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Abstract

A Description Logic ontology is constituted by two compotsra TBox that
expresses general knowledge about the concepts and ttaiomships, and an
ABox that describes the properties of individuals that astances of concepts.
We address the problem of how to deal with changes to a Déiseripogic on-
tology, when these changes affect only the ABox, i.e., wienTiBox is consid-
ered invariant. We consider two basic changes, namelyriostievel update and
instance-level erasure, roughly corresponding to thetistidand the deletion of a
set of facts involving individuals. We characterize the aatits of instance-level
update and erasure on the basis of the approaches propos#thfiett and by
Katsuno and Mendelzon. Interestingly, Description Logiestypically not closed
with respect to instance-level update and erasure, in tisedbat the set of models
corresponding to the application of any of these operatio@sknowledge base in
a Description LogicC may not be expressible by ABoxes ih In particular, we
show that this is true foDL-Liter, a tractable DL that is oriented towards data
intensive applications. To deal with this problem, we firitdoduceDL-Liters, a
DL that minimally extendDL-Liter and is closed with respect to instance-level
update, and present a polynomial algorithm for computistaince-level update in
this logic. Then, we provide a principled notion of best apgmation with respect
to a fixed language of instance-level update and erasure, and exploit the algo-
rithm for instance-level update fdbL-Liters to get polynomial algorithms for
approximated instance-level update and erasur®EsLiter. These results con-
firm the nice computational propertiesBE -Lite+ for data intensive applications,
even where information about instances is not only readalsatwritten.

1 Introduction

Several areas of Computer Science and various applicatiorahs have witnessed a
growing interest in ontologies in the last years. In patticlontologies are considered



as one of the key concepts in the Semantic Web [7], where @repe used to describe
the semantics of information at various sites, overcontiregdroblem of implicit and
hidden knowledge, and thus enabling content exchange I&s are also advocated
as appropriate means to integrate data and services. |niteth@ information inte-
gration scenario [24], ontologies can be profitably usedfress the so-called global
schema, which represents the reconciled and unified viewl d¢tiexlocal resources
(data or services) to be integrated [29].

It is widely accepted that Description Logics [3] (DL) maypide a solid founda-
tion for both expressing ontologies with a logical formalisand for reasoning about
the knowledge represented in the ontologies. A knowledge baDL is constituted
by two components, called TBox and ABox. In a DL ontology, thener expresses
the intensional level of the ontology, i.e., the generalvideolge about the concepts
and their relationships, whereas the latter is the exteasievel of the ontology, that
describes one state of affairs regarding the instancesakgts and relationships. One
of the advantages of considering an ontology as a knowledse éxpressed in DL is
that we can re-phrase system services of ontology toolsmstef logical reasoning
problems. In turn, this view allows us to exploit the wholap®f research on algo-
rithms for and complexity of reasoning in DLs, in the endeaaweduild well-founded
tools supporting inferences over ontologies [1, 4]. Indesdrent results on DLs may
directly provide effective techniques to be incorporatedmtology management tools
[22, 18, 33] to deal, for example with consistency and sulpion checking, query
answering, or instance recognition. However, such resaltéot actually be used to
support other important tasks. One notable example of ssils is ontology evolution.

By evolution we mean here both update and erasure, whichp@rations address-
ing the need of changing an ontology in order to reflect a ceanghe domain of
interest the ontology is supposed to represent. Generaigiéng, an update specifies
a set of properties that must be valid in the state resultiog fthe change, whereas
an erasure is intended to specify a set of properties thatldhmmt be valid in such
state. One of the major challenges when dealing with an epddtow to react to the
case where the set of properties specified in an update iagistent with the current
knowledge. Since a principled approach to this issue in trgext of ontologies is
missing, existing ontology management tdaislopt ad-hoc solutions to this problem,
for example, just rejecting the update. Similarly, suchigato not provide formal
mechanisms for dealing with erasure.

Although the problem of ontology evolution in its genemalhould consider the
case of performing updates and erasures on the whole kngavleaise [14, 27], i.e.,
either the TBox, or the ABoX, or both, in this paper we restoier attention to what
we callinstance-level update and erasurln instance-level update (erasure) the on-
tology is specified by both a TBox and an ABox, but the updatasi@e) affects only
the ABox, in the sense that we enforce the condition that tiielogy resulting from
applying the evolution operations has the same TBox as igaat ontology.

Although simplified with respect to the general case, weebelithat this setting
not only allows us to study the fundamental properties oftte operations, but is
very relevant in practice. Indeed, in many applications, ititensional level of the
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ontology is quite stable, as its evolution represents a gham a refinement in the
conceptualization of the domain of interest. On the othedhthe instance level con-
tains information about specific instances, and hencec#éjlgi changes much more
frequently than the intensional level. In a sense, such &inthanges are similar to
changes of the data in a databas&o, instance-level evolution is very close to the
classical notion of update in databases, and their studyheaefore shed light on the
difference between database update and ontology evolution

The aim of our work is a systematic investigation on instalevel update and
erasure in DL ontologies. To the best of our knowledge, ghtké first investigation of
this type. The main contributions of the paper are as follows

1. We formally define the notion of instance-level updatearadure of ontologies.
Building on classical approaches on knowledge base upddterasure, we pro-
vide a general semantics for instance level evolution of Dtolgies. In partic-
ular, we follow the approach of [26], and we adapt Winsletésnantics [34, 35]
for update, and Katsuno and Mendelzon’s semantics [23]rBmuwee, to the case
where the ontology is described by both a TBox and an ABox.nAbé above
mentioned approach, in our framework the result of an updatkan erasure
is given in terms of a set of models of the knowledge base wsedpress the
ontology.

2. We study instance-level update in the case where theamytdaé expressed in
DL-Liter [8]. One of the main features @L-Liter is that all reasoning tasks
can be done in polynomial time with respect to the size of titelogy, and our
goal was to verify whether the nice computational propeftseasoning in this
DL extends to ontology evolution. We point out a fundamedifficulty in this
context: there are cases where the set of models charaugesiz instance-level
update of aDL-Liter ontology cannot be captured DL-Liter, i.e., this logic
is not closed with respect to instance-level update. Observestsahilar phe-
nomenon was observed in [26] for a more expressive DL. Wedhwgie out the
minimal DL, calledDL-Liters, that extend®L-Liter and is closed with respect
to update, and present an efficient algorithm for computiregDL ontology re-
sulting from an instance-level update in this logic.

3. One of the original motivations of our work was to add updcilities to
QuOnto [1], that is a reasoning system fk-Liter implementing efficient al-
gorithms for both TBox reasoning and query answering. Likether DL rea-
soners, QuOnto is based on a specific logic, i.e., the kn@elégses that it is
able to manage must be expresse®inLiter. The non-expressibility issue is
obviously a problem for such systems. In order to cope wiih pnoblem, the
brute-force approach would be the one that refuses an updeeever the re-
sulting ontology cannot be expressed in the logic undeglytie system. In this
paper, we propose a different approach, based on the ndtiappooximation.
In particular, our proposal is to address the problem by aging theDL-Liter
knowledge base that approximates at best the set of modiling from the

2|n the database setting, changes at the intensional levaldvemrrespond to schema evolution or re-
structuring.



update. This is a general idea that might be pursued in eitegtisn where an
ontology management system based on a specific DL aims ab’ingpupdates,
but the DL is not closed with respect to such operation. We ifitsoduce the
notion of maximal approximation in DL, and then we presergfficient method
for computing the maximal approximation of instance-laygdates oDL-Lite
ontologies.

4. Finally, we carry out a detailed study of instance-levekare. To the best of
our knowledge, this is the first work dealing with erasure lcesDWe show that,
in general, erasures are not expressible in nelihetite nor DL-Litergs, and
present a polynomial time algorithm for computing the maadiapproximation
of instance-level erasure DL-Liter.

The paper is organized as follows. In Section 2 we discuasaeivorks. In Section
3 we provide a general overview of DL ontologies, and inticeDL-Lite~. In Section
4 we provide the formal definition of instance-level updated then we present the
non-expressibility result faDL-Liter, as well as the update algorithm foL-Liters.
In Section 5 we introduce the notion of approximation thatwge for coping with
the non-expressiblity problem. In Section 6 we present ththod for computing the
maximal approximation of an update BL-Liter, and in Section 7 we present the
results on instance-level erasure. Finally, Section 8udises interesting problems left
open in our investigation.

This paper is an extended version (including also the probteeorems) of [11]
and [12].

