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Outline

= motivations for considering distributed link flexibility

= few examples of robots with flexible links ...

= dynamic modeling of flexible link robots
= single flexible link (in the domain of linearity)

= multiple flexible links (nonlinear dynamics, in the planar case)

= formulation of control problems

= structural control properties in the linear and nonlinear case
= control design for regulation tasks
= control design for trajectory tracking tasks

= joint-space trajectory
= end-effector trajectory

= conclusions and basic references
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Motivation
Link flexibility in robot manipulators

= distributed link deformation in robot manipulators arises when
= very long and slender arms are needed by the specific application
= Jightweight materials are used to save weight/costs (without additional care)

= link rigidity’ is always an ideal assumption which may fail ...
= for larger payload-to-weight ratios
= in high-speed motion tasks or for large exchanged forces with the environment

= when the control bandwidth is increased

= flexible structures in motion are present in different applications
= manipulators in space, underwater, underground, automated cranes, ...

= neglecting link flexibility in control design

= |imits static (steady-state errors) and dynamic (vibrations, poor tracking)
performance

= stability problems due to non-colocation between input commands and typical
outputs to be controlled (non-minimum phase systems)
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Robots with link flexibility

Space applications

= SSRMS (Space Shuttle Remote Manipulation System) and Canadarm 2

| Tohoku University
(Prof. Masaru Uchiyama)
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Robots with link flexibility

Underground applications

= Sam ll, long flexible arm with macro-micro concept for remote exploration and
manipulation of nuclear waste sites
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response of joint-level PID to external disturbance

/= Georgia Tech
" (Prof. Wayne Book)
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Robots with flexible links
One-link prototypes

video

Mi

DMA - Sapienza harmonic steel beam (0.5 kg), QUANSER Rotary Flexible Link:

Direct-Drive DC motor, encoder, 7 strain gauges with strain feedback
video video
. L ”
CUNY Brooklyn: IS Técnico Lisbon: with two
vision-driven + strain feedback piezoelectric sensing/actuation pairs
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Robots with flexible links

Planar two-link prototypes

DIS/DIAG FLEXARM - Sapienza
planar two-link with

flexible forearm (0.7 m, 1.8 kg),
Direct-Drive DC motors,
encoders, on-board optical
sensor measuring deformation
at three points

video

ARL Stanford two-link macro flexible arm, ~ WATFLEX planar arm with two flexible links
with mini manipulator at the end (each with 2 strain gauges), encoders and tachos,
Stanford University overviewing CCD camera, moving on air bearings
(Profs. Stephen Rock and Robert Cannon Jr.) University of Waterloo (Prof. John McPhee)
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Robots with flexible links
Spatial multi-link prototypes

video
A Multi-Elastic-Link Robot
camera BLDC mot
I_ planetary 90::

spring steel blades
strain sensors —

Technische
Universitat
Dortmund
Omnielastic
Robot

video

Kyoto spatial 3R flexible arm
Kyoto University (Prof. Tsuneo Yoshikawa)

Experiment |

Oscillation damping:
step motion

RST — TUDOR spatial 3R flexible arm

Technical University Dortmund
(Dr. Jorn Malzahn and Prof. Torsten Bertram)

[0°, 0°, 0°] to [0°, 45°, -45°]
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Frequency identification
Single flexible link (DMA — Sapienza)

= experimental tests and dynamic model validation
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Dynamic modeling
Single flexible link

= |ength £, uniform density p, Young modulus - cross-section inertia E1

= actuator inertia J, payload mass m,, and inertia J,,

= frames: (X,Y) absolute; (x, y) moving with instantaneous CoM
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Dynamic modeling

Assumptions and definitions

= FEuler-Bernoulli theory applies to slender arm design

= |ength > section dimensions

= beam undergoes small deformations of the pure bending type
= restricted to the horizontal plane of motion (no gravity)

