
On Instance-Level Update and Erasure in
Description Logic Ontologies

Giuseppe De Giacomo, Maurizio Lenzerini,
Antonella Poggi, Riccardo Rosati

Dipartimento di Informatica e Sistemistica ”Antonio Ruberti”
Sapienza Università di Roma

Via Ariosto 25, 00185 Roma, Italy
lastname@dis.uniroma1.it

Abstract

A Description Logic ontology is constituted by two components, a TBox that
expresses general knowledge about the concepts and their relationships, and an
ABox that describes the properties of individuals that are instances of concepts.
We address the problem of how to deal with changes to a Description Logic on-
tology, when these changes affect only the ABox, i.e., when the TBox is consid-
ered invariant. We consider two basic changes, namely instance-level update and
instance-level erasure, roughly corresponding to the addition and the deletion of a
set of facts involving individuals. We characterize the semantics of instance-level
update and erasure on the basis of the approaches proposed byWinslett and by
Katsuno and Mendelzon. Interestingly, Description Logicsare typically not closed
with respect to instance-level update and erasure, in the sense that the set of models
corresponding to the application of any of these operationsto a knowledge base in
a Description LogicL may not be expressible by ABoxes inL. In particular, we
show that this is true forDL-LiteF , a tractable DL that is oriented towards data
intensive applications. To deal with this problem, we first introduceDL-LiteFS , a
DL that minimally extendsDL-LiteF and is closed with respect to instance-level
update, and present a polynomial algorithm for computing instance-level update in
this logic. Then, we provide a principled notion of best approximation with respect
to a fixed languageL of instance-level update and erasure, and exploit the algo-
rithm for instance-level update forDL-LiteFS to get polynomial algorithms for
approximated instance-level update and erasure forDL-LiteF . These results con-
firm the nice computational properties ofDL-LiteF for data intensive applications,
even where information about instances is not only read, butalso written.

1 Introduction

Several areas of Computer Science and various application domains have witnessed a
growing interest in ontologies in the last years. In particular, ontologies are considered

1

as one of the key concepts in the Semantic Web [7], where they can be used to describe
the semantics of information at various sites, overcoming the problem of implicit and
hidden knowledge, and thus enabling content exchange. Ontologies are also advocated
as appropriate means to integrate data and services. Indeed, in the information inte-
gration scenario [24], ontologies can be profitably used to express the so-called global
schema, which represents the reconciled and unified view of all the local resources
(data or services) to be integrated [29].

It is widely accepted that Description Logics [3] (DL) may provide a solid founda-
tion for both expressing ontologies with a logical formalism, and for reasoning about
the knowledge represented in the ontologies. A knowledge base in DL is constituted
by two components, called TBox and ABox. In a DL ontology, theformer expresses
the intensional level of the ontology, i.e., the general knowledge about the concepts
and their relationships, whereas the latter is the extensional level of the ontology, that
describes one state of affairs regarding the instances of concepts and relationships. One
of the advantages of considering an ontology as a knowledge base expressed in DL is
that we can re-phrase system services of ontology tools in terms of logical reasoning
problems. In turn, this view allows us to exploit the whole body of research on algo-
rithms for and complexity of reasoning in DLs, in the endeavor to build well-founded
tools supporting inferences over ontologies [1, 4]. Indeed, current results on DLs may
directly provide effective techniques to be incorporated in ontology management tools
[22, 18, 33] to deal, for example with consistency and subsumption checking, query
answering, or instance recognition. However, such resultscannot actually be used to
support other important tasks. One notable example of such tasks is ontology evolution.

By evolution we mean here both update and erasure, which are operations address-
ing the need of changing an ontology in order to reflect a change in the domain of
interest the ontology is supposed to represent. Generally speaking, an update specifies
a set of properties that must be valid in the state resulting from the change, whereas
an erasure is intended to specify a set of properties that should not be valid in such
state. One of the major challenges when dealing with an update is how to react to the
case where the set of properties specified in an update is inconsistent with the current
knowledge. Since a principled approach to this issue in the context of ontologies is
missing, existing ontology management tools1 adopt ad-hoc solutions to this problem,
for example, just rejecting the update. Similarly, such tools do not provide formal
mechanisms for dealing with erasure.

Although the problem of ontology evolution in its generality should consider the
case of performing updates and erasures on the whole knowledge base [14, 27], i.e.,
either the TBox, or the ABox, or both, in this paper we restrict our attention to what
we call instance-level update and erasure. In instance-level update (erasure) the on-
tology is specified by both a TBox and an ABox, but the update (erasure) affects only
the ABox, in the sense that we enforce the condition that the ontology resulting from
applying the evolution operations has the same TBox as the original ontology.

Although simplified with respect to the general case, we believe that this setting
not only allows us to study the fundamental properties of thetwo operations, but is
very relevant in practice. Indeed, in many applications, the intensional level of the

1http://www.xml.com/2002/11/06/Ontology_Editor_Survey.html.

2

ontology is quite stable, as its evolution represents a change or a refinement in the
conceptualization of the domain of interest. On the other hand, the instance level con-
tains information about specific instances, and hence, typically, changes much more
frequently than the intensional level. In a sense, such kindof changes are similar to
changes of the data in a database2. So, instance-level evolution is very close to the
classical notion of update in databases, and their study cantherefore shed light on the
difference between database update and ontology evolution.

The aim of our work is a systematic investigation on instance-level update and
erasure in DL ontologies. To the best of our knowledge, this is the first investigation of
this type. The main contributions of the paper are as follows.

1. We formally define the notion of instance-level update anderasure of ontologies.
Building on classical approaches on knowledge base update and erasure, we pro-
vide a general semantics for instance level evolution of DL ontologies. In partic-
ular, we follow the approach of [26], and we adapt Winslett’ssemantics [34, 35]
for update, and Katsuno and Mendelzon’s semantics [23] for erasure, to the case
where the ontology is described by both a TBox and an ABox. As in the above
mentioned approach, in our framework the result of an updateand an erasure
is given in terms of a set of models of the knowledge base used to express the
ontology.

2. We study instance-level update in the case where the ontology is expressed in
DL-LiteF [8]. One of the main features ofDL-LiteF is that all reasoning tasks
can be done in polynomial time with respect to the size of the ontology, and our
goal was to verify whether the nice computational property of reasoning in this
DL extends to ontology evolution. We point out a fundamentaldifficulty in this
context: there are cases where the set of models characterizing an instance-level
update of aDL-LiteF ontology cannot be captured inDL-LiteF , i.e., this logic
is not closed with respect to instance-level update. Observe thata similar phe-
nomenon was observed in [26] for a more expressive DL. We thensingle out the
minimal DL, calledDL-LiteFS , that extendsDL-LiteF and is closed with respect
to update, and present an efficient algorithm for computing the DL ontology re-
sulting from an instance-level update in this logic.

3. One of the original motivations of our work was to add update facilities to
QuOnto [1], that is a reasoning system forDL-LiteF implementing efficient al-
gorithms for both TBox reasoning and query answering. Like all other DL rea-
soners, QuOnto is based on a specific logic, i.e., the knowledge bases that it is
able to manage must be expressed inDL-LiteF . The non-expressibility issue is
obviously a problem for such systems. In order to cope with this problem, the
brute-force approach would be the one that refuses an updatewhenever the re-
sulting ontology cannot be expressed in the logic underlying the system. In this
paper, we propose a different approach, based on the notion of approximation.
In particular, our proposal is to address the problem by computing theDL-LiteF
knowledge base that approximates at best the set of models resulting from the

2In the database setting, changes at the intensional level would correspond to schema evolution or re-
structuring.

3

update. This is a general idea that might be pursued in every situation where an
ontology management system based on a specific DL aims at supporting updates,
but the DL is not closed with respect to such operation. We first introduce the
notion of maximal approximation in DL, and then we present anefficient method
for computing the maximal approximation of instance-levelupdates ofDL-LiteF
ontologies.

4. Finally, we carry out a detailed study of instance-level erasure. To the best of
our knowledge, this is the first work dealing with erasure in DLs. We show that,
in general, erasures are not expressible in neitherDL-LiteF nor DL-LiteFS , and
present a polynomial time algorithm for computing the maximal approximation
of instance-level erasure inDL-LiteF .

The paper is organized as follows. In Section 2 we discuss related works. In Section
3 we provide a general overview of DL ontologies, and introduceDL-LiteF . In Section
4 we provide the formal definition of instance-level update,and then we present the
non-expressibility result forDL-LiteF , as well as the update algorithm forDL-LiteFS .
In Section 5 we introduce the notion of approximation that weuse for coping with
the non-expressiblity problem. In Section 6 we present the method for computing the
maximal approximation of an update inDL-LiteF , and in Section 7 we present the
results on instance-level erasure. Finally, Section 8 discusses interesting problems left
open in our investigation.

This paper is an extended version (including also the proofsof theorems) of [11]
and [12].

2 Related work

Several recent work addresses the issue of ontology evolution. In [19], the authors
point out that one of the fundamental problems in dealing with ontology changes is
how to guarantee consistency of the resulting ontology. They define the consistency
of ontologies at three different levels, namely, structural, logical, and user-defined,
and propose methods for resolving inconsistencies at thesevarious levels, including
resolution strategies when a change admits different consistent states.

A broad study of ontology evolution is presented in [14, 15, 16]. In particular,
in [15], the authors propose a very general view of this problem, make connections
between ontology evolution and several research disciplines (i.e., ontology versioning,
alignment, mapping, integration), and present a comprehensive review of the recent
literature on such disciplines. Interestingly, the authors of these papers often point out
the importance of the AGM postulates for revision [2], and they study various aspects
related to the application of the AGM theory to the problem ofontology evolution.
Arguably, analogous postulates for update and erasure [23]should play an important
role in ontology evolution.

As we said in the introduction, in this paper we study instance-level ontology evo-
lution, and therefore, our work is closely related to [20, 17, 26]. In [20], the authors
investigate the process of incrementally updating tableaucompletion graphs created

4

during consistency checking in expressive Description Logics, and present an algo-
rithm for updating completion graphs under both the addition and removal of ABox
assertions. Differently from our work, the paper follows a syntactic approach to up-
dates.