2 Related work

Several recent work addresses the issue of ontology ewolutin [19], the authors
point out that one of the fundamental problems in dealindywittology changes is
how to guarantee consistency of the resulting ontology.yTdefine the consistency
of ontologies at three different levels, namely, strudiul@gical, and user-defined,
and propose methods for resolving inconsistencies at teeseus levels, including
resolution strategies when a change admits different sterdistates.

A broad study of ontology evolution is presented in [14, 16]. 1In particular,
in [15], the authors propose a very general view of this prohlmake connections
between ontology evolution and several research diseipl{ne., ontology versioning,
alignment, mapping, integration), and present a compghemeview of the recent
literature on such disciplines. Interestingly, the aushafrthese papers often point out
the importance of the AGM postulates for revision [2], aneytistudy various aspects
related to the application of the AGM theory to the problenoafology evolution.
Arguably, analogous postulates for update and erasuresf&8}ld play an important
role in ontology evolution.

As we said in the introduction, in this paper we study instalevel ontology evo-
lution, and therefore, our work is closely related to [20, 28]. In [20], the authors
investigate the process of incrementally updating tabtEauapletion graphs created



during consistency checking in expressive Descriptionit®gand present an algo-
rithm for updating completion graphs under both the addiaod removal of ABox
assertions. Differently from our work, the paper followsyatactic approach to up-
dates.

On the contrary, both [17] and [26] adopt a semantic notiompmdate and era-
sure. In [17], erasure is studied for RDF, under the same sgrsave use in the
present paper, namely the Katsuno-Mendelson semanti¢sIf285, 26] the authors
propose a formal semantics for updates in DLs, and prestmesting results on var-
ious aspects related to computing updates. In particL2&i, hows an example of
non-expressibility of updates for the case of an expreddiveHowever, since the
problem of update is addressed in [5, 26] under the assumtiiat the knowledge
base is specified only at the extensional level, i.e., witffBox®, the paper does not
take into account the impact of the intensional level on lmgpupdate.

As we said before, we follow the approaches to update andieraeveloped in
the Artificial Intelligence literature several years agoaridus approaches to update
have been considered in literature; see, e.g., [13, 21]uateys. Here, like in [5, 26],
we essentially follow Winslett's approach [34, 35], origily developed for updates on
databases in presence of incomplete information, and itkegpart, defined in [23], as
notion of erasure.

The intuition behind such approach is the following. Theram actual state-of-
affairs of the world of which, however, we have only an incdetg description. Such
description identifies a (typically infinite) set of modedsch corresponding to a state-
of-affairs that we consider possible. Among them, therenis model corresponding
to the actual state-of-affairs, but we do not know which. New perform an update
because the state-of-affairs is changed. However, sincgowet really know which
of our models corresponds to the actual state-of-affaiesapply the change on every
possible model, thus getting a new set of models repreggtitan updated situation.
Among them, we do have the model corresponding to perforitiagupdate on the
actual state-of-affairs, but again we do not know which. #sHow we perform the
update on each model, the idea is that we apply exactly thHuseges that are abso-
lutely necessary for accommodating what explicitly agskit the specified update.

Observe that this intuition is essentially the one behingtrobthe research on rea-
soning about actions. For example this vision is completbbred by Reiter’s variant
of Situation Calculus [30]. See in particular [32], wheresgible worlds are explicitly
considered, and actions act on such worlds exactly as saik4b

3 Description Logic ontologies

In this paper we focus on ontologies expressed as Describtigics knowledge bases.
Description Logics (DLs) [3] are knowledge representafamalisms that are tailored
for representing the domain of interest in termsaffistantgindividuals),conceptgor

30r, with TBoxes assumed to be acyclic. Notice that such TB@ea only be used to introduce abbre-
viations for complex combinations of primitive conceptslaales.

4Actually [32] studies also “knowledge producing actionisé ( sensing actions), which are more related
to belief revision than update.



classes), which denote sets of objects, aids (or relations), which denote denote
binary relations between objects. Dksowledge basgd¥Bs) are formed by two dis-
tinct parts: the so-callefiBox which contains intensional description of the domain of
interest; and the so-callg&Box which contains extensional information.

When DLs are used to express ontologies [4], the TBox is usezkpress the
intensional level of the ontology.e., the shared conceptualization of the domain of
interest, while the ABox is used to represent thstance level of the ontologye.,
the information on actual objects that are instances ofdineepts and roles defined at
the intensional level. From a formal point of view, a DL KB iaded on an alphabet
of atomic concepts, atomic roles, and constants, and idfigge terms of a pair
K =(T,A), where:

e 7, theTBox is formed by a finite set ainiversal assertionsThe precise form
of such assertions depends on the specific DL. Generall\kspgdhe TBox is
formed by inclusions that allow imposing constraints on ¢léensions of the
concepts and roles used to describe the domain of interest.

e A, the ABox is formed by a finite set ofnembership assertiorsfating that a
given object (or pair of objects) is an instance of a concepa(ole). Note that
DLs adopt the open world assumption (and not the closed vwastdimption,
typical of databases), i.e., it may happen that, for an ahjend concept, K
does not imply neither thatis an instance of’, nor thata is not an instance of
C; similarly for roles.

We give the semantics of a DL KB in terms of interpretationsrca fixed countably
infinite domainA of objects. We assume that, for each object\inwe have exactly
one constant in our alphabet denoting such object. In thisweablur the distinction
between constants and objects, so that we can use themhiatgeably (with a little
abuse of notation) without causing confusfoAn interpretatiorZ = (A, -) consists
of a first order structure ovek, where-Z is the interpretation function, i.e., a function
mapping each concept to a subsef\ofind each role to a subsetfdfx A. We say that
7 is amodel of a (TBox or ABox) assertion or also thafZ satisfies a (TBox or ABox)
assertiono, if « is true inZ8. We say thaf is amodel of the KBC = (7, A), or also
thatZ satisfiesC, if Z is a model of all the assertionshand.A.

Given a set of (TBox or ABox) assertiords we denote byM od(S) the set of
interpretations that are models of all assertion§inin particular, theset of models
of a KB, denoted as/od(K), is the set of models of all assertionsZhand.4, i.e.
Mod(K) = Mod((T, A)) = Mod(T) N Mod(A).

A KB K is satisfiableif Mod(K) # 0, i.e. it has at least one model. We say
that a setF of assertions isonsistenwith K if Mod(K U F) # ), and we say that
K logically impliesan assertiony, written = «, if Mod(K) C Mod(«). On the
contrary, we say that a KK does not logically implan assertiomy, written iC |~ «,
if there exists at least one model/Gfthat is not a model of:.

5We use such a shared domain of interpretation, i.e., we essoticalled standard names [25], to simplify
comparison between models needed for updates. In factsthefistandard names could be avoided, but
this would make some of the definitions below clumsier.

60bviously, the exact meaning of an assertioheing true in an interpretatiah depends on the form of
such assertion, and therefore on the particular DL that weising for expressing the ontology.



The DL DL-Liter In this paper, we focus on one of the most interesting familie
of DLs that have come up in the last years: Die-Lite family [10, 9, 8]. This is a
family of DLs that despite their simplicity are able to cagtthe main notions (though
not all, obviously) of both ontologies, and of conceptuald@ling formalisms used in
databases and software engineering, such as Entity-&&taip diagrams and UML
class diagrams. At the same time they allow for querying tiBetirough arbitrary
(non recursive) positive queries, enions of conjunctive querie¥hese queries make
use of explicit variables, and may express complex pattamrike instances of the KB,
that go well beyond the class of queries that is typicallysid@red in DLs. Formally,
the fundamental characteristic of the DLsDh-Lite family is that reasoning, includ-
ing answering unions of conjunctive queries, is polynolyitthctable in the size of
the KB and in fact first-order reducible (and hence in LOGSEA@Iith respect to data
complexity [10], i.e., the complexity measured with regged¢he number of individu-
als in the ABox. These features make DLs in fie-Lite family particularly suitable
as a sort of conceptual layer for data intensive application

Here, we concentrate on the DL callBd-Liter, originally proposed in [8]. The
DL-Liter concept expressions are:

B == A|3R
C == B|-B
R = P|P™

where A denotes aratomic conceptP an atomic role B a basic conceptandC' a
general concept A basic concept can be either an atomic concept, a concdaheof
form 3P, i.e. the standard DL construct of unqualified existentizdmtification on
roles, or a concept of the formP—, which involvesinverse roleg P~ denotes the
inverse of the roleP).