" no torsion nor compression

= bending deformation w(x, t), with x € |0, £] is directed along y-axis

" no shear
" neglect isoperimetric constraint & rotational inertia of beam sections
= — ‘extension’ of beam neutral axis negligible; — Timoshenko theory
= definition of relevant angular variables
= position 8(t) of the CoM (not measurable, but very convenient)
= position Qc(t) of the tangent to the link base (measured by motor encoder)

= position B,(t) of a line pointing to the beam tip (measurable in several ways)
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Dynamic modeling

Basic steps

= build the Lagrangian from kinetic and potential energy of the arm

= using Hamilton principle and calculus of variations, the bending
deformation and the angle satisfy the linear differential equations

EIw'"" (x,t) + p(W(x, t) + x6(t)) = 0| |z(t) —JO() =0
i.e., a PDE (for the beam) and an ODE (for the rigid motion), with

J=Jo+ (pf?)/3+ ], + m,£* 7 =torqueinput
= geometric/dynamic boundary conditions (b.c.’s) associated to PDE

w(0,t) =0 (no deformation at base x = 0)
Eiw'(0,t) =], (H(t) + w'(0, t)) — 7(t) (balance of moments at base)
EIw"(£,t) = — ], (é(t) + w' (¢, t)) (balance of moments at tip)
EIw"' (£,t) = m, (fé(t) + w(f, t)) (balance of shear forces at tip)
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Dynamic modeling
Solving the PDE and ODE

= infree evolution (T(t) = 0 = 8(t) = 0), PDE is solved by

separation of variables EL " (x) 5(t)
w(x, t) = dp(x)6() = e = ~50 = w*

for a positive constant w? (self-adjoint problem) to be determined

" time solution

6(t) = —w?8(t) = 6(t) = sinwt + ¢, cos wt
with ¢4, ¢, depending on the initial conditions §(0) and §(0)

= space solution

P =B =t

= ¢(x) = AsinBx + B cos fx + C sinh fx + D cosh Bx
with 4, B, C, D given by the geometric/dynamic b.c’s on w(x, t)
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Dynamic modeling
Solving the PDE and ODE

« fromw(x,t) = p(x)S(t) and §(t) = —w?8(t), and holding the
b.c’s for any 0(t), these are rewritten in terms of ¢p(x) only
$(0) = 0
El$"(0) + Jo w?¢’'(0) =0
EI"(£) — ], w?¢'(£) = 0
El¢p"'(£) + my w*¢p(£) = 0
= using the general solution for ¢p(x), a system of linear homogeneous
equations follows

AELp, L, Jo,mpy,my, ) =0 (m)

T oW

to exclude the trivial solution, the determinant of matrix <A should
be set to zero (eigenvalue problem)
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Dynamic modeling

Characteristic equation

det A(fB) = 0 at infinite (but countable!) real, positive, increasing
roots f = f; (i = 1,2,...) of a transcendental characteristic equation

2
(c sh - —%,84(]0 +J,)(c sh — s ch) —%9,83cch
——,8 (1+c h)+] ]p,86(csh+sch) —%37(1—cch)= 0

where s = sin 8, ¢ = cos 3, sh = sinh f, ch = cosh

" thisis an exact result that includes common physical approximations

= pinned-free model: Jo = m, =], =0 = |csh—sch=0

= clamped-free model: Jp 200, m, =], =0=_|1+cch=0

cantilever beam />

characteristic equation
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Dynamic modeling

Eigenvalues (frequencies) and eigenvectors (modes)

= associated to each root f3; > 0 of the characteristic equation we have

" an eigenfrequency w; = \[Elﬁf/p characterizing a resonance

(system vibration)

= an eigenmode ¢;(x) —a spatial shape of the deformed arm
(defined up to a constant)

= 3 deflection time variable §;(t) (oscillatory) weighting the shape

= afinite-dimensional approximation of the distributed bending
deformation is obtained by truncation

w(x, t) = %i2, ¢:(x) 6;(8) = X5, ¢ (x) 6;(0)

where 1, is the (arbitrary) number of orthogonal modes included

= 3 proper normalization of the eigenmodes is chosen (an integral of
¢;(x) and ¢;(x) equals 1 — or equals the total link mass m ...)
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Dynamic model

Equations of motion of a single flexible link

= add motor torque T (performing work on the rhs of the E-L equations)
* the final dynamic model is simple (after a quite complex analysis...)