On the contrary, both [17] and [26] adopt a semantic notion ofupdate and era-
sure. In [17], erasure is studied for RDF, under the same semantics we use in the
present paper, namely the Katsuno-Mendelson semantics [23]. In [5, 26] the authors
propose a formal semantics for updates in DLs, and present interesting results on var-
ious aspects related to computing updates. In particular, [26] shows an example of
non-expressibility of updates for the case of an expressiveDL. However, since the
problem of update is addressed in [5, 26] under the assumption that the knowledge
base is specified only at the extensional level, i.e., with noTBox3, the paper does not
take into account the impact of the intensional level on ontology update.

As we said before, we follow the approaches to update and erasure developed in
the Artificial Intelligence literature several years ago. Various approaches to update
have been considered in literature; see, e.g., [13, 21] for surveys. Here, like in [5, 26],
we essentially follow Winslett’s approach [34, 35], originally developed for updates on
databases in presence of incomplete information, and its conterpart, defined in [23], as
notion of erasure.

The intuition behind such approach is the following. There is an actual state-of-
affairs of the world of which, however, we have only an incomplete description. Such
description identifies a (typically infinite) set of models,each corresponding to a state-
of-affairs that we consider possible. Among them, there is one model corresponding
to the actual state-of-affairs, but we do not know which. Now, we perform an update
because the state-of-affairs is changed. However, since wedo not really know which
of our models corresponds to the actual state-of-affairs, we apply the change on every
possible model, thus getting a new set of models representing the updated situation.
Among them, we do have the model corresponding to performingthe update on the
actual state-of-affairs, but again we do not know which. As for how we perform the
update on each model, the idea is that we apply exactly those changes that are abso-
lutely necessary for accommodating what explicitly asserted in the specified update.

Observe that this intuition is essentially the one behind most of the research on rea-
soning about actions. For example this vision is completelyshared by Reiter’s variant
of Situation Calculus [30]. See in particular [32], where possible worlds are explicitly
considered, and actions act on such worlds exactly as said above.4

3 Description Logic ontologies

In this paper we focus on ontologies expressed as Description Logics knowledge bases.
Description Logics (DLs) [3] are knowledge representationformalisms that are tailored
for representing the domain of interest in terms ofconstants(individuals),concepts(or

3Or, with TBoxes assumed to be acyclic. Notice that such TBoxes can only be used to introduce abbre-
viations for complex combinations of primitive concepts and roles.

4Actually [32] studies also “knowledge producing actions” (i.e., sensing actions), which are more related
to belief revision than update.

5

classes), which denote sets of objects, androles (or relations), which denote denote
binary relations between objects. DLsknowledge bases(KBs) are formed by two dis-
tinct parts: the so-calledTBox, which contains intensional description of the domain of
interest; and the so-calledABox, which contains extensional information.

When DLs are used to express ontologies [4], the TBox is used to express the
intensional level of the ontology, i.e., the shared conceptualization of the domain of
interest, while the ABox is used to represent theinstance level of the ontology, i.e.,
the information on actual objects that are instances of the concepts and roles defined at
the intensional level. From a formal point of view, a DL KB is based on an alphabet
of atomic concepts, atomic roles, and constants, and is specified in terms of a pair
K = 〈T ,A〉, where:

• T , theTBox, is formed by a finite set ofuniversal assertions. The precise form
of such assertions depends on the specific DL. Generally speaking, the TBox is
formed by inclusions that allow imposing constraints on theextensions of the
concepts and roles used to describe the domain of interest.

• A, the ABox, is formed by a finite set ofmembership assertionsstating that a
given object (or pair of objects) is an instance of a concept (or a role). Note that
DLs adopt the open world assumption (and not the closed worldassumption,
typical of databases), i.e., it may happen that, for an object a and conceptC, K
does not imply neither thata is an instance ofC, nor thata is not an instance of
C; similarly for roles.

We give the semantics of a DL KB in terms of interpretations over a fixed countably
infinite domain∆ of objects. We assume that, for each object in∆, we have exactly
one constant in our alphabet denoting such object. In this way we blur the distinction
between constants and objects, so that we can use them interchangeably (with a little
abuse of notation) without causing confusion.5 An interpretationI = 〈∆, ·I〉 consists
of a first order structure over∆, where·I is the interpretation function, i.e., a function
mapping each concept to a subset of∆ and each role to a subset of∆×∆. We say that
I is amodel of a (TBox or ABox) assertionα, or also thatI satisfies a (TBox or ABox)
assertionα, if α is true inI6. We say thatI is amodel of the KBK = 〈T ,A〉, or also
thatI satisfiesK, if I is a model of all the assertions inT andA.

Given a set of (TBox or ABox) assertionsS, we denote byMod(S) the set of
interpretations that are models of all assertions inS. In particular, theset of models
of a KBK, denoted asMod(K), is the set of models of all assertions inT andA, i.e.
Mod(K) = Mod(〈T ,A〉) = Mod(T) ∩ Mod(A).

A KB K is satisfiableif Mod(K) 6= ∅, i.e. it has at least one model. We say
that a setF of assertions isconsistentwith K if Mod(K ∪ F) 6= ∅, and we say that
K logically impliesan assertionα, writtenK |= α, if Mod(K) ⊆ Mod(α). On the
contrary, we say that a KBK does not logically implyan assertionα, writtenK 6|= α,
if there exists at least one model ofK that is not a model ofα.

5We use such a shared domain of interpretation, i.e., we use the so-called standard names [25], to simplify
comparison between models needed for updates. In fact, the use of standard names could be avoided, but
this would make some of the definitions below clumsier.

6Obviously, the exact meaning of an assertionα being true in an interpretationI depends on the form of
such assertion, and therefore on the particular DL that we are using for expressing the ontology.

6

The DL DL-LiteF In this paper, we focus on one of the most interesting families
of DLs that have come up in the last years: theDL-Lite family [10, 9, 8]. This is a
family of DLs that despite their simplicity are able to capture the main notions (though
not all, obviously) of both ontologies, and of conceptual modeling formalisms used in
databases and software engineering, such as Entity-Relationship diagrams and UML
class diagrams. At the same time they allow for querying the KB through arbitrary
(non recursive) positive queries, orunions of conjunctive queries. These queries make
use of explicit variables, and may express complex patternson the instances of the KB,
that go well beyond the class of queries that is typically considered in DLs. Formally,
the fundamental characteristic of the DLs inDL-Lite family is that reasoning, includ-
ing answering unions of conjunctive queries, is polynomially tractable in the size of
the KB and in fact first-order reducible (and hence in LOGSPACE) with respect to data
complexity [10], i.e., the complexity measured with respect to the number of individu-
als in the ABox. These features make DLs in theDL-Lite family particularly suitable
as a sort of conceptual layer for data intensive applications.

Here, we concentrate on the DL calledDL-LiteF , originally proposed in [8]. The
DL-LiteF concept expressions are:

B ::= A | ∃R
C ::= B | ¬B
R ::= P | P−

whereA denotes anatomic concept, P an atomic role, B a basic concept, andC a
general concept. A basic concept can be either an atomic concept, a concept ofthe
form ∃P , i.e. the standard DL construct of unqualified existential quantification on
roles, or a concept of the form∃P−, which involvesinverse roles(P− denotes the
inverse of the roleP).

The TBox assertions allowed inDL-LiteF are of the following forms:

B1 ⊑ B2 inclusion assertion
B1 ⊑ ¬B2 disjointness assertion
(funct R) functionality assertion

An inclusion assertionspecifies that each instance of the basic conceptB1 is also an
instance of the basic conceptB2, i.e.,B1 is subsumed byB2. A disjointness assertion
specifies that each instance of a basic conceptB1 is not an instance of the basic concept
B2, i.e.,B1 andB2 are disjoint. Finally, afunctionality assertionexpresses the (global)
functionality of an atomic role, or of the inverse of an atomic role. Note that negation is
used in a restricted way, in particular for asserting disjointness of concepts. Moreover,
disjunction is disallowed. Notably, if we remove any of these two limitations, reasoning
becomes intractable, see [9].

The ABox assertions allowed inDL-LiteF are of the following forms:

B(a), R(a, b) membership assertions

wherea, b are constants,B is any basic concept, andR is either an atomic role or its
inverse.

7

Concerning the semantics of concepts and roles, given an interpretationI =
〈∆, ·I〉 the interpretation function·I interprets the constructs ofDL-LiteF as follows:

AI ⊆ ∆
P I ⊆ ∆ × ∆

(P−)
I

= {(d′, d) | (d, d′) ∈ P I}
(∃R)I = {d | ∃d′.(d, d′) ∈ RI}
(¬B)I = ∆ \ BI

Finally, we specify the conditions for an interpretationI to be a model of a TBox and
an ABox assertion. In particular,I satisfies

• B1 ⊑ B2, if BI
1 ⊆ BI

2 ,

• B1 ⊑ ¬B2, if BI
1 ⊆ ¬BI

2 ,

• (funct R), if (d, d′) ∈ RI and(d, d′′) ∈ RI impliesd′ = d′′,

• B(a), if a ∈ BI ,

• R(a, b), if (a, b) ∈ RI .

4 Instance-level update

In instance-based update, we allow the user to state new membership assertions in
order to revise the ABox, while still maintaining unchangedthe intensional level of the
ontology, i.e. the TBox.

As we said in the introduction, to assign formal semantics toupdate, we essen-
tially follow Winslett’s approach [34, 35] . Technically, the idea underlying Winslett’s
approach to knowledge base update, is the following. A knowledge base update is
specified through a set of assertions, and produces a set of models that

• satisfy the assertions, and

• is obtained by updating each model of the initial knowledge base with minimal
change. In particular, according to Winslett, the notion ofminimal change builds
upon both the symmetric difference, and an inclusion-basedmeasure of close-
ness. The latter means that a setS′ is closer to a setS than a setS′′ if the
elements on whichS andS′ differ are a proper subset of the elements on which
S andS′′ differ.

We start by adapting Winslett’s notion of closeness to our context. To this aim, we
need first to provide some definitions. Specifically, we need to define both the notion
of difference and the notion of inclusion between interpretations.