The TBox assertions allowed DL-Liter are of the following forms:

B C By inclusion assertion
B; € =By disjointness assertion
(funct R)  functionality assertion

An inclusion assertiorspecifies that each instance of the basic conégps also an
instance of the basic concept, i.e., B; is subsumed byBs. A disjointness assertion
specifies that each instance of a basic conégps not an instance of the basic concept
B», i.e.,B; andB, are disjoint. Finally, dunctionality assertiomxpresses the (global)
functionality of an atomic role, or of the inverse of an atomdle. Note that negation is
used in a restricted way, in particular for asserting digjuéss of concepts. Moreover,
disjunction is disallowed. Notably, if we remove any of taéso limitations, reasoning
becomes intractable, see [9].

The ABox assertions allowed DL-Liter are of the following forms:

B(a), R(a,b) membership assertions

wherea, b are constantsi3 is any basic concept, ané is either an atomic role or its
inverse.



Concerning the semantics of concepts and roles, given amnpietationZ =
(A, 1) the interpretation functiorf interprets the constructs 8fL-Lite s as follows:

AT C A

PICAXA

(P ={(d,d) | (d,d) € PT}
(3R)? = {d| 3d'.(d,d’") € R*}
(-B)T = A\ BY

Finally, we specify the conditions for an interpretatibio be a model of a TBox and
an ABox assertion. In particuldf, satisfies

e B, C By, if B C B,

Bi C =By, if B C -Bf,

(funct R), if (d,d’') € RT and(d,d”) € R impliesd’ = d”,

B(a), if a € B%,

R(a,b),if (a,b) € RT.

4 Instance-level update

In instance-based update, we allow the user to state new srship assertions in
order to revise the ABox, while still maintaining unchangeel intensional level of the
ontology, i.e. the TBox.

As we said in the introduction, to assign formal semanticafdate, we essen-
tially follow Winslett's approach [34, 35] . Technicall¢ idea underlying Winslett's
approach to knowledge base update, is the following. A kedgt base update is
specified through a set of assertions, and produces a setddisthat

o satisfy the assertions, and

¢ is obtained by updating each model of the initial knowledgsebwith minimal
change. In particular, according to Winslett, the notiomafimal change builds
upon both the symmetric difference, and an inclusion-basedsure of close-
ness. The latter means that a $étis closerto a setS than a setS” if the

elements on whicl$ andS’ differ are a proper subset of the elements on which
S andsS” differ.

We start by adapting Winslett's notion of closeness to omtext. To this aim, we
need first to provide some definitions. Specifically, we needefine both the notion
of difference and the notion of inclusion between intergtiens.

Definition 4.1 (Difference between interpretation3 Given two interpretationg =
(A, TyandZ’ = (A, ') for KB K, we define thelifference betweef andZ’, written
T ©T', as the interpretatiof, -Z7") such that:



o 0T8T = T 5 C7, for every atomic concet in K;
e PIST" — pT o PP’ for every atomic role in K;

where, for sets$ andS’, S © S’ denotes the usual symmetric difference betwgamd
S ie.SesS =(Sus)\(Sns).

Definition 4.2 (Inclusion between interpretationg Given two interpretationg =
(A, TyandZ’ = (A, -I") fora KB K, we say thaf C 7' iff Z, 7’ are such that:

e CT C CT' for every concept in K;

e RT C RT" forevery roleR in K.

Let € = (7,.A) be a DL KB, and suppose we want to perform an instance-level
update offC with a finite setF of membership assertions. Since we wanto remain
unchanged, the first observation is tifatshould be consistent withi, while it may
be inconsistent witbd. Following Winslett, we denote b§/ pdate? (F, A) the set of
models obtained by updating each modelf K so as to applyninimal changeto the
model, and to make all membership assertions inue. Specifically, Winslett's model
change operator is defined in our context as follows.

Definition 4.3 (Model update) Let 7 be a TBox,Z a model of7, andF a finite set of
membership assertions such thdbd(7 U F) # 0. Theupdate off with F, denoted
UT(Z,F), is defined as follows:

UT(Z,F)={T" | T' € Mod(T UF)and there exists N6 € Mod(7T U F)
suchthal © 7" c T o671’}

Observe that/7 (Z, F) is the set of models of botli and F whose difference with
respect t& is C-minimal, so as to capture the notionmfnimal change

With these notions in place we are now ready to provide the&bdefinition of
instance-level update in DL ontologies.

Definition 4.4 (Instance-level updat@ Let L = (7, .A) be a DL KB, andF a finite
set of membership assertions such thatd(7 U F) # (0. Theinstance-level update
of IC with F, or simply the update of with F, denotedC o1 F, is defined as follows:

KorF= |J U'(Z7)
TeMod(K)

Let us illustrate this notion by means of an example.

Example 4.5 Consider an ontology describing a basketball players’ domahere
the intensional level of the ontology is expressed by meéttsedfollowing DL-Lite

TBox 7
AWillPlay C Available Player

Awvailable Player C Player
Injured C —Available Player



The TBox7 states that someone who will play in a game is an availablgeplan
available player is a player, and someone who is injuredagmm an available player.
Consider the instance level of the ontology expressed bynmeftheDL-Lite - ABox
At

Will Play(john, allstargame)

Now suppose thajohn gets injured: we update the ontology with the assertion
Injured(john), i.e. F = {Injured(john)}. It is not difficult to see that, based
on the semantics presented abd#®,.A) o7 F is the set of models

{T' | T' € Mod(T) A john € Injured® A john € Player™ }

Intuitively, in each model of the updatghn is a player who is actually injured. Note
in particular that the fact thgbhn is injured implies that he is not an available player,
and therefore he will not play th@!stargame anymore. However, since our notion
of update maintains as much as possible the informationigHagically implied by
the initial KB and that is not inconsistent with the new memshép assertiongohn is
still a player. n

One may wonder whether there exists a knowledge Kdsed’) in DL-Liter
whose set of models is exactly the $&t .4) o F described in the example above. It
is not hard to see that such a knowledge base exists and istatchl is expressed as

follows:
Injured(john)

Player(john)

Hence, the above example shows a case where the result oftande-level update
can be represented as an ABox in the same language as theabKg. However, as
we said in the previous sections, this is not always the c@kes, it makes sense to
introduce the formal notion of expressibility of updates.

Definition 4.6 (Expressibility) Let £ = (7, .A) be a KB expressed in a DL, andF
a finite set of membership assertions expressetisnch thatMod(7 U F) # 0. We
say that the result of the instance-level updat& afith F is expressible irC if there
exists an ABoxA’ such that

Kor F=Mod((T,A)).

4.1 Instance-level update irDL-Liter

In [26], it is shown that, for expressive DLs, the result ofiastance-level update
cannotbe expressed in the language of the original KB. Unfortugattes is true for
DL-Liter as well, as shown next.

Theorem 4.7 There exist DL-Litg KBs K = (7,.A) and sets of membership as-
sertionsF, with Mod(T U F) # @, such that for no DL-Litg ABox.A’ we have
Mod((T,A")) =Kor F.

10



Proof. It suffices to consider the followinDL-Liter KB K = (7, A)

T = {EP_ C A, As Eﬁﬂp}
A = {3P(a)).

and its update with
F ={Az(a)}-

We show that n@L-Liter ABox A’ exists such that the KBT, .A’) captures exactly
the set of model& o1 F. Clearly, giverZ € Mod(K), an interpretatiod’ € K o F
that satisfies botlls(a) and7, and minimally differs frontZ, is obtained by simply
modifying the interpretation oP so thata € (ﬂEP)T, that is for nox € A, we have
that (a, ) € PT. In particular, this means that? = AZ. On the other hand, by
3P~ C A,, foreachr such thata, z) € P, we have that € AZ. Now, sincedP(a)
holds in every model ok, we have that every modé&l of X has at least one object
z € A such that: € AT, and hence, every modgl € K o F is such that there exists
at least one such objegtthat belongs to4{'. Unfortunately, since such objectmay
differ in different models, this faatannotbe captured with ®L-Litex membership
assertion. O

One may wonder whether we can enhance the expressive povidr-bite s in
order to come up with a new DL where instance-level updatepsassible. In the next
subsection, we answer this question by presenting a miréxtahsion ofDL-Liter,
calledDL-Liters, where updates are indeed expressible.

