [38] used a version of ConGolog to support the modeling and analysis of
trust in social networks. To get a better idea of how IndiGolog can be used in
applications, let us briefly discuss some work using IndiGolog in the area of
pervasive computing.

4.1 Using IndiGolog to Coordinate Mobile Actors in
Pervasive Computing Scenarios

In [51, 52], de Leoni et al. use the IndiGolog platform described in Section
3 to build a process management system (PMS) that coordinates mobile
actors in pervasive computing scenarios. PMSs ([63, 1]) are widely used for
the management of business processes that have a clear and well-defined
structure. In de Leoni et al.’s work, the authors argue that PMSs can also
be used in mobile and highly dynamic situations to coordinate, for instance,
operators, devices, robots, or sensors. To that end, they show how to realize
PMSs in IndiGolog, and how to operationalize the framework proposed in
[53] for automatically adapting a process when a gap is sensed between the
internal world representation (i.e., the virtual reality) and the actual external
reality (i.e., the physical reality).

As an example, consider one of the scenarios investigated in [51, 52, 53].
This scenario concerns an emergency response operation involving various
activities that may need to be adapted on-the-fly to react to unexpected ex-
ogenous events that could arise during the operation. Figure 2 depicts an
Activity Diagram of a process consisting of two concurrent branches; the
final task is send data and can only be executed after the branches have
successfully completed. The left branch, abstracted out from the diagram,
is built from several concurrent processes involving rescue, evacuation, and
census tasks. The right branch begins with the concurrent execution of three
sequences of tasks: go, photo, and survey. When all survey tasks have been
completed, the task evaluate pictures is executed. Then, a condition is eval-
uated on the resulting state at a decision point (i.e., whether the pictures
taken are of sufficient quality). If the condition holds, the right branch is
considered finished; otherwise, the whole branch should be repeated.

When using IndiGolog for process management, tasks are taken to be pre-
defined sequences of actions and processes to be IndiGolog programs. The
objective of the PMS is to carry out the specified processes by assigning
tasks to actors, monitoring the progress of the overall process, and adapting
its execution when required. Thus, after each action, the PMS may need to
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proc (pms,
prioritized_interrupts(

[interrupt (exogEvent, monitor),
interrupt (true, process),
interrupt (neg(finished), wait)]

o
1
: (go) (go) proc (process,
' Cg@ [conc (processRescue,
: while (or (noPhotos<7,neg(goodPics)),
1 [conc (
hoto hoto
@) L B
\ [witem(go,id19, loc(6,6)),
' - o witem (photo, id20, loc(6,6)),
2 v e Y witem (survey,id21,loc(6,6))1),
8 : E mTasks (
g [witem(go,id19, loc(6,6)),
i: % witem (photo, id20, loc(6,6)),
g | < witem (survey,id21, loc(6,6))1),
3 ! T mTasks (
g, :-3 [witem(go,id19, loc(6,6)),
@ . . .
h eval pictures > witem (photo,1d20,loc(6,6)),
: D~ witem(survey,id21,loc(6,6))1),
! \ ]
1 w
1 g )I
: Q‘Q mTasks ([witem(evalPics, 1d28,input) 1)
! s 1) % end of while
: chec ), % end concurrent subprocesses
1 mTasks ([witem (sendData, 1d29, input) ])
1
i 1) .
\S

B /j proc (mTasks (LTasks),
pi(actr,

[? (and (Idle (actr),Capable(actr,LTasks))),
manageListTasks (LTasks,actr) ]

send data -

proc (manageSingleTask (T,D,I,actr),
[assign(T,D,actr), start(T,D,I,actr),
O stop(T,D,actr), release(T,D,actr)]

Fig. 2 An example of process management with IndiGolog.

align the internal world representation with the actual external reality. In
Figure 2, parts of the IndiGolog program implementing the PMS for the emer-
gency response example are shown ([52]). The main procedure, called pms,
involves three interrupts running at different priorities. The first highest pri-
ority interrupt fires when an exogenous event has happened (i.e., condition
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exogEvent is true). In such a case, the monitor procedure is executed,
evaluating whether or not adaptation is required (see below).