Definition 4.1 (Difference between interpretations) Given two interpretationsI =
(∆, ·I) andI ′ = (∆, ·I

′

) for KB K, we define thedifference betweenI andI ′, written
I ⊖ I′, as the interpretation(∆, ·I⊖I

′

) such that:

8

• CI⊖I
′

= CI ⊖ CI
′

, for every atomic conceptC in K;

• P I⊖I
′

= P I ⊖ PP
′

, for every atomic roleP in K;

where, for setsS andS′, S⊖S′ denotes the usual symmetric difference betweenS and
S′, i.e. S ⊖ S′ = (S ∪ S′) \ (S ∩ S′).

Definition 4.2 (Inclusion between interpretations) Given two interpretationsI =
(∆, ·I) andI ′ = (∆, ·I

′

) for a KBK, we say thatI ⊆ I′ iff I, I ′ are such that:

• CI ⊆ CI
′

, for every conceptC in K;

• RI ⊆ RI
′′

, for every roleR in K.

Let K = 〈T ,A〉 be a DL KB, and suppose we want to perform an instance-level
update ofK with a finite setF of membership assertions. Since we wantT to remain
unchanged, the first observation is thatF should be consistent withT , while it may
be inconsistent withA. Following Winslett, we denote byUpdateT (F ,A) the set of
models obtained by updating each modelI of K so as to applyminimal changesto the
model, and to make all membership assertions inF true. Specifically, Winslett’s model
change operator is defined in our context as follows.

Definition 4.3 (Model update) LetT be a TBox,I a model ofT , andF a finite set of
membership assertions such thatMod(T ∪ F) 6= ∅. Theupdate ofI with F , denoted
UT (I,F), is defined as follows:

UT (I,F) = {I ′ | I ′ ∈ Mod(T ∪ F) and there exists noI ′′ ∈ Mod(T ∪ F)
such thatI ⊖ I′′ ⊂ I ⊖ I′}

Observe thatUT (I,F) is the set of models of bothT andF whose difference with
respect toI is⊆-minimal, so as to capture the notion ofminimal change.

With these notions in place we are now ready to provide the formal definition of
instance-level update in DL ontologies.

Definition 4.4 (Instance-level update) Let K = 〈T ,A〉 be a DL KB, andF a finite
set of membership assertions such thatMod(T ∪ F) 6= ∅. The instance-level update
ofK withF , or simply the update ofK with F , denotedK ◦T F , is defined as follows:

K ◦T F =
⋃

I∈Mod(K)

UT (I,F).

Let us illustrate this notion by means of an example.

Example 4.5 Consider an ontology describing a basketball players’ domain, where
the intensional level of the ontology is expressed by means of the followingDL-LiteF
TBox T :

∃WillP lay ⊑ AvailableP layer
AvailableP layer ⊑ Player
Injured ⊑ ¬AvailableP layer

9

The TBoxT states that someone who will play in a game is an available player, an
available player is a player, and someone who is injured cannot be an available player.
Consider the instance level of the ontology expressed by means of theDL-LiteF ABox
A:

WillP lay(john, allstargame)

Now suppose thatjohn gets injured: we update the ontology with the assertion
Injured(john), i.e. F = {Injured(john)}. It is not difficult to see that, based
on the semantics presented above,〈T ,A〉 ◦T F is the set of models

{I ′ | I′ ∈ Mod(T) ∧ john ∈ InjuredI
′

∧ john ∈ PlayerI
′

}

Intuitively, in each model of the update,john is a player who is actually injured. Note
in particular that the fact thatjohn is injured implies that he is not an available player,
and therefore he will not play theallstargame anymore. However, since our notion
of update maintains as much as possible the information thatis logically implied by
the initial KB and that is not inconsistent with the new membership assertions,john is
still a player.

One may wonder whether there exists a knowledge base〈T ,A′〉 in DL-LiteF
whose set of models is exactly the set〈T ,A〉 ◦T F described in the example above. It
is not hard to see that such a knowledge base exists and is suchthatA′ is expressed as
follows:

Injured(john)
Player(john)

Hence, the above example shows a case where the result of an instance-level update
can be represented as an ABox in the same language as the original KB. However, as
we said in the previous sections, this is not always the case.Thus, it makes sense to
introduce the formal notion of expressibility of updates.

Definition 4.6 (Expressibility) Let K = 〈T ,A〉 be a KB expressed in a DLL, andF
a finite set of membership assertions expressed inL such thatMod(T ∪ F) 6= ∅. We
say that the result of the instance-level update ofK with F is expressible inL if there
exists an ABoxA′ such that

K ◦T F = Mod(〈T ,A′〉).

4.1 Instance-level update inDL-LiteF
In [26], it is shown that, for expressive DLs, the result of aninstance-level update
cannotbe expressed in the language of the original KB. Unfortunately, this is true for
DL-LiteF as well, as shown next.

Theorem 4.7 There exist DL-LiteF KBs K = 〈T ,A〉 and sets of membership as-
sertionsF , with Mod(T ∪ F) 6= ∅, such that for no DL-LiteF ABoxA′ we have
Mod(〈T ,A′〉) = K ◦T F .

10

Proof. It suffices to consider the followingDL-LiteF KB K = 〈T ,A〉

T = {∃P− ⊑ A1, A2 ⊑ ¬∃P}
A = {∃P (a)}.

and its update with
F = {A2(a)}.

We show that noDL-LiteF ABox A′ exists such that the KB〈T ,A′〉 captures exactly
the set of modelsK ◦T F . Clearly, givenI ∈ Mod(K), an interpretationI ′ ∈ K ◦T F
that satisfies bothA2(a) andT , and minimally differs fromI, is obtained by simply
modifying the interpretation ofP so thata ∈ (¬∃P)I

′

, that is for nox ∈ ∆, we have
that (a, x) ∈ P I

′

. In particular, this means thatAI
′

1 = AI
1 . On the other hand, by

∃P− ⊑ A1, for eachx such that(a, x) ∈ P I , we have thatx ∈ AI
1 . Now, since∃P (a)

holds in every model ofK, we have that every modelI of K has at least one object
z ∈ ∆ such thatz ∈ AI

1 , and hence, every modelI ′ ∈ K ◦T F is such that there exists
at least one such objectz that belongs toAI

′

1 . Unfortunately, since such objectz may
differ in different models, this factcannotbe captured with aDL-LiteF membership
assertion.

One may wonder whether we can enhance the expressive power ofDL-LiteF in
order to come up with a new DL where instance-level update is expressible. In the next
subsection, we answer this question by presenting a minimalextension ofDL-LiteF ,
calledDL-LiteFS , where updates are indeed expressible.

4.2 Instance-level update inDL-LiteFS

DL-LiteFS is a slight variant ofDL-LiteF that allows for more expressive membership
assertions in the ABox. In particular, membership assertions in DL-LiteFS may in-
volve alsovariables, also calledsoft constants, i.e., a particular kind of terms that may
denote different objects in different models. More precisely, DL-LiteFS membership
assertions are of the form:

C(a), R(a, b), C(z)

wherea, b are constants,z is a variable,C is a generalDL-LiteF concept (i.e. a basic
DL-LiteF concept or its negation), andR is an atomic role or its inverse.

Intuitively, the assertionsC(a) andR(a, b) state, respectively, that the objecta,
resp. the pair(a, b), is an instance of the conceptC, resp. roleR. We call these
assertionsground, to emphasize the absence of variables. A (non-ground) assertion
C(z) instead states that the there exists an object, denoted by the variablez, that is an
instance of the conceptC. In other words, variables are used to express the existence
of objects that are instance of concepts, without actually naming the objects.

With respect to the semantics, in order to interpret a set of extensional assertions
possibly involving variables, we need to introduce the notion of assignment. Let V be
the set of variables occurring in an ABoxA, we callassignment forA a functionµ
fromV to ∆.

11

Let I be an interpretation, andµ an assignment forA. We say thatI is model ofA
with µ, or equivalently,I satisfiesA with µ, if for each membership assertion inA of
the form:

• C(a), we have thata ∈ CI ;

• R(a, b), we have that(a, b) ∈ RI ;

• C(z), we have thatµ(z) ∈ CI .

We say thatI is amodel ofA if there exists an assignmentµ such thatI is a model of
A with µ.

Note that, as shown in [28],DL-LiteFS retains all the nice computational properties
of DL-LiteF . Moreover, we show here that this logic is closed under instance-level
update. In particular, in what follows:

• we show that the result of an instance-level update is alwaysexpressible within
DL-LiteFS : i.e., for any KBK in DL-LiteFS , and for any update, there always
exists aDL-LiteFS ABox that reflects the changes of the update to the original
KB K (obviously the TBox remains unchanged as required);

• we show that the ABox resulting from an update can be effectively computed;

• finally, we show that the size of such an ABox is polynomially bounded by the
size of the original KB, and moreover, that it can be computedin polynomial
time.

In Figure 1, we provide an algorithm for instance-level update overDL-LiteFS KBs.
To simplify the presentation we make use of the following notation.

• We denote byR− the inverse ofR, i.e., if R is an atomic role, thenR− is its
inverse, while ifR is the inverse of an atomic role, thenR is the atomic role
itself.

• We write¬C to denote¬B if C is B, andB if C is ¬B.

• We use the notationC1 ⊑ C2 to denote either assertions of the formB1 ⊑ B2,
B1 ⊑ ¬B2, or¬B1 ⊑ ¬B2.

• We denote bycl(T) the deductive closure ofT i.e.,{C1 ⊑ C2 | 〈T ,A〉 |= C1 ⊑
C2}. It can be shown that inDL-LiteFS , cl(T) can be computed in polynomial
time, based on the following inductive definition:(i) T ⊆ cl(T); (ii) if C1 ⊑ C2

is in cl(T) then¬C2 ⊑ ¬C1 is in cl(T); (iii) if C1 ⊑ C2 andC2 ⊑ C3 are in
cl(T), thenC1 ⊑ C3 is in cl(T).

The algorithm in Fig. 1 takes as input a satisfiableDL-LiteFS KB K = 〈T ,A〉,
and a finite set of ground (i.e., not involving variables) membership assertionsF , and
returns an ABoxA′, if 〈T ,F〉 is satisfiable, ERROR, otherwise. More precisely, the
algorithm starts by checking the satisfiability of the knowledge base〈T ,F〉 (line 1).
Then, ifK is satisfiable, it proceeds by three main steps.