4.2 Instance-level update iDL-Liters

DL-Liters is a slight variant oDL-Lite that allows for more expressive membership
assertions in the ABox. In particular, membership assestia DL-Litezs may in-
volve alsovariables also calledsoft constants.e., a particular kind of terms that may
denote different objects in different models. More pregisBL-Lite s membership
assertions are of the form:

C(a), R(a,b), C(z)

wherea, b are constants; is a variable(C' is a generaDL-Liter concept (i.e. a basic
DL-Liter concept or its negation), an@lis an atomic role or its inverse.

Intuitively, the assertiong§’(a) and R(a,b) state, respectively, that the object
resp. the pairfa,b), is an instance of the conceft, resp. roleR. We call these
assertionground to emphasize the absence of variables. A (non-groundjtasse
C(z) instead states that the there exists an object, denotecthyatiablez, that is an
instance of the concept. In other words, variables are used to express the existence
of objects that are instance of concepts, without actuaining the objects.

With respect to the semantics, in order to interpret a sekt#nsional assertions
possibly involving variables, we need to introduce thearotf assignmentLet V be
the set of variables occurring in an ABo%, we callassignment ford a functiony
fromV to A.

11



LetZ be an interpretation, andan assignment fad. We say thaf is model ofA
with , or equivalentlyZ satisfiesA with y, if for each membership assertionnof
the form:

e C(a), we have that, ¢ C7;
e R(a,b), we have thata,b) € R%;
e C(z), we have thati(z) € CZ.

We say thafZ is amodel ofA if there exists an assignmentsuch thatZ is a model of
A with .

Note that, as shown in [28))L-Liters retains all the nice computational properties
of DL-Liter. Moreover, we show here that this logic is closed under mtstdevel
update. In particular, in what follows:

e we show that the result of an instance-level update is alwapsessible within
DL-Liters: i.e., for any KBK in DL-Liters, and for any update, there always
exists aDL-Liters ABox that reflects the changes of the update to the original
KB K (obviously the TBox remains unchanged as required);

¢ we show that the ABox resulting from an update can be effelstitomputed;

o finally, we show that the size of such an ABox is polynomialbubhded by the
size of the original KB, and moreover, that it can be compiegolynomial
time.

In Figure 1, we provide an algorithm for instance-level updaverDL-Liters KBs.
To simplify the presentation we make use of the followingation.

e We denote byR~ the inverse ofR, i.e., if R is an atomic role, thel®~ is its
inverse, while ifR is the inverse of an atomic role, theétis the atomic role
itself.

o We write—~C to denote-B if C'is B, andB if C'is -B.

e We use the notatiof; T C5 to denote either assertions of the fofsn T Bs,
B, E =By,0r-B; & =Bs.

e We denote by (7)) the deductive closure @ i.e.,{C1 C Cy | (T, A) = C; C
C5}. It can be shown that iBL-Liters, cl(T) can be computed in polynomial
time, based on the following inductive definitiofty 7 C ¢I(7); (ii) if C1 C Oy
isin cl(7) then—Cy C —=C4 isin cI(T); (iii) if C1 C Cy andCy C C5 are in
cl(7T), thenC; C Csisin cl(7).

The algorithm in Fig. 1 takes as input a satisfiable-Liters KB K = (7, A),
and a finite set of ground (i.e., not involving variables) nbenship assertions, and
returns an ABoxA4', if (T, F) is satisfiable, ERROR, otherwise. More precisely, the
algorithm starts by checking the satisfiability of the knedde basé7, F) (line 1).
Then, if  is satisfiable, it proceeds by three main steps.

12



ALGORITHM ComputeUpdate (T, A, F)
INPUT: finite set of ground membership assertichs

satisfiableDL-Liters KB (7, .A)

OUTPUT: an ABox.A4’, or ERROR
[1] if (T, F) is not satisfiablehen ERROR
[2] else

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]
(11]
(12]
(13]
(14]
(15]
(16]
(17]
(18]
(19]
(20]
[21]
(22]
(23]
(24]
(25]
(26]
[27]
(28]
(29]
(30]
(31]
(32]
(33]
(34]
(35]
(36]
(37]
(38]
(39]

{foreach F' € F do
if F = R(a,b)then F := FU{3R(a),3IR™(b)}
F =0
for each F' € F do
if F=C(a)then
{F" := Saturate(—~C(a),T)
for each F”" € 7" do
{if(T,A) = F'"thenF :=F UF"
if /' = 3R(a)then F' := F' U{R(a,b) | R(a,b) € A}
}
}
else
if ' = R(a,b) then
{if (funct R) in 7 then
foreacht’ # b s.t. R(a,b') € AdoF' := F' U{R(a,b")}
if (funct R™)in 7 then
foreacha’ # a s.t. R(a’,b) € AdoF' := F' U {R(d,b)}
}
A== AU F;
foreach F' € ' do
if F' = C(a) then
{A":= A\ {C(a)}
foreachC C Cyin ¢l(7T) do
if (Ci(a) ¢ F')then A" := A" U{C1(a)}
if ' = 3R(a) then
foreach3R™ C Cyin ¢l(7) do
A’ = A" U{Ca(2z3R(a))}, With z3R(,) New variable
}
else
if F' = R(a,b) then
{A":= A"\ {R(a,b),3R(a),IR™(b)}
foreach3R C Csin cl(7) do
if C3(a) ¢ F'then A" := A" U {C3(a)}
foreach3dR™ C Cyin cl(7) do
if C4(b) ¢ F'then A" := A" U {C4(b)}

Figure 1: AlgorithmCompute Update
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e First, it adds toF all membership assertions that are logically implied By
itself. Specifically, this amounts to possibly insert, fack R(a, b) in F, the
membership assertiorsR(a) and 3R~ (b), trivially implied by R(a, b) (lines
3-4).

e Second, it computes the st of membership assertions that contradicand
7T, and are logically implied byC (lines5-20). To this aim, it considers one by
one, each assertiofi in 7, and proceeds differently depending on whether
involves a concept or a role. Specifically, in cdsds a concept membership
assertion, it computes the concept assertions that migtitaztict ', by vio-
lating some inclusion assertion @f. This is achieved by calling the function
Saturate(—Fy,T) shown in Fig. 2, that returns the set of concept membership
assertionsF” that, according t&, logically imply F (line 8). Then, for each
assertionf” in F”, if F" is actually logically implied by, it insertsF” into
F’ (line 10). Furthermore, in casE” has the fornBR(a), it inserts intaF”’ also
those membership assertioRéa, b) that belong ta4, since they trivially imply
F" and hence also contradit(line 11). On the other hand, in cageis a role
membership assertion of the forR{(a, b), this step amounts to check whether
F is functional, and to insert int&” those role membership assertionsdrihat
violate the functionality (line$5-20).

e Finally, it computes the result sgt’. More precisely, starting from all member-
ship assertions il andF (line 21), it deletes each assertidfi that belongs to
F’, and simultaneously, it inserts those membership aseertiwt are logically
implied by F’ and do not contradicF (lines 22-38). Note that, here again, it
proceeds differently depending on whett&rinvolves a concept (linez3-30),
or arole (lines32-38). Specifically, in the former case, besides delefiigrom
A’ and inserting all assertions, not ji, that are implied byF” according to
some inclusion assertion 1A, it possibly inserts a membership assertionz),
for some new variable denoting an (unnamed) object of the domain. This is
motivated by the fact that, the asserti®R(a) logically implies3R(z), for some
object denoted by. Hence, some inclusion assertion of the fofil~— = Cs,
would imply Cs(z) (lines28-29). Dually, in caseF” involves a role, i.e. it has
the form R(a, b), the algorithm deletes fromd’ also the assertionsR(a) and
IR~ (b), that are trivially implied byF” (line 33), and possibly inserts intal’
the assertions, not iff’, that are implied bydR(a) and3R~(b) according to
some inclusion assertion ih (lines34-37).

Next, we show soundness and completeness of the algotithnpute Update.

Theorem 4.8 LetK = (7, A) be a DL-Liters KB, F afinite set of ground DL-Lites
membership assertions such thidiod(7) N Mod(F) # 0, andK’ the DL-Liters KB
such thatl’ = (7, A’), whereA’ = ComputeUpdate(T, A, F). Then

Kor F = Mod(K").
Proof. We first prove that
Mod(K') C Kor F

14



ALGORITHM Saturate(C(a),T)
INPUT: membership assertiafi(a), TBox 7T
OUTPUT: setP of ground membership assertions
P:={C(a)}
repeat

P =P

foreachC(a) € P’

if C'"CCecl(T)thenP :=PU{C'(a)}

until P =P’

Figure 2: AlgorithmSaturate

by showing that for each mod&l € Mod(K') there exists a mod&l € Mod(K) such
thatZ’ € U7 (Z, F).