If no exogenous event has occurred (or the ones that occurred were ex-
pected), then the second interrupt triggers and execution of the actual emer-
gency response process is attempted. Procedure process, also shown in the
figure, encodes the Activity Diagram of the example process. It relies, in turn,
on procedure mTasks (LTasks), where LTasks is a sequence of elements
witem (T, I, D), each one representing a task T, with identifier I, and input
data D that needs to be performed. This procedure is meant to carry out all
tasks in the list by assigning them to a single actor that can perform all of
them.

Of course, to assign tasks to an actor, the PMS needs to reason about the
available actors, their current state (e.g., their location), and their capabili-
ties, as not every actor is capable of performing a task. In fact, before assign-
ing the first task in any task list, a pick operation is done to choose an actor
actr that is idle (i.e., fluent Idle (actr) holds), and able to execute the
whole task list (we leave out the definition of Capable (actr, LTasks)).

Once a suitable actor has been chosen, procedure manageSingleTask (T,
1,D) will be called with each task T in the list (with identifier I and in-
put data D). This procedure will first execute assign (T,D, actr), which,
among other things, makes fluent Idle (actr) false. The actor is then in-
structed to start working on the task when the PMS executes the action
start (T, D, I,actr), which also provides the required information to the
actor. When an actor finishes executing an assigned task, it alerts the PMS via
exogenous action finishedTask (T, actr); the PMS notes the completion
of the task by performing stop (T,D, actr) and releases the actor by ex-
ecuting the action release (T, D, actr), after which fluent Idle (actr)
becomes true.

It is worth mentioning that, if the process being carried out cannot execute
further, for instance, because it is waiting for actors to complete their current
tasks, the lowest priority interrupt fires and the PMS just waits.

The execution of the process being carried out by the PMS can be in-
terrupted by the monitor module when a misalignment between the ex-
pected reality and the actual reality is discovered. In this case, the monitor
adapts the (current) process to deal with the discrepancy. To do this, the
monitor procedure uses the IndiGolog lookahead operator X' to search for a
plan that would bring the actual reality back into alignment with the ex-
pected reality. To that end, the PMS keeps a “copy” of the expected value
of each relevant fluent so that when an exogenous action is sensed, it can
check whether the action has altered the value of some relevant fluent. If so,
the monitor looks for a plan that would bring all fluents to their expected
values using a program along the lines of X ([(wa.a)*; ExpectedState?)]). It
is easily noted that this kind of adaptation amounts to solving a classi-
cal planning problem, and hence, that a state-of-the-art automated planner
could be used to perform the required search. In many cases though, a do-
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main expert would be able to provide information on how the adaptation
should be performed, thus reducing the complexity of the planning task.
For instance, when the mismatch involves a team of mobile actors becom-
ing disconnected (e.g., because some actor moved too far away), then the
whole process can be adapted by running a search program along the lines of
X([m actr,loc.Idle(actr)?; moveTo(actr, loc))*; TeamConnected?), which tries
to relocate idle actors so that the whole team is re-connected (the actual
program used would in fact implement a better search strategy). IndiGolog is
well suited for realizing this kind of domain-specific planning and execution
monitoring.

5 Final Remarks

IndiGolog is a rich programming language for developing autonomous agents.
Agents programmed in IndiGolog have a situation calculus action theory that
they use to model their domain and its dynamics. The theory is used to au-
tomatically update their beliefs after actions are performed or events occur.
This supports the use of complex domain models and helps avoid the er-
rors that typically occur when such models are manually updated. Moreover
it can be used for performing planning/lookahead. The language supports
“high level program execution”, where the programmer provides a sketchy
nondeterministic program and the system searches for a way to execute it.
This is usually much less computationally demanding than planning, as the
sketchy program constrains the search. As well, programs are executed on-
line and the agent can acquire information at execution time by performing
sensing actions or by observing exogenous actions. The language supports
concurrent programming, and reactive behaviors can easily be programmed.
The language has a classical predicate logic semantics specified through a
transition system account defined on top of the situation calculus. One can
make statements about offline executions of programs within the logical lan-
guage and reason about properties of programs in the logic. Online executions
of programs are formalized metatheoretically in terms of entailment in the
situation calculus theory.

Compared to the mainstream BDI agent programming languages, IndiGolog
seems to have several advantages: support for planning/lookahead, automatic
belief update, built-in reasoning capabilities, and clean logical semantics. The
downside is that these reasoning capabilities can slow the agent’s response
to events. But with suitable programming of control knowledge, adequate
responsiveness can usually be achieved.