12

ALGORITHM ComputeUpdate(T ,A,F)
INPUT: finite set of ground membership assertionsF ,

satisfiableDL-LiteFS KB 〈T ,A〉
OUTPUT: an ABoxA′, or ERROR
[1] if 〈T ,F〉 is not satisfiablethen ERROR
[2] else
[3] { for eachF ∈ F do
[4] if F = R(a, b) thenF := F ∪ {∃R(a),∃R−(b)}
[5] F ′ := ∅
[6] for each F ∈ F do
[7] if F = C(a) then
[8] { F ′′ := Saturate(¬C(a),T)
[9] for each F ′′ ∈ F ′′ do
[10] { if 〈T ,A〉 |= F ′′ thenF ′ := F ′ ∪ F ′′

[11] if F ′′ = ∃R(a) thenF ′ := F ′ ∪ {R(a, b) | R(a, b) ∈ A}
[12] }
[13] }
[14] else
[15] if F = R(a, b) then
[16] {if (funct R) in T then
[17] for each b′ 6= b s.t. R(a, b′) ∈ A doF ′ := F ′ ∪ {R(a, b′)}
[18] if (funct R−) in T then
[19] for eacha′ 6= a s.t. R(a′, b) ∈ A doF ′ := F ′ ∪ {R(a′, b)}
[20] }
[21] A′ := A∪ F ;
[22] for eachF ′ ∈ F ′ do
[23] if F ′ = C(a) then
[24] {A′ := A′ \ {C(a)}
[25] for eachC ⊑ C1 in cl(T) do
[26] if (C1(a) /∈ F ′) thenA′ := A′ ∪ {C1(a)}
[27] if F ′ = ∃R(a) then
[28] for each∃R− ⊑ C2 in cl(T) do
[29] A′ := A′ ∪ {C2(z∃R(a))}, with z∃R(a) new variable
[30] }
[31] else
[32] if F ′ = R(a, b) then
[33] {A′ := A′ \ {R(a, b),∃R(a),∃R−(b)}
[34] for each∃R ⊑ C3 in cl(T) do
[35] if C3(a) /∈ F ′ thenA′ := A′ ∪ {C3(a)}
[36] for each∃R− ⊑ C4 in cl(T) do
[37] if C4(b) /∈ F ′ thenA′ := A′ ∪ {C4(b)}
[38] }
[39] }

Figure 1: AlgorithmComputeUpdate

13

• First, it adds toF all membership assertions that are logically implied byF
itself. Specifically, this amounts to possibly insert, for eachR(a, b) in F , the
membership assertions∃R(a) and∃R−(b), trivially implied by R(a, b) (lines
3–4).

• Second, it computes the setF ′ of membership assertions that contradictF and
T , and are logically implied byK (lines5–20). To this aim, it considers one by
one, each assertionF in F , and proceeds differently depending on whetherF
involves a concept or a role. Specifically, in caseF is a concept membership
assertion, it computes the concept assertions that might contradictF , by vio-
lating some inclusion assertion ofT . This is achieved by calling the function
Saturate(¬F1, T) shown in Fig. 2, that returns the set of concept membership
assertionsF ′′ that, according toT , logically imply F (line 8). Then, for each
assertionF ′′ in F ′′, if F ′′ is actually logically implied byK, it insertsF ′′ into
F ′ (line 10). Furthermore, in caseF ′′ has the form∃R(a), it inserts intoF ′ also
those membership assertionsR(a, b) that belong toA, since they trivially imply
F ′′ and hence also contradictF (line 11). On the other hand, in caseF is a role
membership assertion of the formR(a, b), this step amounts to check whether
F is functional, and to insert intoF ′ those role membership assertions inA that
violate the functionality (lines15–20).

• Finally, it computes the result setA′. More precisely, starting from all member-
ship assertions inA andF (line 21), it deletes each assertionF ′ that belongs to
F ′, and simultaneously, it inserts those membership assertions that are logically
implied byF ′ and do not contradictF (lines22–38). Note that, here again, it
proceeds differently depending on whetherF ′ involves a concept (lines23–30),
or a role (lines32–38). Specifically, in the former case, besides deletingF ′ from
A′ and inserting all assertions, not inF ′, that are implied byF ′ according to
some inclusion assertion inT , it possibly inserts a membership assertionC2(z),
for some new variablez denoting an (unnamed) object of the domain. This is
motivated by the fact that, the assertion∃R(a) logically implies∃R(z), for some
object denoted byz. Hence, some inclusion assertion of the form∃R− ⊑ C2,
would imply C2(z) (lines28–29). Dually, in caseF ′ involves a role, i.e. it has
the formR(a, b), the algorithm deletes fromA′ also the assertions∃R(a) and
∃R−(b), that are trivially implied byF ′ (line 33), and possibly inserts intoA′

the assertions, not inF ′, that are implied by∃R(a) and∃R−(b) according to
some inclusion assertion inT (lines34–37).

Next, we show soundness and completeness of the algorithmComputeUpdate.

Theorem 4.8 LetK = 〈T ,A〉 be a DL-LiteFS KB,F a finite set of ground DL-LiteFS

membership assertions such thatMod(T) ∩ Mod(F) 6= ∅, andK′ the DL-LiteFS KB
such thatK′ = 〈T ,A′〉, whereA′ = ComputeUpdate(T ,A,F). Then

K ◦T F = Mod(K′).

Proof. We first prove that
Mod(K′) ⊆ K ◦T F

14

ALGORITHM Saturate(C(a),T)
INPUT: membership assertionC(a), TBoxT
OUTPUT: setP of ground membership assertions
P := {C(a)}
repeat

P ′ = P
for eachC(a) ∈ P ′

if C′ ⊑ C ∈ cl(T) thenP := P ∪ {C′(a)}
until P = P ′

Figure 2: AlgorithmSaturate

by showing that for each modelI ′ ∈ Mod(K′) there exists a modelI ∈ Mod(K) such
thatI ′ ∈ UT (I,F).

In fact we build the modelI starting fromI ′, and reintroducing factsF ′ removed
in computingA′. First, we observe that, ifI ′ is a model ofK′ then there exists an
assignment of the variables inA′, let µ be such assignment. Then, in order to buildI,
we start by settingI = I ′, and we proceed as follows:

• for eachA(a) ∈ F ′, we includea in AI ;

• for each¬A(a) ∈ F ′, we removea from AI ;

• for eachR(a, b) ∈ F ′, we include(a, b) in RI , and moreover

– if (funct R) ∈ T , we remove all(a, x) ∈ RI , with b 6= x, and

– if (funct R−) ∈ T we remove all(x, b) ∈ RI , with a 6= x;

• for each∃R(a) ∈ F ′ we include(a, µ(z∃R(a))) in RI , and moreover

– if (funct R) ∈ T we remove all(a, x) ∈ RI , with µ(z∃R(a)) 6= x, and

– if (funct R−) ∈ T we remove all(x, µ(z∃R(a))) ∈ RI , with a 6= x;

• for each¬∃R(a) ∈ F ′ we remove all(a, x) from RI .

It is easy to verify thatI defined as above is a model ofK. Now, in order to
complete the proof, we need to show thatI ′ ∈ UT (I,F), and since, by inspecting the
algorithm, clearlyI ′ is a model of bothT andF , this amounts in showing that exists
no interpretationI ′′ of T andF such that:

• I ′′ ∈ Mod(T ∪ F), and

• I 6= I ′′ ⊂ I ⊖ I′.

We proceed by contradiction, case by case. Suppose that there exists an individual
x ∈ ∆ such thatx ∈ AI andx 6∈ AI

′

but x ∈ AI
′′

. Thenx was introduced in
AI becauseA(x) ∈ F ′. But then¬A(x) was a logical consequence ofF andT , and
hence,x cannot be inAI

′′

sinceI ′′ is a model of bothT andF . Similarly, there cannot
existx ∈ ∆ such thatx 6∈ AI andx ∈ AI

′

butx 6∈ AI
′′

. A similar line of reasoning
can be applied also for the cases in which the difference betweenI ′ andI ′′ involves
atomic roles instead of atomic concepts.

15

For the other direction we show that

K ◦T F ⊆ Mod(K′).

We proceed by assuming by contradiction that there exists aninterpretation̄I ∈ K◦T F
that is not a model ofK′. ThenĪ does not satisfy at least a membership assertionα in
A′ \ F . Note that, by construction, ifα belongs toA′ \ F , thenα has been inserted
into A′ either at line23, 26, 30 or 32 of the AlgorithmComputeUpdate (cf. Fig 1).
But these are logical consequences ofA andT that do not contradictF so they must
remain true in all models inK ◦T F includingĪ.

Next we turn to termination and computational complexity ofComputeUpdate.

Theorem 4.9 Let K = 〈T ,A〉 be a DL-LiteFS KB, andF a finite set of ground
DL-LiteFS membership assertions. ThenComputeUpdate(T ,A,F) terminates, re-
turning ERROR ifMod(T) ∩ Mod(F) = ∅, and an ABoxA′ such that〈T ,A′〉 is a
DL-LiteFS KB, otherwise. Moreover:

• the size ofA′ is polynomially bounded by the size ofT ∪ A ∪ F ;

• A′ is computed in polynomial time in the size ofT ∪ A ∪ F .

Proof. Termination follows immediately by the fact thatcl(T) is finite and in fact
polynomially bounded byT , and hence alsoSaturate(C(a), T) computes a finite set
that is again polynomially bounded byT . Now, observing that the number of steps to
build the set of potential conflictsF ′ (lines3–18) and the number of steps to buildA′

givenF ′ (line 19–32), are both finite, and in fact polynomial in the size ofT , A, F ,
the result follows.

We end this subsection onDL-LiteFS with an example of instance-level update in
this logic.

Example 4.10 Let us consider again the KB mentioned in the proof of theorem4.7:

T = {∃P− ⊑ A1, A2 ⊑ ¬∃P}
A = {∃P (a)}.

and consider again the update ofK with

F = {A2(a)}.

By applying the algorithmComputeUpdate we get the ABox

A′ = {A1(z∃P (a)), A2(a)}

wherez∃P (a) is a variable. By Theorem 4.8, we get that〈T ,A〉◦T F = Mod(〈T ,A′〉).
Observe thatA′ is expressed inDL-LiteFS , and not inDL-LiteF , since it makes

use of the variablez∃P (a).