In fact we build the model starting fromZ’, and reintroducing fact$” removed
in computingA’. First, we observe that, i’ is a model ofKC’ then there exists an
assignment of the variables i, let u be such assignment. Then, in order to bdild
we start by settin@ = 7', and we proceed as follows:

e foreachA(a) € F', we includea in AZ;

for each—A(a) € F’, we remove: from AZ;

for eachR(a,b) € F', we include(a,b) in RZ, and moreover

— if (funct R) € T, we remove alla, z) € R, with b # =, and
— if (funct R™) € 7 we remove al(z, b) € RZ, with a # z;

for eachdR(a) € F’ we include(a, 1(23r(,))) in RZ, and moreover

— if (funct R) € T we remove alla, z) € R*, with p(23p(a)) # @, and
— if (funct R™) € T we remove al(z, 11(23p(q))) € R, wWith a # ;

for each-3R(a) € F' we remove alla, z) from RZ.

It is easy to verify thatZ defined as above is a model & Now, in order to
complete the proof, we need to show tFate U7 (Z, F), and since, by inspecting the
algorithm, clearlyZ’ is a model of botl7” and F, this amounts in showing that exists
no interpretatiorf” of 7 and.F such that:

e 7" € Mod(T UJF), and
e I+I'CIOT.

We proceed by contradiction, case by case. Suppose that ¢ixests an individual
z € A such thatr € A% andz ¢ AZ butz € AT'. Thenz was introduced in
AT becaused(z) € F'. But then—A(x) was a logical consequence 8fand7, and
hence cannot be indZ” sinceZ” is a model of botty” and.F. Similarly, there cannot
existz € A such thate ¢ AT andz € AT butz ¢ AZ”. A similar line of reasoning
can be applied also for the cases in which the differencedsi® andZ” involves
atomic roles instead of atomic concepts.
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For the other direction we show that
ICor F C MOd(/C/).

We proceed by assuming by contradiction that there existsterpretatior € Koz F
that is not a model ok’. ThenZ does not satisfy at least a membership assetiion
A’ \ F. Note that, by construction, i belongs ta4’ \ F, thena has been inserted
into A’ either at line23, 26, 30 or 32 of the Algorithm ComputeUpdate (cf. Fig 1).
But these are logical consequences4oénd7 that do not contradicF so they must
remain true in all models ifC o7 F includingZ. O

Next we turn to termination and computational complexityCeinpute Update.

Theorem4.9 Let K = (7,.A) be a DL-Liters KB, and F a finite set of ground
DL-Liters membership assertions. Thé&mputeUpdate(T, A, F) terminates, re-
turning ERROR ifM od(7) N Mod(F) = 0, and an ABoxA’ such that(7, A’) is a
DL-Liters KB, otherwise. Moreover:

o the size of4d’ is polynomially bounded by the sizeBfJ AU F;
e A’ is computed in polynomial time in the sizelof) AU F.

Proof. Termination follows immediately by the fact thak(7") is finite and in fact
polynomially bounded by, and hence alsSaturate(C(a), T) computes a finite set
that is again polynomially bounded . Now, observing that the number of steps to
build the set of potential conflicts” (lines3-18) and the number of steps to buidl
given F’ (line 19-32), are both finite, and in fact polynomial in the size®f A, F,
the result follows. O

We end this subsection ddL-Liters with an example of instance-level update in
this logic.

Example 4.10 Let us consider again the KB mentioned in the proof of theotemn

7 = {EP’EAl, AQE_‘EP}

A = {3P(a)}.
and consider again the updatet@fvith
F ={As(a)}.

By applying the algorithmCompute Update we get the ABox

A" = {A1(z3p@)), A2(a)}

wherezsp(q) is avariable. By Theorem 4.8, we get ti@t, A) o7 F = Mod((T, A")).
Observe thatd’ is expressed iDL-Liters, and not inDL-Liter, since it makes
use of the variablesp ). n

The algorithmCompute Update and the results obDL-Lite s, give us the basis for

computing good approximations of updates and erasur@ghite =, as shown in the
next sections.
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5 A notion of approximation in Description Logics

From the results of the previous section, as well as fromrathmilar results in the
literature [26], it follows that, in general, the result of @pdate is not expressible in the
same language as the original KB. We will see in Section 7ttfiatholds for erasure
as well. This fundamental problem leads us to stagproximation(see e.g.,[31])
of update and erasure. The basic idea of approximation ircontext is as follows.
Suppose we are interested in KBs expressed in £Pdnd consider a KB expressed
in such logic. Consider now an instance-level update (eedsi X, and suppose that
no KB expressed itf exists that captures exactly the set of modelsesulting from
such an update (erasure). In this situation, we aim at cangptite KB in £ that
approximates\t “at best”.

The goal of this section is to introduce a specific notion gragimation in De-
scription Logics, that will be used in the next sections feviding techniques for ap-
proximating updates and erasure®in-Lite ontologies.

Our notion of approximation is based on fixing a priori boté Binguage® and the
TBox 7.

Definition 5.1 (Sound (£, 7)-Approximation) Let 7 be a TBox in a DLL, and M
a set of models such thait C Mod(7). We say that a DL KBC is asound(£, 7 )-
approximationof M in L, if

1. KisinL,
2. K is of the form(7, A), and
3. M C Mod(K).

In other words, a soun@, 7 )-approximation of a subse¥t of the models of a
TBox 7 expressed i is a KB that is still expressed ifi, that has the same TBox
7, and whose set of models includes all the model$4in Obviously, there might be
several(L, T )-approximations of a set. Intuitively, some of them will be “better”
than others, in the sense that they will be closeMo To capture this intuition, we
aim at a method for comparing tw_, 7 )-approximationsC; and K2 of M. An
appropriate criterion to be used for this purpose is setaomtent: KC; is a better
approximation thatC, precisely ifMod(K1) C Mod(K,). Based on this observation,
we can define the notion of “best’, 7')-approximation.

Definition 5.2 (Maximal (£, 7 )-Approximation) Let 7 be a TBox in a DLZ, and
M a set of models such thait C Mod(T). We say that a DL KBC is amaximal
(L, T)-approximatiorof M if

1. Kis asound L, T )-approximation ofM, and

2. there exists no KB’ that is a sound., T )-approximation ofM, and is such
that Mod(K') ¢ Mod(K).
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In other words, the maxima&l, 7')-approximation of a subse¢ of the models of
a TBox7 expressed i is a KB that is still expressed id, that has the same TBox
7T, whose set of models includes all the modelaif) and whose semantics minimally
differs from M. When we will use this notion for update and erasure, thefsabdels
M to be approximated will be exactly the models resulting friive update or the
erasure of a KB with TBo¥ .

Interestingly, when a maxim@L, 7")-approximation exists, it is unique up to logi-
cal equivalence, as the following theorem shows.

Theorem 5.3 Let 7 be a TBox in a DLZ, and M a set of models such tha¢! C
Mod(T). If a KB K exists that is a maximall, 7)-approximation ofM, then all
maximal( L, T)-approximations of\ are equivalent taC.

Proof. Suppose that’ = (7, A’) isamaximal L, T )-approximation of\ that is not
equivalent toC = (7, .4). By definition of maximal(£, 7)-approximation, we have
that bothKC and K’ are sound £, T )-approximations ofM, which implies that both
M C Mod(K), andM C Mod(K'), and therefore\! C Mod(K) N Mod(K"). Now,
let K" be (T, AU A’). Itis easy to see thalod(K") = Mod(K) N Mod(K'), and
therefore” is also a sound., 7 ')-approximation ofM. But then, sincé\{od(K) #
Mod(K'"), we obtain thaf\fod(K") C Mod(K), which contradicts the fact that is a
maximal(L, T)-approximation ofM. O

Based on the above property, we will talk abthemaximal(£, 7 )-approximation
of a set of models.

One may wonder to what extent the maximél 7")-approximation of a seM of
models captured1. The basic property ofC, 7 )-approximation is that it preserves
logical implication of C assertions. That is, as long as we are interested in in lbgica
implication of £ assertions, there is no difference betwgerand its maximal £, 7 )-
approximation. Indeed, the next theorem states that, mgef logical implication of
L-assertionsM and its maxima( £, 7 )-approximation are exactly the same.

Theorem 5.4 Let 7 be a TBox in a DLZ, and M a set of models such thad#t C
Mod(T). If K is a maximal(L, T )-approximation ofM, then for every TBox and
ABox assertiomx in L it holds thatM = « iff K | a.