Perhaps one weakness of IndiGolog in comparison to BDI agent program-
ming languages is that in the former, plans/procedures are not associated
with goals/events; there is no “goal directed invocation”. This can make it
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harder to organize the agent’s plan library and to find alternative plans to
achieve a goal when a selected plan fails.

There has only been limited work on relating “Golog-like” high-level pro-
gramming languages and BDI agent programming languages. Hindriks et al.
[43, 42] show that ConGolog can be bisimulated by the agent language 3APL
under some conditions, which include the agent having complete knowledge;
ConGolog’s lookahead search mechanism is also ignored as are sensing actions
and exogenous events. Also related is the work of Gabaldon [37] on encoding
Hierarchical Task Network (HTN) libraries in ConGolog. Much work remains
to be done in order to better understand how our approach relates to the
BDI approach and others. It would be very interesting to develop an agent
programming framework that combines the best features of the IndiGolog and
BDI approaches.

More work is necessary to improve the effectiveness of the IndiGolog plat-
form as a programming tool. The platform currently provides little built-in
support for programming multiagent systems, interfacing with other agent
platforms, or using standard communication languages. But this can be cir-
cumvented by using a library like IG-JADE-PKSIib [69, 68], which supports the
inclusion of IndiGolog agents in systems running under JADE [8] and allows
IndiGolog agents to use the FIPA agent communication language and run stan-
dard agent interaction protocols. An integrated development environment
with good monitoring and debugging facilities would also be highly desirable.
Work is also required on facilities to support large-scale agent programming,
e.g. the use of modules.

Another limitation of our platform is that it uses a simple, relatively ineffi-
cient planning/lookahead mechanism implemented in Prolog. But it should be
possible to address this by doing planning with Golog-style task specifications
using state-of-the-art planners. Some authors have addressed this problem.
[5] develops an approach for compiling Golog-like task specifications together
with the associated domain definition into a PDDL 2.1 planning problem that
can be solved by any PDDL 2.1 compliant planner. [4] describes techniques
for compiling Golog programs that include sensing actions into domain de-
scriptions that can be handled by operator-based planners. [36] shows how
a ConGolog task specification involving concurrent processes together with
the associated domain definition can be compiled into an ordinary situation
calculus basic action theory; moreover it show how the specification can be
complied into PDDL under some assumptions. Classen et al. [21, 20] have
also used the IndiGolog architecture to integrate automated planning systems
into cognitive agents and tested the performance of the integrated system in
typical planning domain benchmarks [40].
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Appendix (Language Summary)

Here we discuss how our language/platform addresses the comparison criteria
identified by the book editors.

1(a) The language supports agents with complex beliefs about their envi-
ronment and its dynamics, specified as a situation calculus action theory.
The beliefs are automatically updated based on the model when actions
are performed or events occur. The agent can perform sensing actions to
acquire additional knowledge. It can perform means-ends reasoning to gen-
erate a plan that will achieve a goal or find an execution of a “sketchy”
nondeterministic program. Specifying reactive behaviors is also supported.
However, there is no built-in support for declarative goals, or for reasoning
about other agents and their mental states.

1(b) The language does not provide built-in support for speech act based
communication. However, communication in FIPA ACL and FIPA coordina-
tion protocols (e.g. contract net), as well as interfacing with the JADE [8]
multiagent platform are supported by the 1G-JADE-PKSIib library [69, 68].
The framework been extended to incorporate a rich model of multiagent
beliefs and goals and speech acts based communication in [95, 94]; but the
resulting formalism is no longer a programming language but a specifica-
tion language that supports verification of properties.

1(c) No specific built-in support for mobile agents is available so far.

1(d) The language is easy to understand and learn, as it combines a clas-
sical Algol-like imperative language for specifying behavior with a well
known action description language for specifying the application domain
dynamics. The whole language has a classical logic semantics.

1(e) The language has a very solid formal foundation. The semantics of
programs is specified through a transition system account defined on top
of the situation calculus (the latter is used to specify the application do-
main, primitive actions and state-dependent predicates). Thus the lan-
guage is fully formalized in classical predicate logic. One can make state-
ments about offline executions of programs within the logical language, and
one can reason about properties of programs in the logic. Online execu-
tions of programs are formalized metatheoretically in terms of entailment
in the situation calculus theory.