The algorithmComputeUpdate and the results onDL-LiteFS , give us the basis for
computing good approximations of updates and erasures inDL-LiteF , as shown in the
next sections.

16

5 A notion of approximation in Description Logics

From the results of the previous section, as well as from other similar results in the
literature [26], it follows that, in general, the result of an update is not expressible in the
same language as the original KB. We will see in Section 7 thatthis holds for erasure
as well. This fundamental problem leads us to studyapproximation(see e.g.,[31])
of update and erasure. The basic idea of approximation in ourcontext is as follows.
Suppose we are interested in KBs expressed in a DLL, and consider a KBK expressed
in such logic. Consider now an instance-level update (erasure) ofK, and suppose that
no KB expressed inL exists that captures exactly the set of modelsM resulting from
such an update (erasure). In this situation, we aim at computing the KB in L that
approximatesM “at best”.

The goal of this section is to introduce a specific notion of approximation in De-
scription Logics, that will be used in the next sections for devising techniques for ap-
proximating updates and erasures inDL-LiteF ontologies.

Our notion of approximation is based on fixing a priori both the languageL and the
TBox T .

Definition 5.1 (Sound (L, T)-Approximation) Let T be a TBox in a DLL, andM
a set of models such thatM ⊆ Mod(T). We say that a DL KBK is asound(L, T)-
approximationof M in L, if

1. K is inL,

2. K is of the form〈T ,A〉, and

3. M ⊆ Mod(K).

In other words, a sound(L, T)-approximation of a subsetM of the models of a
TBox T expressed inL is a KB that is still expressed inL, that has the same TBox
T , and whose set of models includes all the models inM. Obviously, there might be
several(L, T)-approximations of a setM. Intuitively, some of them will be “better”
than others, in the sense that they will be closer toM. To capture this intuition, we
aim at a method for comparing two(L, T)-approximationsK1 andK2 of M. An
appropriate criterion to be used for this purpose is set containment: K1 is a better
approximation thanK2 precisely ifMod(K1) ⊂ Mod(K2). Based on this observation,
we can define the notion of “best”(L, T)-approximation.

Definition 5.2 (Maximal (L, T)-Approximation) Let T be a TBox in a DLL, and
M a set of models such thatM ⊆ Mod(T). We say that a DL KBK is amaximal
(L, T)-approximationof M if

1. K is a sound(L, T)-approximation ofM, and

2. there exists no KBK′ that is a sound(L, T)-approximation ofM, and is such
thatMod(K′) ⊂ Mod(K).

17

In other words, the maximal(L, T)-approximation of a subsetM of the models of
a TBoxT expressed inL is a KB that is still expressed inL, that has the same TBox
T , whose set of models includes all the models inM, and whose semantics minimally
differs fromM. When we will use this notion for update and erasure, the set of models
M to be approximated will be exactly the models resulting fromthe update or the
erasure of a KB with TBoxT .

Interestingly, when a maximal(L, T)-approximation exists, it is unique up to logi-
cal equivalence, as the following theorem shows.

Theorem 5.3 Let T be a TBox in a DLL, andM a set of models such thatM ⊆
Mod(T). If a KB K exists that is a maximal(L, T)-approximation ofM, then all
maximal(L, T)-approximations ofM are equivalent toK.

Proof. Suppose thatK′ = 〈T ,A′〉 is a maximal(L, T)-approximation ofM that is not
equivalent toK = 〈T ,A〉. By definition of maximal(L, T)-approximation, we have
that bothK andK′ are sound(L, T)-approximations ofM, which implies that both
M ⊆ Mod(K), andM ⊆ Mod(K′), and thereforeM ⊆ Mod(K)∩Mod(K′). Now,
let K′′ be 〈T ,A ∪ A′〉. It is easy to see thatMod(K′′) = Mod(K) ∩ Mod(K′), and
thereforeK′′ is also a sound(L, T)-approximation ofM. But then, sinceMod(K) 6=
Mod(K′), we obtain thatMod(K′′) ⊂ Mod(K), which contradicts the fact thatK is a
maximal(L, T)-approximation ofM.

Based on the above property, we will talk aboutthemaximal(L, T)-approximation
of a set of models.

One may wonder to what extent the maximal(L, T)-approximation of a setM of
models capturesM. The basic property of(L, T)-approximation is that it preserves
logical implication ofL assertions. That is, as long as we are interested in in logical
implication ofL assertions, there is no difference betweenM and its maximal(L, T)-
approximation. Indeed, the next theorem states that, in terms of logical implication of
L-assertions,M and its maximal(L, T)-approximation are exactly the same.

Theorem 5.4 Let T be a TBox in a DLL, andM a set of models such thatM ⊆
Mod(T). If K is a maximal(L, T)-approximation ofM, then for every TBox and
ABox assertionα in L it holds thatM |= α iff K |= α.

Proof. For TBox assertions, the result is trivial. As for ABox assertions, consider
a membership assertionα in L. The if-direction is obvious: sinceK is an (L, T)-
approximation ofM, K |= α impliesM |= α. As for the only-if direction, suppose
thatM |= α, but there is a modelI of K such thatI 6|= α. This would imply thatK∪α
is a sound(L, T)-approximation ofM that is not equivalent toK, which contradicts
the fact thatK is a maximal(L, T)-approximation ofM.

Observe however that formulas that go beyondL assertions are sufficient to sepa-
rate a set of modelsM from its maximal(L, T)-approximation. Consider the alphabet
with just one conceptA, the empty TBox on this alphabet, and the setM consti-
tuted by the two models{A(o1)}, and{A(o2)}. It is easy to see that the maximal
(DL-LiteF , T)-approximation ofM is the KBK with the empty TBox and the empty

18

P

C1C

Component Of

DependsOn DependsOn CnC2 DependsOn

…

Component Of Component Of

…

DependsOnD DmD1 DependsOn

…

Figure 3: Example of modelI of K

ABox. Indeed, consider any nonempty ABoxA′, and letα(oi) be an assertion inA′.
Obviously〈T ,A′〉 |= α(oi), while M 6|= α(oi). This shows that〈T ,A′〉 is not a
sound approximation ofM. It is also easy to verify that, whileM |= ∃x.A(x), we
have thatK 6|= ∃x.A(x).

Finally, we focus on maximal approximations of updates, andshow that maximal
(L, T)-approximations of updates may not exist.

To this aim, we start by proving a preliminary lemma, in whichwe make use of the
DL ALCQIOreg (we refer to [3] for the definition of the languageALCQIOreg).

Lemma 5.5 Let F be the setF = {Working(c)}, and K = 〈T ,A〉 be the
ALCQIOreg KB defined as follows:

T = {⊤ ⊑ ∀ComponentOf .{p},
⊤ ⊑ (≤ 1 DependsOn−),
∃DependsOn− ⊑ ∃ComponentOf,
Working ⊑ ∀DependsOn.Working}

A = {ComponentOf(c, p),
¬ComponentOf(p, p),
∀ComponentOf−.¬Working(p)}

Then〈T ,A′〉 = K ◦T F , whereA′ is the followingALCQIOreg ABox:

{Working(c),
¬ComponentOf (p, p),
∀ComponentOf−.(∃DependsOn−.⊤) ⊔ {c} ⊔ ∀(DependsOn)∗.¬Working(p)}

Proof. Consider the initial KBK. Intuitively, the TBox states that each modelI
of K is such that every element of the domain that is a component ofan element, is
a component of the elementpI . Every element of the domain can have at most one
element that depends on it. Furthermore, every component that a component depends
on, is a component of something, and every element that is working depends only on
working elements. On the other hand, the ABox describes the initial state of affairs
and states thatI is such thatcI is a component ofpI , pI is not a component of itself,
and every elementc′I that is a component ofpI is not working. Note that it follows,
in particular, thatcI is not working. Figure 3 shows a graphical representation ofa
possible modelI of K, wherecI , cI1 , . . . , cIn are not working.

19

Consider now the KBK′ = 〈T ,A′〉. Intuitively, each model ofK′ is such that it
satisfies the same intensional assertions satisfied by the models ofK. However, the set
of models ofK′ differs from the set of models ofK, in that for each modelI ′ of K′

• cI
′

is working,

• for every elementeI
′

different from cI
′

that is component ofpI
′

, eithereI
′

depends on some element, oreI
′

is such that each element that depends on it,
directly or indirectly, is not working.

We next show thatK ◦T F ⊆ Mod(K′) is a model ofK′. Indeed, consider for
example the modelI shown in Figure 3. The set of modelsUT (I,F) comprises all
models that are obtained modifyingI either by interpreting as working bothc and
all the elementsc1, . . . , cn, or by interpreting as not depending one on the other, two
elementsci, ci+1, and interpreting as working all elementsc1, . . . , ci, wherei ∈ {1, n−
1}. Clearly, this set of models is captured byK′.

Now, let us show that for every modelI ′ of K′ there exists a modelI of K such
thatI ′ ∈ UT (I,F). Consider the modelI obtained fromI ′ by interpreting as not
workingc as well as all components thatc depends on it, directly or indirectly. Clearly,
I is a model ofK and it is such thatI ′ ∈ UT (I,F).

We are now ready to show that in general it is not possible to obtain a maximal
approximation of updates.

Theorem 5.6 There are DLsL, KBsK = 〈T ,A〉, and sets of membership assertions
F such that maximal(L, T)-approximations ofK ◦T F do not exist.

Proof. Let L be the languageALCQIO and letT andF be respectively the TBox
and the set of assertions specified in Lemma 5.5. From the lemma, it follows that
K′ = 〈T ,A′〉 captures exactly the set of modelsK ◦T F , whereA′ is the ABox
specified in the lemma (note thatA′ is expressed inALCQIOreg , since it uses the
transitive closure of the roleDependsOn−).