Proof. For TBox assertions, the result is trivial. As for ABox asi&ers, consider
a membership assertianin £. The if-direction is obvious: sinck is an (L, T )-
approximation ofM, K | « impliesM = «. As for the only-if direction, suppose
thatM = «, butthere is a modél of K such thafZ ~ «. This would imply thatCU«
is a sound L, 7 )-approximation ofM that is not equivalent téC, which contradicts
the fact thatC is a maximal( £, T')-approximation ofM. O

Observe however that formulas that go beydhdssertions are sufficient to sepa-
rate a set of model$1 from its maximal(£, 7)-approximation. Consider the alphabet
with just one conceptd, the empty TBox on this alphabet, and the 44t consti-
tuted by the two model$A(o1)}, and{A(0o2)}. It is easy to see that the maximal
(DL-Litex, T)-approximation ofM is the KB KC with the empty TBox and the empty
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Figure 3: Example of moddl of K

ABox. Indeed, consider any nonempty ABg¥, and leta(o;) be an assertion inl’.
Obviously (T, A") = a(o;), while M [~ a(o;). This shows that7, . 4’) is not a
sound approximation oM. It is also easy to verify that, whila1 | Jz.A(x), we
have thatC = Jz.A(x).

Finally, we focus on maximal approximations of updates, stmolv that maximal
(L, T)-approximations of updates may not exist.

To this aim, we start by proving a preliminary lemma, in whieé make use of the
DL ALCQTO,., (we refer to [3] for the definition of the languageCC QZO,).

Lemma5.5 Let F be the setF = {Working(c)}, and X = (7,A) be the
ALCQTO,., KB defined as follows:

7 = {T CVComponentOf.{p},
T C (<1 DependsOn™),
JDependsOn~ C IComponentO f,
Working C VDependsOn.Working}
A = {ComponentOf(c,p),
—ComponentO f(p,p),
VYComponentO f~.=Working(p)}

Then(T, A’) = K oy F, whereA’ is the following ALC QZO,.., ABOX:

{Working(c),
—ComponentO f(p, p),
VComponentO f~.(3DependsOn~.T) U {c} U V(DependsOn)*.—=Working(p)}

Proof. Consider the initial KBC. Intuitively, the TBox states that each model

of K is such that every element of the domain that is a componean @ement, is

a component of the elemepf. Every element of the domain can have at most one
element that depends on it. Furthermore, every componanatbomponent depends
on, is a component of something, and every element that ikiagpdepends only on
working elements. On the other hand, the ABox describesritialistate of affairs
and states thaf is such that? is a component of”, p” is not a component of itself,
and every element? that is a component gf” is not working. Note that it follows,

in particular, thatZ is not working. Figure 3 shows a graphical representatioa of
possible model of K, wherec?, ¢t ... ¢ are not working.
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Consider now the KBC' = (7, A’). Intuitively, each model oK’ is such that it
satisfies the same intensional assertions satisfied by tHelmof/C. However, the set
of models ofK’ differs from the set of models d€, in that for each mod&l’ of K’

e I is working,

o for every element?’ different from¢Z’ that is component opZ’, eithereZ’
depends on some element,ddr is such that each element that depends on it,
directly or indirectly, is not working.

We next show thatl o F C Mod(K’) is a model ofK’. Indeed, consider for
example the moded shown in Figure 3. The set of moddl&’ (Z, F) comprises all
models that are obtained modifyirigeither by interpreting as working bothand
all the elementsy, ..., ¢,, or by interpreting as not depending one on the other, two
elements;, ¢; 11, and interpreting as working all elements. . ., ¢;, wherei € {1, n—

1}. Clearly, this set of models is captured kY.

Now, let us show that for every modé! of K’ there exists a modél of K such
thatZ’ € U7 (Z,F). Consider the model obtained fromZ’ by interpreting as not
workingc as well as all components thatlepends on it, directly or indirectly. Clearly,

7 is a model ofC and it is such thal’ € U7 (Z, F). O

We are now ready to show that in general it is not possible tainta maximal
approximation of updates.

Theorem 5.6 There are DLsC, KBsSK = (7, .A), and sets of membership assertions
F such that maximalL, 7 )-approximations oiC o F do not exist.

Proof. Let L be the languagel£LCQZO and let7 andF be respectively the TBox
and the set of assertions specified in Lemma 5.5. From the éenitnfollows that
K' = (T, A’) captures exactly the set of modélsor F, where A’ is the ABox
specified in the lemma (note thal' is expressed iIALCQZO,.,, since it uses the
transitive closure of the rol®ependsOn™).

Let (7, A”) be a maximal(ALCQZO, T)-approximation ofC o F. Then,
(T, A" logically impliesW orking(c), because otherwise, by addingAd the asser-
tion Working(c), we would obtain af ALC QT O, T )-approximation ofC o7 F that
is better than7", A"”). Similarly, (7, .A”) logically implies ~ComponentO f (p, p).
Now, based on form of the TBo%, and on the fact that7,.4”) is a sound
(ALCQTO,T)-approximation ofIC oy F, expressed in the first-order language
ALCOTO (ALCQZO is indeed a fragment of first-order logic), it can be showr tha
(T, A”) does not logically imply

VComponentO f~.(3DependsOn~.T) U {c} U ¥ (DependsOn)*.—~Working(p)

Equivalently, it is not true that for every natural number.A” logically implies
Ui A", where

A" =YComponentOf~.(ADependsOn~.T)U{c}UV(DependsOn)'.~W orking(p)

Hence, letm be the maximal natural numben such thatA” logically implies
U, A*, andA” does not logically impl),Uszg1 A‘. This contradicts the fact that
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A’ is a maximal ALCQZO, T)-approximation ofC o F, since by adding tol” the
assertionA™ ", we would obtain a sound4£CQZO, T )-approximation ofC o F
that is better than7,.4”). Indeed, it is easy to see th&f, A” U A™t!) is a
sound(ALCQTO, T)-approximation ofC o7 F such thatV/ od((T, A” U A™+1)) C
Mod({T,A")). Moreover, letZ™ be a model ofA” such that there exist ele-
mentsdy, di, ..., dmn, dni1, that are not reachable front™ by means of the role
DependsOn, and are such tha)(dZ, ", , is working, and i) for everyi € {0, m}, dZ"
is not working, andi?” depends onZ;’; . Itis easy to see that™ is a model ofA” but
is nota model ok o7 7, sincedZ ", ; is working. On the other hand™ is not a model
of (T, A" U A™*+1), which proves thab/od((T, A" U A™1)) € Mod({T, A")).

o

6 Approximated instance-level update inDL-Liter

With the notion of maximal L, 7')-approximation ofM in place, in this section we
come back to the issue of approximating instance-level igsdaDL-Lite .

First, we define the notion diZ, 7)-update, which immediately follows from the
definition of maximal( L, 7)-approximation given in the previous section.

Definition 6.1 ((£, 7)-Update) Let I = (7, A), K* = (T, .A*) be two KBs in a DL
L, andF a finite set of membership assertions expressed such thatM od(7) N
Mod(F) # . We say thatC* is a (£, T )-update ofK with F if £¢ is a maximal
(L, T)-approximation ofC o7 F.

From Theorem 5.3 we know that if afi, 7)-update of/C with F exists, it is
unique up to logical equivalence. Moreover, by Theorem Sedkwow that(L, 7 )-
update captures exactly the logical implication of the merabip assertions of the
“exact” update. Also, Theorem 5.6 shows that in generaletlzge cases for which
(L, T)-updates do not exist.

We now focus our attention to computing the maximal appratiom of updates
in DL-Liter. The simplest idea for computing the best approximatiomofipdate to
aDL-Liter would be to callComputeUpdate(7, A, F), and then ignoring all those
assertions of the resultingL-Lite s KB that are noDL-Liter assertions. Actually,
this idea works, and is exactly the method used in the algorifompute Update *PP
presented in Figure 4. The algorithm takes as input a TBpan ABox.4A and a set
of membership assertions, where7, A andF are all expressed iBL-Liter, and
K = (T, A) is satisfiable.

The correctness of the algorith@ompute Update®? is based on the following
property.

Theorem 6.2 Let K = (7, A) be a satisfiable DL-Lites KB, and« a DL-Liter
assertion. IfiC |= «, then there exists a DL-Lit'emembership assertiow’ in .A such
that(7,{d'}) E a.