1(f) The language is very rich and expressive. Complex domain models
can be specified declaratively and the agent’s beliefs are automatically
updated. Complex tests about the state of the world can be evaluated.
Behavior can be fully scripted, or synthesized through planning, with the
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program constraining the search. A rich set of procedural constructs is pro-
vided, including concurrent programming facilities. Reactivity and online
sensing are also supported.

1(g) The declarative language definition supports the easy addition of new
programming constructs. The underlying situation calculus framework
supports many extensions in the way change is modeled, e.g. continuous
change, stochastic effects, etc. The language has been extended numerous
times.

1(h) Given its strong formal foundations, the language is highly suited for
formal verification. The CASLve verification environment [95, 94], which is
based on the PVS theorem proving/verification system, has been developed
to support verification of programs in an extended version of ConGolog.

1(i) The language supports procedural abstraction, but not modules. How-
ever, very complex agents can be decomposed into simpler agents that co-
operate. The agent’s beliefs are automatically updated based on a declara-
tive action theory, which supports the use of complex domain models, and
helps avoid the errors that typically occur when such models are manually
updated.

1(j) Our platform is implemented in SWI-Prolog, which provides flexible
mechanisms for interfacing with other programming languages such as
Java or C, and for socket communication.

2(a).i The platform provides documentation and examples that, though
simple, have allowed new users to learn how to effectively develop new
applications.

2(a).ii The current implementation of the platform requires SWI-Prolog, a
sophisticated Prolog implementation which is actively supported and avail-
able free for many architectures and operating systems (including MS-
Windows, Linux and MacOS X).

2(b) The basic language and its current platform do not per se adhere or
conform to any standards. However, a library, IG-JADE-PKSIib [69, 68], has
been developed to support communication in FIPA ACL and FIPA coordina-
tion protocols (e.g. contract net), as well as interfacing with the JADE [8]
multiagent platform.

2(c) The platform is designed in a modular way and is easily extensi-
ble, though this requires expertise in Prolog. It is currently hosted as
an open source project at SourceForge (http://sourceforge.net/
projects/indigolog/).

2(d) Currently, there are no CASE tools developed specifically for the plat-
form. For debugging, tracing facilities are provided; Prolog facilities can also
be used.

2(e) The platform is integrated with Prolog (more specifically SWI-Prolog)
and all the facilities it provides can be used (e.g. socket communication,
calling C or Java procedures). The 1G-OAAlib library [49] supports the in-
clusion of IndiGolog agents in systems running under SRI’s Open-Agent Ar-
chitecture (OAA) [67]. As mentioned earlier, another library, IG-JADE-PKSIib
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[69, 68] supports the inclusion of IndiGolog agents in systems running under
JADE [8].

2(f)  The platform is implemented in Prolog and requires SWI-Prolog (http:
//www.swi-prolog.org/).

2(g).i No detailed analysis regarding the number of agents that could be
run efficiently or the number of messages that could be handled has been
performed so far. For use in robotic architectures or workflow management,
performance has not been a problem.

2(g).ii The current state of the implementation is as an advanced stable
prototype that is available through open source distribution.

2(h).i The language itself does not provide specific facilities for multi-agent
programming (though it and the underlying theory are expressive enough
to allow the design of multi-agent systems). It is intended primarily for the
implementation of individual autonomous agents. Multi-agent program-
ming (including open systems) is accommodated through the interfaces
with the JADE and OAA platforms.

2(h).ii  The language provides a centralized control architecture.

2(h).iii  As already mentioned, the IG-JADE-PKSIib library [69, 68] allows
IndiGolog agents to be integrated in systems running under the JADE [§]
multi-agent platform; it supports the development of IndiGolog agents that
use FIPA ACL communication and coordination protocols. Another library
[49] supports including IndiGolog agents in systems running under the OAA
platform [67].

3(a) So far, the language and platform have been used to program high-level
controllers for several real robotic platforms (as part of a larger control ar-
chitecture). Moreover, the language (or variants), and the platform, have
been used as part of larger systems to develop advanced applications, for
instance the museum guide robot of [16], the process/workflow manage-
ment system for pervasive computing applications of [52], the automated
web service composition/customization systems of [70, 72], etc.

3(b) The language is not targeted at any particular application domain.
However, it is primarily intended for developing complex autonomous
agents that do reasoning and planning. It provides good support for inter-
facing with robotic control architectures/platforms.
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