Let 〈T ,A′′〉 be a maximal(ALCQIO, T)-approximation ofK ◦T F . Then,
〈T ,A′′〉 logically impliesWorking(c), because otherwise, by adding toA′′ the asser-
tion Working(c), we would obtain an(ALCQIO, T)-approximation ofK ◦T F that
is better than〈T ,A′′〉. Similarly, 〈T ,A′′〉 logically implies¬ComponentOf(p, p).
Now, based on form of the TBoxT , and on the fact that〈T ,A′′〉 is a sound
(ALCQIO, T)-approximation ofK ◦T F , expressed in the first-order language
ALCQIO (ALCQIO is indeed a fragment of first-order logic), it can be shown that
〈T ,A′′〉 does not logically imply

∀ComponentOf−.(∃DependsOn−.⊤) ⊔ {c} ⊔ ∀(DependsOn)∗.¬Working(p)

Equivalently, it is not true that for every natural numbern, A′′ logically implies⋃n

i=0 A
i, where

Ai = ∀ComponentOf−.(∃DependsOn−.⊤)⊔{c}⊔∀(DependsOn)i.¬Working(p)

Hence, letm be the maximal natural numberm such thatA′′ logically implies⋃m

i=0 A
i, andA′′ does not logically imply

⋃m+1
i=0 Ai. This contradicts the fact that

20

A′′ is a maximal(ALCQIO, T)-approximation ofK◦T F , since by adding toA′′ the
assertionAm+1, we would obtain a sound(ALCQIO, T)-approximation ofK ◦T F
that is better than〈T ,A′′〉. Indeed, it is easy to see that〈T ,A′′ ∪ Am+1〉 is a
sound(ALCQIO, T)-approximation ofK ◦T F such thatMod(〈T ,A′′ ∪Am+1〉) ⊆
Mod(〈T ,A′′〉). Moreover, letIm be a model ofA′′ such that there exist ele-
mentsd0, d1, . . . , dm, dm+1, that are not reachable fromcI

m

by means of the role
DependsOn, and are such that (i) dI

m

m+1 is working, and (ii) for everyi ∈ {0, m}, dI
m

i

is not working, anddI
m

i depends ondI
m

i+1. It is easy to see thatIm is a model ofA′′ but
is not a model ofK◦T F , sincedI

m

m+1 is working. On the other hand,Im is not a model
of 〈T ,A′′ ∪ Am+1〉, which proves thatMod(〈T ,A′′ ∪ Am+1〉) ⊂ Mod(〈T ,A′′〉).

6 Approximated instance-level update inDL-LiteF
With the notion of maximal(L, T)-approximation ofM in place, in this section we
come back to the issue of approximating instance-level updates inDL-LiteF .

First, we define the notion of(L, T)-update, which immediately follows from the
definition of maximal(L, T)-approximation given in the previous section.

Definition 6.1 ((L, T)-Update) LetK = 〈T ,A〉, Ka = 〈T ,Aa〉 be two KBs in a DL
L, andF a finite set of membership assertions expressed inL such thatMod(T) ∩
Mod(F) 6= ∅. We say thatKa is a (L, T)-update ofK with F if Ka is a maximal
(L, T)-approximation ofK ◦T F .

From Theorem 5.3 we know that if an(L, T)-update ofK with F exists, it is
unique up to logical equivalence. Moreover, by Theorem 5.4 we know that(L, T)-
update captures exactly the logical implication of the membership assertions of the
“exact” update. Also, Theorem 5.6 shows that in general there are cases for which
(L, T)-updates do not exist.

We now focus our attention to computing the maximal approximation of updates
in DL-LiteF . The simplest idea for computing the best approximation of an update to
a DL-LiteF would be to callComputeUpdate(T ,A,F), and then ignoring all those
assertions of the resultingDL-LiteFS KB that are notDL-LiteF assertions. Actually,
this idea works, and is exactly the method used in the algorithm ComputeUpdateapp

presented in Figure 4. The algorithm takes as input a TBoxT , an ABoxA and a set
of membership assertionsF , whereT , A andF are all expressed inDL-LiteF , and
K = 〈T ,A〉 is satisfiable.

The correctness of the algorithmComputeUpdateapp is based on the following
property.

Theorem 6.2 Let K = 〈T ,A〉 be a satisfiable DL-LiteFS KB, andα a DL-LiteF
assertion. IfK |= α, then there exists a DL-LiteF membership assertionα′ in A such
that 〈T , {α′}〉 |= α.

Proof. To prove this property, we start by recalling the definition of chaseof a
DL-LiteF KB [10]. Given a satisfiableDL-LiteF KB K, the chase ofK, denoted by

21

ALGORITHM ComputeUpdateapp (T ,A,F)
INPUT: finite set ofDL-LiteF membership assertionsF ,

satisfiableDL-LiteF KB 〈T ,A〉
OUTPUT: an ABoxAa, or ERROR
[1] if 〈T ,F〉 is not satisfiablethen return ERROR
[2] else begin
[3] Aa = ComputeUpdate(T ,A,F);
[4] delete fromAa all the assertions that are notDL-LiteF membership assertions;
[5] return Aa

[6] end

Figure 4: AlgorithmComputeUpdateapp

chase(K), is a (possibly infinite) ABox obtained by closing the initial ABox A with re-
spect to the followinginclusion chase rules(whereA, A1, A2 denote concept symbols,
andR, R1, R2 role symbols):

• if A1 ⊑ A2 ∈ T and there is an assertion of the formA1(a) in chase(K) and
A2(a) 6∈ chase(K), then add the assertionA2(a);

• if ∃R ⊑ A ∈ T (respectively,∃R− ⊑ A ∈ T) and there is an assertion of the
form R(a, b) (respectively,R(b, a)) in chase(K) andA(a) 6∈ chase(K), then
add the assertionA(a);

• if A ⊑ ∃R ∈ T (respectively,A ⊑ ∃R− ∈ T) and there is an assertion of the
formA(a) in chase(K) and there is no assertion of the formR(a, x) in chase(K)
(wherex is any constant symbol), then add the assertionR(a, n) (respectively,
R(n, a)) wheren is a new constant symbol (i.e., a symbol not occurring already
in chase(K));

• if ∃R1 ⊑ ∃R2 ∈ T (respectively,∃R−
1 ⊑ ∃R2 ∈ T) and there is an assertion of

the formR1(a, b) (respectively,R(b, a)) in chase(K) and there is no assertion
of the formR2(a, x) in chase(K) (wherex is any constant symbol), then add
the assertionR2(a, n) wheren is a new constant symbol (i.e., a symbol not
occurring already inchase(K));

• if ∃R1 ⊑ ∃R−
2 ∈ T (respectively,∃R−

1 ⊑ ∃R−
2 ∈ T) and there is an assertion

of the formR1(a, b) (respectively,R(b, a)) in chase(K) and there is no assertion
of the formR2(x, a) in chase(K) (wherex is any constant symbol), then add
the assertionR2(n, a) wheren is a new constant symbol (i.e., a symbol not
occurring already inchase(K)).

In [10] it has been shown thatchase(K) identifies acanonical modelfor conjunc-
tive queries overK: namely, conjunctive queries overK can be decided by simply
evaluating them overchase(K). As a corollary of this property, we get the following
lemma.

Lemma 6.3 For every satisfiable DL-LiteF KBK and for every DL-LiteF membership
assertionα, K |= α iff α ∈ chase(K).

22

Coming back to the proof of the theorem, suppose now thatK |= α: then, from
Lemma 6.3,α ∈ chase(K). There are two possible cases:

1. α ∈ A: in this case, the thesis holds forα′ = α;

2. α 6∈ A: by the inductive definition ofchase(K), it immediately follows that
there is a sequence of assertionsα1, . . . , αn such thatα1 ∈ A and eachαi+1 is
obtained by applying an inclusion chase rule toαi and to some inclusion asser-
tion in T . Consequently,α ∈ chase(〈T , {α1}〉) and thus from Lemma 6.3 it
follows that〈T , {α1}〉 |= α. Therefore, the thesis holds forα′ = α1.

We are now ready to prove the correctness of the algorithmComputeUpdateapp .

Theorem 6.4 LetK = 〈T ,A〉 be a satisfiable DL-LiteF KB,F a finite set of DL-LiteF
membership assertions such thatMod(T ∪ F) 6= ∅, and letKa = 〈T ,Aa〉, whereAa

is the ABox returned byComputeUpdateapp(T ,A,F). Then,Ka is a (DL-LiteF , T)-
update ofK with F .

Proof. Clearly the algorithmComputeUpdateapp terminates, since so does
ComputeUpdate. Now, let Aa = ComputeUpdateapp(T ,A,F). We first show
that 〈T ,Aa〉 is a sound(DL-LiteF , T)-approximation ofK ◦T F , then we show
that it is a maximal one. LetAp = ComputeUpdate(T ,A,F). By construction,
Aa ⊆ Ap and therefore, sinceDL-LiteF is monotone,Mod(Ap) ⊆ Mod(Aa). Hence
Mod(〈T ,Ap〉) ⊆ Mod(〈T ,Aa〉). Moreover, by Theorem 4.8,Mod(〈T ,Ap〉) =
K ◦T F . It follows that〈T ,Aa〉 is a sound(DL-LiteF , T)-approximation ofK ◦T F .
Now, let us show thatKa = 〈T ,Aa〉 is the maximal(DL-LiteF , T)-approximation of
K ◦T F . By contradiction, letK′ = 〈T ,A′〉 be a sound(DL-LiteF , T)-approximation
of K ◦T F such thatMod(K′) ⊂ Mod(Ka). SinceMod(K′ ∪ Ka) = Mod(K′) ∩
Mod(Ka), we have thatMod(K′∪Ka) = Mod(K′), which implies that thatKa ⊂ K′,
and thus that there exists aDL-LiteF membership assertionα such thatα ∈ A′,
K ◦T F |= α andKa 6|= α. LetAp = ComputeUpdate(T ,A,F) andKp = 〈T ,Ap〉.
By Theorem 4.8,Mod(Kp) = K ◦T F . Then we have thatKp |= α, whereα is
a membership assertion inDL-LiteF . By Theorem 6.2, there must exist aDL-LiteF
membership assertionα′ in Ap such that〈T , α′〉 |= α. But then, by construction,α′

belongs toAa, contradictingKa 6|= α.

SinceComputeUpdate(T ,A,F) runs in polynomial time, it follows immediately
that the algorithmComputeUpdateapp also terminates and runs in time polynomial
with respect to the size of its input.

Theorem 6.5 Let K = 〈T ,A〉 be a satisfiable DL-LiteF KB, andF a finite set of
DL-LiteF membership assertions. ThenComputeUpdateapp(T ,A,F) terminates, re-
turning ERROR ifMod(T) ∩ Mod(F) = ∅, and an ABoxAa such that〈T ,Aa〉 is a
DL-LiteF KB, otherwise. Moreover:

• the size ofAa is polynomially bounded by the size ofT ∪ A ∪ F ;

• Aa is computed in polynomial time in the size ofT ∪ A ∪ F .