Proof. To prove this property, we start by recalling the definitidhchaseof a
DL-Liter KB [10]. Given a satisfiabl®L-Liter KB I, the chase of’, denoted by
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ALGORITHM  ComputeUpdate™” (T, A, F)
INPUT: finite set ofDL-Lite membership assertiotfs,
satisfiableDL-Liter KB (T, .A)
OUTPUT: an ABox.A“, or ERROR
[1] if (T, F) is not satisfiabléhen return ERROR
[2] else begin
[38] A® = ComputeUpdate(T, A, F);
[4] delete fromA® all the assertions that are rt.-Lite membership assertion
[5] return A*
[6] end

1]

Figure 4: AlgorithmCompute Update *PP

chase(K), is a (possibly infinite) ABox obtained by closing the inieBox .4 with re-
spect to the followingnclusion chase rule@vhereA, A;, A; denote concept symbols,
andR, Ry, R, role symbols):

e if Ay C Ay € 7 and there is an assertion of the fora(a) in chase(K) and
Az (a) ¢ chase(K), then add the assertioty, (a);

e if IR C A € 7 (respectivelydR~ C A € 7) and there is an assertion of the
form R(a,b) (respectively,R(b, a)) in chase(K) and A(a) ¢ chase(K), then
add the assertioA(a);

e if AC JR € 7 (respectivelyAd C IR~ € 7) and there is an assertion of the
form A(a) in chase(K) and there is no assertion of the foRa, x) in chase(K)
(wherez is any constant symbol), then add the asserdn, n) (respectively,
R(n,a)) wheren is a new constant symbol (i.e., a symbol not occurring alyead
in chase(K));

o if 3Ry C 3Ry € 7 (respectivelydR; C 3R, € T) and there is an assertion of
the form Ry (a, b) (respectively,R(b, a)) in chase(KC) and there is no assertion
of the form Ry (a, x) in chase(K) (wherez is any constant symbol), then add
the assertionRy(a,n) wheren is a new constant symbol (i.e., a symbol not
occurring already irthase(K));

o if AR; C 3R, € 7T (respectivelydR; C 3R, € T) and there is an assertion
of the formR; (a, b) (respectivelyR(b, a)) in chase(K) and there is no assertion
of the form Ry (x, a) in chase(K) (wherez is any constant symbol), then add
the assertionR:(n,a) wheren is a new constant symbol (i.e., a symbol not
occurring already irthase(K)).

In [10] it has been shown thahase(K) identifies acanonical modefor conjunc-
tive queries ovellC: namely, conjunctive queries ovél can be decided by simply
evaluating them overhase(K). As a corollary of this property, we get the following
lemma.

Lemma 6.3 For every satisfiable DL-Lite KB K and for every DL-Litg- membership
assertionw, K = aiff o € chase(KC).
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Coming back to the proof of the theorem, suppose now khat «: then, from
Lemma 6.3 € chase(K). There are two possible cases:

1. o € A: in this case, the thesis holds fef = o;

2. a ¢ A: by the inductive definition othase(K), it immediately follows that
there is a sequence of assertions. . ., o, such thatv; € A and eachy;, 1 is
obtained by applying an inclusion chase ruleitcand to some inclusion asser-
tion in 7. Consequentlyy € chase((7,{a1})) and thus from Lemma 6.3 it
follows that(7, {a1}) &= a. Therefore, the thesis holds faf = ;.

O

We are now ready to prove the correctness of the algorithmpute Update PP

Theorem 6.4 LetK = (7, A) be a satisfiable DL-Lite KB, F afinite set of DL-Litg-
membership assertions such tldod(7 U F) # ), and letk* = (T, A*), whereA*
is the ABox returned b@ompute Update®? (T, A, F). ThenK® is a (DL-Litex, 7)-
update offC with F.

Proof. Clearly the algorithm ComputeUpdate®? terminates, since so does
ComputeUpdate. Now, let A* = ComputeUpdate®? (T, A, F). We first show
that (7, A*) is a sound(DL-Liter, T )-approximation ofC o F, then we show
that it is a maximal one. Le#? = ComputeUpdate(7T,.A,F). By construction,
A®* C AP and therefore, sincBL-Liter is monotoneM od(AP) C Mod(A*). Hence
Mod({T,AP)) C Mod({T,A%)). Moreover, by Theorem 4.8\/od((T, A?)) =
K o7 F. Itfollows that(7, . A%) is a soundDL-Liter, 7 )-approximation ofC or F.
Now, let us show thatC® = (7, A%) is the maximalDL-Liter, 7 )-approximation of
K o7 F. By contradiction, leK’ = (7, A’) be a soundDL-Liter, T)-approximation
of K o F such thatMod(K') € Mod(K®). SinceMod(K' U K*) = Mod(K') N
Mod(K*), we have thal/od(K'UK*) = Mod(K'), which implies that that’® c K’,
and thus that there exists@L-Litex membership assertion such thate € A’,
Kor F = aandK® £ a. Let AP = ComputeUpdate(T, A, F) andKP = (T, AP).
By Theorem 4.8 Mod(KP) = K oy F. Then we have thak? | «, wherea is
a membership assertion DL-Liter. By Theorem 6.2, there must existd_-Liter
membership assertian’ in A? such that{7, «’) = «. But then, by constructiory’
belongs ta4“, contradictingC® }~ a. O

Since ComputeUpdate(T , A, F) runs in polynomial time, it follows immediately
that the algorithmCompute Update®? also terminates and runs in time polynomial
with respect to the size of its input.

Theorem 6.5 Let £ = (7, .A) be a satisfiable DL-Litg KB, andF a finite set of
DL-Liter membership assertions. ThélamputeUpdate®? (T, A, F) terminates, re-
turning ERROR ifM od(7) N Mod(F) = (), and an ABoxA® such that(T, .A%) is a
DL-Liter KB, otherwise. Moreover:

e the size of4* is polynomially bounded by the size®DfU A U F;

e A% is computed in polynomial time in the sizelofy AU F.
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Example 6.6 Consider theDL-Litex KB £ = (7,.A) mentioned in Example 4.10,
and let us compute théDL-Liter, T )-update oflC with F = {A;(a)}. First, we
apply the update algorith@ompute Update of Section 4. This returns BL-Liters
ABox A" = {A1(23p(q)), A2(a)}. Then, we delete from’ all assertions that are not
DL-Liter membership assertions, and obtainEHeLiter ABox A% = {A;(a)}. =

Finally, we show thaCompute Update PP captures, in a sound and complete way,
logical implication ofDL-Lite assertions after update.

Theorem 6.7 LetKC = (7, A) be a satisfiable DL-Lite KB, F a finite set of DL-Litg-
membership assertions such theod(7 U F) # 0, andK® = (7, A%), whereA®

is the ABox returned bfompute Update®? (T, A, F). Then, for every membership
assertiona in DL-Liter, we have thalC o F = a iff K |= a.

Proof. The proofis an immediate consequence of from Theorem 6.4 hadrem 5.4.
O

7 Instance-level erasure

In this section we consider the operation of instance-levature[23]. This is the
operation consisting of retracting (or deleting) membigrsissertions from a DL KB,
while keeping the TBox unchanged. So, erasure is in fact texmgntary to the update
operation studied in the previous sections. We show thatway similar to the update
operation, the result of an erasure operation againstl&B is in general not express-
ible in the DL £. Thus, we introduce the notion ¢f, 7 )-erasure, i.e., a maximal
approximation inC of the result of an erasure against ArKB (7, .4). Finally, we
study the problem of computing, 7 )-erasures ifDL-Liter.
We start by formally defining instance-level erasure overdBs.

Definition 7.1 (Instance-level erasur¢ Let K = (7, A) be a KB expressed in a DL
L, and F a finite set of membership assertions expressed such thatMod(7 U
-F) # (), where~F denotes the set of membership assertipns; | F; € F}. The
instance-level erasure df from /C, or simply theerasure ofF from /C, denotedCe - F,

is defined as follows:

KerF =Mod(K)u( | ) U”(Z,~F)).
TeMod(K)

Intuitively, the result of erasing a finite set of formul&sfrom a KB X should be
any KB that does not logically imply any of the formulasii and whose set of models
minimally differs from the set of models &f.

The following simple example illustrates the erasure ofp@na

Example 7.2 Consider the KBC = (7, .A) with TBox7 = {A C B,A C C} and
the ABox.A = {A(d)}. Now, given the set of membership assertions= {C(d)},
considere F, i.e., the erasure of from K. By definition,CesF = Mod(K) U
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ALGORITHM ComputeErasure™® (T, A, F)
INPUT: finite set ofDL-Lite membership assertiotfs,
satisfiableDL-Liter KB (T, .A)
OUTPUT: an ABox.A“, or ERROR
[1] if (T,—F) is not satisfiabl¢hen return ERROR
[2] else begin
[38] A% := ComputeUpdate(T, A, —~F);
[4] delete fromA® all the assertions that are ribt-Lite membership assertion
[5] return A*
[6] end

12

Figure 5: AlgorithmComputeErasure“PP

(K o7 {=C(d)}). Thus, each moddl’ in KesF is obtained from a moddl of K by
either not modifying anything, or by modifying the interaton ofd so thatd does not
belong toA. Hence, for eaci’ we must havel € BZ', and eithedl ¢ AZ',d € C*'
ord ¢ AT d ¢ CT'. .

In the same way as in the case of update, we now introduce tienrad maximal
approximation of instance-level erasure in a DL

Definition 7.3 ((£, 7 )-Erasure) Let X = (T, A), K* = (T,.A*) be two KBs in a
DL £ andF a finite set of membership assertions expressetsnch that\ od(7) N
Mod(—F) # (. We say thakC® is a (L, T )-erasure of with F if £* is a maximal
(L, T)-approximation ofCe s F.

We now study instance-level erasureDh-Liter. We start by showing that, in
DL-Liter, the result of an erasure cannot be always expressed in térai3L-Lite -
KB.

Theorem 7.4 The result of an erasure to a DL-LiteKB may not be expressible in
DL-Liter itself.

Proof. Consider again thBL-Liter KB K shown in Example 7.2, i.ek = (7, A)
with7 = {AC B,ALC C}andA = {A(d)}. LetF = {C(d)}. By definition,
KerF = Mod(K)U(Koz {=C(d)}). Thus, each moddl in KerF is obtained from
a modelZ of K by either not modifying anything, or by modifying the integpation
of d so thatd does not belong tel”. Hence, for eaclt, eitherd ¢ AZ,d € C* or
d ¢ AT d ¢ CT. Itis immediate to verify that there is no way to express #isof
models through a set ®fL-Lite membership assertions. O

Therefore, like in the case of updateDh-Liter itis interesting to look at maximal
approximations of instance-level erasure. For this pwpeos& define the algorithm
ComputeErasure®? shown in Figure 5.

The following theorem shows that the maximal approximatafninstance-
level erasure in @L-Liter KB always exists, and is computed by the algorithm
ComputeErasure®PP,
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Theorem 7.5 LetK = (7, A) be a satisfiable DL-Lite KB, F afinite set of DL-Litg-
membership assertions such thidbd(7 U-F) # (), andK® = (T, A%), whereA® is
the ABox returned byYomputeErasure®? (T, A, F). Then,K® is a (DL-Liter, T )-
erasure offC with F.

Proof. First, from definition of erasuréCerF = Mod(K) U (K oy —=F). Then,
by definition of the algorithmComputeErasure®?, it follows that for every mem-
bership assertion € A% — A, we haveK = «, which immediately implies that (i)
Mod(K) C Mod(K®). Moreover, letC? = (T, AP) whereA? is the ABox returned
by ComputeUpdate®? (T, A,—~F): by definition, A* C AP, consequently every
model ofC? is also a model oK*, and since by Theorem 48 od(K?) = K o —F,

it follows that (i) K o7 =F C Mod(K®). Hence, from (i) and (ii) it follows that’® is
a(DL-Liter, T)-approximation ofCe s F.

Now, supposeC® is not the maximalDL-Liter, 7 )-approximation ofKCesF.
Then, there exists BL-Litex KB K’ = (T, A’) such thatCesF C Mod(K') C
Mod(K*). SinceMod(K') C Mod(K*), there exists at least a (membership) as-
sertiona € A" — A% such thatC* [~ «, and sinceerF C Mod(K') and
KerF = Mod(K) U (K o =F), it follows thatX? = «. Now, by Theorem 6.2
it follows that there exists a membership assertiore AP such that{7, {o'}) | «a.
Hence, by definition olComputeErasure®?, it follows thata’ € A%, consequently
K® = a. Contradiction. Therefor&l® is the maximalDL-Liter, 7')-approximation
of KerF. O

Observe that, as mentioned in the previous section, the ridlgo
ComputeUpdate(T, A, F) runs in polynomial time, and therefore also the al-
gorithm ComputeFErasure®? runs in time polynomial with respect to the size of its
input.

Theorem 7.6 Let K = (7, .A) be a satisfiable DL-Lite KB, andF a finite set of
DL-Liter membership assertions. Thé&vmputeErasure®? (7T, A, F) terminates,
returning ERROR i/ od(7") N Mod(~F) = 0, and an ABoxA’ such that(7", A’) is
a DL-Liter KB, otherwise. Moreover:

e the size of4d’ is polynomially bounded by the sizeBfJ AU F;
e A’ is computed in polynomial time in the sizefof) AU F.
The following example illustrates the algorith@ompute Erasure®?.

Example 7.7 Consider theDL-Liter KB £ = (7, .A) introduced in the example of
the proof of Theorem 7.4. Now suppose to compute(Dle-Liter, 7 )-erasure ofC
with F = {C(a)}. First, we apply the update algorith@ompute Update and compute
the ABox.AP = ComputeUpdate(T, A, {—~C(a)}). This returns &L-Liters ABox
that is obtained fror by removing the assertiof(a), and introducing the assertions
—C(a) andB(a). Second, we perform the projection df in DL-Liter, and obtain
theDL-Liter ABox A® = {B(a)}. "
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Finally, we prove the following important property: comjmgta maximal approxi-
mation of an erasure IDL-Liter is indeed sufficient to decide, in a sound and complete
way, instance checking over the exact result of the eradarether words, we prove
that the algorithnCompute Erasure ®PP captures, in a sound and complete way, logical
implication of DL-Liter assertions after erasure.

Theorem 7.8 LetKC = (7, A) be a satisfiable DL-Lite KB, F a finite set of DL-Litg-
membership assertions such thdiod(7 U —F) # 0, andK* = (7, .A%), where A*

is the ABox returned b¢'omputeErasure®? (T, A, F). Then, for every membership
assertion in DL-Liter, we have thale s F = « iff K* = a.

Proof. The proof is an immediate consequence of Theorem 7.5 anddinen4. [

8 Conclusion

We have investigated the notion of instance-level updatt eaasure of a DL KB.
Specifically, we have focused @lL-Liter, a tractable DL tailored for data intensive
applications. Since in general the result of instancetlgpdate and erasure cannot be
expressed as a KB in the same language as the original KB, veepnavided a prin-
cipled notion of maximal approximation, and have preseipi@gnomial algorithms
for computing such maximal approximations in the cas®biLiter. These results
confirm the nice computational propertiesiiif-Lite~ for data intensive applications,
even when information about instances is not only read lsat\atitten.

There are several interesting directions for continuingresearch. First, we have
implemented in the QuOnto reasoning system [1] the algostpresented in this pa-
per. Related to this point, we are currently studying optation techniques to deal
with ontologies that include very large ABoxes, as thosedpoed by materializing
data in ontology-based information integration applmasi. Notably, for such kinds
of applications it would also be interesting to avoid actualkerialization of data, and
“push” updates and erasures into the data sources. Thistasky challenging, since it
corresponds to an advanced form of the notorious view ugmtatdem in databases [6].

Second, the kind of approximation considered in this papesgrves logical im-
plication of ABox and TBox assertions in the DL consideredbviously, it would
be interesting both to consider different notions of apprmation and to study com-
pleteness of the approximation with respect to more exjwestsses of formulas. In
particular, we are currently studying the properties ofragjmnation inDL-Liter KBs
for several classes of unions of conjunctive queries.

Third, in this paper we adopted a classical model-basedoapprto update and
erasure, stemming from the existing literature on updaktimgwledge bases. Other
approaches to update and erasure have been studied anapbiaation to ontology
might be of interest, as well as approaches based on belisioe and contraction.
We believe that, in principle, several approaches to ogiokvolution could coexist
on the same ontology management system, in order to moddatit types of services
involving some sort of ontology evolution.
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Finally, updates bring in the general issue of dealing wittohsistency in ontolo-
gies. The semantics that we have considered in this papessaithe issue of solving
inconsistency between the current instance level of thelogy and what has been
asserted (retracted) by the update (erasure), while it doedeal with inconsistencies
between the update and the intensional level. It would kerésting to study possible
semantics that are tolerant with respect to the latter fdrimamnsistency.
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