23

Example 6.6 Consider theDL-LiteF KB K = 〈T ,A〉 mentioned in Example 4.10,
and let us compute the(DL-LiteF , T)-update ofK with F = {A1(a)}. First, we
apply the update algorithmComputeUpdate of Section 4. This returns aDL-LiteFS

ABox A′ = {A1(z∃P (a)), A2(a)}. Then, we delete fromA′ all assertions that are not
DL-LiteF membership assertions, and obtain theDL-LiteF ABox Aa = {A1(a)}.

Finally, we show thatComputeUpdateapp captures, in a sound and complete way,
logical implication ofDL-LiteF assertions after update.

Theorem 6.7 LetK = 〈T ,A〉 be a satisfiable DL-LiteF KB,F a finite set of DL-LiteF
membership assertions such thatMod(T ∪ F) 6= ∅, andKa = 〈T ,Aa〉, whereAa

is the ABox returned byComputeUpdateapp(T ,A,F). Then, for every membership
assertionα in DL-LiteF , we have thatK ◦T F |= α iff Ka |= α.

Proof. The proof is an immediate consequence of from Theorem 6.4 andTheorem 5.4.

7 Instance-level erasure

In this section we consider the operation of instance-levelerasure[23]. This is the
operation consisting of retracting (or deleting) membership assertions from a DL KB,
while keeping the TBox unchanged. So, erasure is in fact complementary to the update
operation studied in the previous sections. We show that, ina way similar to the update
operation, the result of an erasure operation against anL KB is in general not express-
ible in the DLL. Thus, we introduce the notion of(L, T)-erasure, i.e., a maximal
approximation inL of the result of an erasure against anL KB 〈T ,A〉. Finally, we
study the problem of computing(L, T)-erasures inDL-LiteF .

We start by formally defining instance-level erasure over DLKBs.

Definition 7.1 (Instance-level erasure) Let K = 〈T ,A〉 be a KB expressed in a DL
L, andF a finite set of membership assertions expressed inL such thatMod(T ∪
¬F) 6= ∅, where¬F denotes the set of membership assertions{¬Fi | Fi ∈ F}. The
instance-level erasure ofF fromK, or simply theerasure ofF fromK, denotedK•T F ,
is defined as follows:

K•T F = Mod(K) ∪ (
⋃

I∈Mod(K)

UT (I,¬F)).

Intuitively, the result of erasing a finite set of formulasF from a KBK should be
any KB that does not logically imply any of the formulas inF , and whose set of models
minimally differs from the set of models ofK.

The following simple example illustrates the erasure operation.

Example 7.2 Consider the KBK = 〈T ,A〉 with TBox T = {A ⊑ B, A ⊑ C} and
the ABoxA = {A(d)}. Now, given the set of membership assertionsF = {C(d)},
considerK•T F , i.e., the erasure ofF from K. By definition,K•T F = Mod(K) ∪

24

ALGORITHM ComputeErasureapp (T ,A,F)
INPUT: finite set ofDL-LiteF membership assertionsF ,

satisfiableDL-LiteF KB 〈T ,A〉
OUTPUT: an ABoxAa, or ERROR
[1] if 〈T ,¬F〉 is not satisfiablethen return ERROR
[2] else begin
[3] Aa := ComputeUpdate(T ,A,¬F);
[4] delete fromAa all the assertions that are notDL-LiteF membership assertions;
[5] return Aa

[6] end

Figure 5: AlgorithmComputeErasureapp

(K ◦T {¬C(d)}). Thus, each modelI ′ in K•T F is obtained from a modelI of K by
either not modifying anything, or by modifying the interpretation ofd so thatd does not
belong toA. Hence, for eachI ′ we must haved ∈ BI

′

, and eitherd ∈ AI
′

, d ∈ CI
′

or d /∈ AI
′

, d /∈ CI
′

.

In the same way as in the case of update, we now introduce the notion of maximal
approximation of instance-level erasure in a DLL.

Definition 7.3 ((L, T)-Erasure) Let K = 〈T ,A〉, Ka = 〈T ,Aa〉 be two KBs in a
DL L andF a finite set of membership assertions expressed inL such thatMod(T) ∩
Mod(¬F) 6= ∅. We say thatKa is a (L, T)-erasure ofK with F if Ka is a maximal
(L, T)-approximation ofK•T F .

We now study instance-level erasure inDL-LiteF . We start by showing that, in
DL-LiteF , the result of an erasure cannot be always expressed in termsof a DL-LiteF
KB.

Theorem 7.4 The result of an erasure to a DL-LiteF KB may not be expressible in
DL-LiteF itself.

Proof. Consider again theDL-LiteF KB K shown in Example 7.2, i.e.,K = 〈T ,A〉
with T = {A ⊑ B, A ⊑ C} andA = {A(d)}. Let F = {C(d)}. By definition,
K•T F = Mod(K)∪(K◦T {¬C(d)}). Thus, each modelI in K•T F is obtained from
a modelI of K by either not modifying anything, or by modifying the interpretation
of d so thatd does not belong toAI . Hence, for eachI, eitherd ∈ AI , d ∈ CI or
d /∈ AI , d /∈ CI . It is immediate to verify that there is no way to express thisset of
models through a set ofDL-LiteF membership assertions.

Therefore, like in the case of update, inDL-LiteF it is interesting to look at maximal
approximations of instance-level erasure. For this purpose, we define the algorithm
ComputeErasureapp shown in Figure 5.

The following theorem shows that the maximal approximationof instance-
level erasure in aDL-LiteF KB always exists, and is computed by the algorithm
ComputeErasureapp .

25

Theorem 7.5 LetK = 〈T ,A〉 be a satisfiable DL-LiteF KB,F a finite set of DL-LiteF
membership assertions such thatMod(T ∪¬F) 6= ∅, andKa = 〈T ,Aa〉, whereAa is
the ABox returned byComputeErasureapp(T ,A,F). Then,Ka is a (DL-LiteF , T)-
erasure ofK with F .

Proof. First, from definition of erasure,K•T F = Mod(K) ∪ (K ◦T ¬F). Then,
by definition of the algorithmComputeErasureapp , it follows that for every mem-
bership assertionα ∈ Aa − A, we haveK |= α, which immediately implies that (i)
Mod(K) ⊆ Mod(Ka). Moreover, letKp = 〈T ,Ap〉 whereAp is the ABox returned
by ComputeUpdateapp(T ,A,¬F): by definition,Aa ⊆ Ap, consequently every
model ofKp is also a model ofKa, and since by Theorem 4.8Mod(Kp) = K ◦T ¬F ,
it follows that (ii)K ◦T ¬F ⊆ Mod(Ka). Hence, from (i) and (ii) it follows thatKa is
a (DL-LiteF , T)-approximation ofK•T F .

Now, supposeKa is not the maximal(DL-LiteF , T)-approximation ofK•T F .
Then, there exists aDL-LiteF KB K′ = 〈T ,A′〉 such thatK•T F ⊆ Mod(K′) ⊂
Mod(Ka). SinceMod(K′) ⊂ Mod(Ka), there exists at least a (membership) as-
sertion α ∈ A′ − Aa such thatKa 6|= α, and sinceK•T F ⊆ Mod(K′) and
K•T F = Mod(K) ∪ (K ◦T ¬F), it follows thatKp |= α. Now, by Theorem 6.2
it follows that there exists a membership assertionα′ ∈ Ap such that〈T , {α′}〉 |= α.
Hence, by definition ofComputeErasureapp , it follows thatα′ ∈ Aa, consequently
Ka |= α. Contradiction. Therefore,Ka is the maximal(DL-LiteF , T)-approximation
of K•T F .

Observe that, as mentioned in the previous section, the algorithm
ComputeUpdate(T ,A,F) runs in polynomial time, and therefore also the al-
gorithmComputeErasureapp runs in time polynomial with respect to the size of its
input.

Theorem 7.6 Let K = 〈T ,A〉 be a satisfiable DL-LiteF KB, andF a finite set of
DL-LiteF membership assertions. ThenComputeErasureapp(T ,A,F) terminates,
returning ERROR ifMod(T) ∩ Mod(¬F) = ∅, and an ABoxA′ such that〈T ,A′〉 is
a DL-LiteF KB, otherwise. Moreover:

• the size ofA′ is polynomially bounded by the size ofT ∪ A ∪ F ;

• A′ is computed in polynomial time in the size ofT ∪ A ∪ F .

The following example illustrates the algorithmComputeErasureapp .

Example 7.7 Consider theDL-LiteF KB K = 〈T ,A〉 introduced in the example of
the proof of Theorem 7.4. Now suppose to compute the(DL-LiteF , T)-erasure ofK
with F = {C(a)}. First, we apply the update algorithmComputeUpdate and compute
the ABoxAp = ComputeUpdate(T ,A, {¬C(a)}). This returns aDL-LiteFS ABox
that is obtained fromA by removing the assertionA(a), and introducing the assertions
¬C(a) andB(a). Second, we perform the projection ofAp in DL-LiteF , and obtain
theDL-LiteF ABox Aa = {B(a)}.

26

Finally, we prove the following important property: computing a maximal approxi-
mation of an erasure inDL-LiteF is indeed sufficient to decide, in a sound and complete
way, instance checking over the exact result of the erasure.In other words, we prove
that the algorithmComputeErasureapp captures, in a sound and complete way, logical
implication ofDL-LiteF assertions after erasure.

Theorem 7.8 LetK = 〈T ,A〉 be a satisfiable DL-LiteF KB,F a finite set of DL-LiteF
membership assertions such thatMod(T ∪ ¬F) 6= ∅, andKa = 〈T ,Aa〉, whereAa

is the ABox returned byComputeErasureapp(T ,A,F). Then, for every membership
assertionα in DL-LiteF , we have thatK•T F |= α iff Ka |= α.

Proof. The proof is an immediate consequence of Theorem 7.5 and Theorem 5.4.

8 Conclusion

We have investigated the notion of instance-level update and erasure of a DL KB.
Specifically, we have focused onDL-LiteF , a tractable DL tailored for data intensive
applications. Since in general the result of instance-level update and erasure cannot be
expressed as a KB in the same language as the original KB, we have provided a prin-
cipled notion of maximal approximation, and have presentedpolynomial algorithms
for computing such maximal approximations in the case ofDL-LiteF . These results
confirm the nice computational properties ofDL-LiteF for data intensive applications,
even when information about instances is not only read but also written.

There are several interesting directions for continuing our research. First, we have
implemented in the QuOnto reasoning system [1] the algorithms presented in this pa-
per. Related to this point, we are currently studying optimization techniques to deal
with ontologies that include very large ABoxes, as those produced by materializing
data in ontology-based information integration applications. Notably, for such kinds
of applications it would also be interesting to avoid actualmaterialization of data, and
“push” updates and erasures into the data sources. This taskis very challenging, since it
corresponds to an advanced form of the notorious view updateproblem in databases [6].

Second, the kind of approximation considered in this paper preserves logical im-
plication of ABox and TBox assertions in the DL considered. Obviously, it would
be interesting both to consider different notions of approximation and to study com-
pleteness of the approximation with respect to more expressive classes of formulas. In
particular, we are currently studying the properties of approximation inDL-LiteF KBs
for several classes of unions of conjunctive queries.

Third, in this paper we adopted a classical model-based approach to update and
erasure, stemming from the existing literature on updatingknowledge bases. Other
approaches to update and erasure have been studied and theirapplication to ontology
might be of interest, as well as approaches based on belief revision and contraction.
We believe that, in principle, several approaches to ontology evolution could coexist
on the same ontology management system, in order to model different types of services
involving some sort of ontology evolution.

27

Finally, updates bring in the general issue of dealing with inconsistency in ontolo-
gies. The semantics that we have considered in this paper address the issue of solving
inconsistency between the current instance level of the ontology and what has been
asserted (retracted) by the update (erasure), while it doesnot deal with inconsistencies
between the update and the intensional level. It would be interesting to study possible
semantics that are tolerant with respect to the latter form of inconsistency.

Acknowledgments

This research has been partially supported by FET project TONES (Thinking ONtolo-
giES), funded by the EU under contract number FP6-7603, by project HYPER, funded
by IBM through a Shared University Research (SUR) Award grant, and by MIUR FIRB
2005 project “Tecnologie Orientate alla Conoscenza per Aggregazioni di Imprese in
Internet” (TOCAI.IT).

References

[1] Andrea Acciarri, Diego Calvanese, Giuseppe De Giacomo,Domenico Lembo,
Maurizio Lenzerini, Mattia Palmieri, and Riccardo Rosati.QUONTO: QUerying
ONTOlogies. In Proc. of the 20th Nat. Conf. on Artificial Intelligence
(AAAI 2005), pages 1670–1671, 2005.

[2] C. E. Alchourrón, P. Gärdenfors, and D. Makinson. On the logic of theory change:
Partial meet contraction and revision functions.J. of Symbolic Logic, 50:510–530,
1985.

[3] Franz Baader, Diego Calvanese, Deborah McGuinness, Daniele Nardi, and Pe-
ter F. Patel-Schneider, editors.The Description Logic Handbook: Theory, Imple-
mentation and Applications. Cambridge University Press, 2003.

[4] Franz Baader, Ian Horrocks, and Ulrike Sattler. Description logics as ontology
languages for the semantic web. InMechanizing Mathematical Reasoning: Es-
says in Honor of Jrg Siekmann on the Occasion of his 60th Birthday, volume
2605 ofLecture Notes in Artificial Intelligence, pages 228–248. Springer, 2005.

[5] Franz Baader, Carsten Lutz, Maja Milicic, Ulrike Sattler, and Frank Wolter. In-
tegrating description logics and action formalisms: Firstresults. InProc. of the
20th Nat. Conf. on Artificial Intelligence (AAAI 2005), pages 572–577, 2005.

[6] François Bancilhon and Nicolas Spyratos. Update semantics of relational views.
ACM Trans. on Database Systems, 6(4):557–575, 1981.

[7] Tim Berners-Lee, James Hendler, and Ora Lassila. The Semantic Web.Scientific
American, 284(5):34–43, May 2001.

[8] Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenzerini,
and Riccardo Rosati.DL-Lite: Tractable description logics for ontologies. In

28

Proc. of the 20th Nat. Conf. on Artificial Intelligence (AAAI2005), pages 602–
607, 2005.

[9] Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenzerini,
and Riccardo Rosati. Data complexity of query answering in description logics.
In Proc. of the 10th Int. Conf. on the Principles of Knowledge Representation and
Reasoning (KR 2006), pages 260–270, 2006.

[10] Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo,Maurizio Lenzerini,
and Riccardo Rosati. Tractable reasoning and efficient query answering in de-
scription logics: TheDL-Lite family. J. of Automated Reasoning, 39(3):385–429,
2007.

[11] Giuseppe De Giacomo, Maurizio Lenzerini, Antonella Poggi, and Riccardo
Rosati. On the update of description logic ontologies at theinstance level. In
Proc. of the 21st Nat. Conf. on Artificial Intelligence (AAAI2006), 2006.

[12] Giuseppe De Giacomo, Maurizio Lenzerini, Antonella Poggi, and Riccardo
Rosati. On the approximation of instance level update and erasure in description
logics. In Proc. of the 22nd Nat. Conf. on Artificial Intelligence (AAAI2007),
2007.

[13] Thomas Eiter and Georg Gottlob. On the complexity of propositional knowledge
base revision, updates and counterfactuals.Artificial Intelligence, 57:227–270,
1992.

[14] Giorgos Flouris, Dimitris Plexousakis, and Grigoris Antoniou. On applying the
AGM theory to DLs and OWL. InProc. of the 4th Int. Semantic Web Conf.
(ISWC 2005), 2005.

[15] Giorgos Flouris, Dimitris Plexousakis, and Grigoris Antoniou. A classification of
ontology change. InProc. of the 3rd Italian Semantic Web Workshop: Semantic
Web Applications and Perspectives (SWAP 2006), 2006.

[16] Giorgos Flouris, Dimitris Plexousakis, and Grigoris Antoniou. Evolving ontol-
ogy evolution. InProc. of the 32nd Int. Conf. on Current Trends in Theory and
Practice of Computer Science (SOFSEM 2006), 2006.

[17] Claudio Gutiérrez, Carlos Hurtado, and Alejandro Vaisman. The meaning of
erasing in RDF under the Katsuno-Mendelzon approach. InProc. of the 9th Int.
Workshop on the Web and Databases (WebDB 2006), 2006.

[18] Volker Haarslev and Ralf Möller. RACER system description. In Proc. of the
Int. Joint Conf. on Automated Reasoning (IJCAR 2001), volume 2083 ofLecture
Notes in Artificial Intelligence, pages 701–705. Springer, 2001.

[19] Peter Haase and Ljiljana Stojanovic. Consistent evolution of owl ontologies. In
Proc. of the 2nd European Semantic Web Conf. (ESWC 2005), pages 182–197,
2005.

29

[20] Christian Halaschek-Wiener, Bijan Parsia, Evren Sirin, and Aditya Kalyanpur.
Description logic reasoning for dynamic aboxes. InProc. of the 2006 Description
Logic Workshop (DL 2006), volume 189 ofCEUR Electronic Workshop Proceed-
ings,http://ceur-ws.org/Vol-189/, 2006.

[21] Andreas Herzig and Omar Rifi. Propositional belief update and minimal change.
Artificial Intelligence, 115(1):107–138, 1999.

[22] Ian Horrocks. The FaCT system. In Harrie de Swart, editor, Proc. of the 7th
Int. Conf. on Automated Reasoning with Analytic Tableaux and Related Methods
(TABLEAUX’98), volume 1397 ofLecture Notes in Artificial Intelligence, pages
307–312. Springer, 1998.

[23] Hirofumi Katsuno and Alberto Mendelzon. On the difference between updating
a knowledge base and revising it. InProc. of the 2nd Int. Conf. on the Principles
of Knowledge Representation and Reasoning (KR’91), pages 387–394, 1991.

[24] Maurizio Lenzerini. Data integration: A theoretical perspective. InProc. of the
21st ACM SIGACT SIGMOD SIGART Symp. on Principles of Database Systems
(PODS 2002), pages 233–246, 2002.

[25] Hector J. Levesque and Gerhard Lakemeyer.The Logic of Knowledge Bases. The
MIT Press, 2001.

[26] H. Liu, C. Lutz, M. Milicic, and F. Wolter. Updating description logic ABoxes.
In Proc. of the 10th Int. Conf. on the Principles of Knowledge Representation and
Reasoning (KR 2006), pages 46–56, 2006.

[27] Thomas Meyer, Kevin Lee, and Richard Booth. Knowledge integration for
description logics. InProc. of the 20th Nat. Conf. on Artificial Intelligence
(AAAI 2005), pages 645–650, 2005.

[28] Antonella Poggi.Structured and Semi-Structured Data Integration. PhD thesis,
Dipartimento di Informatica e Sistemistica, Università di Roma “La Sapienza”,
2006.

[29] Antonella Poggi, Domenico Lembo, Diego Calvanese, Giuseppe De Giacomo,
Maurizio Lenzerini, and Riccardo Rosati. Linking data to ontologies.J. on Data
Semantics, X:133–173, 2008.

[30] Raymond Reiter.Knowledge in Action: Logical Foundations for Specifying and
Implementing Dynamical Systems. The MIT Press, 2001.

[31] Marco Schaerf and Marco Cadoli. Tractable reasoning via approximation.Artifi-
cial Intelligence, 74(2):249–310, 1995.

[32] Richard B. Scherl and Hector J. Levesque. Knowledge, action, and the frame
problem.Artificial Intelligence, 144(1–2):1–39, 2003.

30

[33] Evren Sirin and Bijan Parsia. Pellet: An OWL DL reasoner. In Proc. of the
2004 Description Logic Workshop (DL 2004), volume 104 ofCEUR Electronic
Workshop Proceedings,http://ceur-ws.org/Vol-104/, 2004.

[34] Marianne Winslett. Reasoning about action using a possible models approach. In
Proc. of the 15th Nat. Conf. on Artificial Intelligence (AAAI’98), 1988.

[35] Marianne Winslett.Updating Logical Databases. Cambridge University Press,
1990.

31