J6 =1
8 + wis; = ()T  i=12,..,n,

notable properties

* rigid body motion 8(t) and each vibratory deflection §;(t) are
dynamically decoupled when the system is in free evolution (7(t) = 0)

= each mode is excited by an input 7(t), with a weight that depends on

¢;(0) —the tangent at the link base to the i-th deformation mode shape

= arm stiffness is summarized by the (squared) eigenfrequencies a)l-z

excited by §;(0) # 0 (absence of damping in the modeling process)

Rome, May 2023 EECI-1GSC—-M16 17



Dynamic model
Addition of dissipative effects

" modal damping can be easily included in the dynamic model

J6 =1
Si + ZziwiSi + (l)lzgl = ¢{(O)T [ = 1,2, ey, Mg

with damping coefficients ¢; € [0,1)

: : : : : T
" its matrix version, with coordinates g = (8 &, ...5ne) € R"et!
shows the classical mass-spring-damper form

Mg+ Dqg + Kq = Bt
with

M=<] Ine> p=(" zzg) k= (" QZ) B=(£,)

Q = diag{w; .. a)ne} Z = diag{{; ... (ne} @' = diag{¢;(0) ... bn, (0)}
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Dynamic model

Change of coordinates

= with a different (but equivalent) choice of generalized coordinates,
the input T appears in just one equation
(6,8) =(6,64,...,6n,)

U Ne
(0.,8) = (0 + 67D, 5) = (9 n $!(0) 5i,51,...,5ne)

T i=1
clamped angle
at beam base

leading to

<—]]c1>’ I, J:ij)cllnT'qn'T) (%) i (Fv ZZQ) (i'c) +(7 QZ) (950) - (o)

with diagonal damping matrix D (including motor viscous friction E,),
same stiffness K matrix, but full inertia matrix M
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Choice of system output

Different angles to be controlled

= joint level (clamped angle)

Ne
y=0,.=0+ z (,b{(()) 0O; }Ci_rg iix) = ¢;(0)!

always minimum phase: no zeros in right-hand side of complex plane

" tip level (angle pointing to the t|p

‘9t_9+z¢

is typically non-minimum phase (at Ieast for no tip payload)

= angular output at a point x € [0, £] along the flexible beam

y =0, —9+z¢()

various cases: may also have no zerosI

Rome, May 2023 EECI - 1GSC—-M16 20



Transfer functions

Joint and tip level

" torque T — clamped joint angle 6.

Ne

be(s) _ 1 z $1(0)2
7(s) Js? s2 + 2{jwis + w?
]H (2 +2(1ws+w2)+522 1 P; (0)2]_[]#(5 + 2{jwjs + wj )

s2T17¢,(s? + 2¢w;s + w?)

PC(S) =

" torque T > tip angle 6;

Ne

O:(s) 1 ¢;(0) p:i(£)/¢

_I_
7(s) Js?2 — s? 4+ 2{;w;s + w?

_}H (52 +2¢w;s + wf) +s2 X0 (i (O)d’({)))]_[]il(s + 20w ]S+a))
- S ]_[l.zel(s +2(l-a)l-s+a)i)
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A numerical example
A simple MATLAB code is available ...

" physical data of the flexible arm —without payload (m, = J, = 0)
]0—0002[ ] £=1[m],p =05 [—] El = 1[Nm?]

" by considering up ton, = 5 modes (and no damping), we obtain

02 = diag {421.585,3122.603,10273.194, 31562.286, 82049.350}
wf = 2nf)? = eg.,f, =V421.585/2m = 3.2678 [Hz]

CI)’T=[7.8259 14.6803 12.1284 6.4761 3.7648 ]

CI>§:[—2.6954 2.3268 —2.4970 2.7380 —2.7982]

... hote the alternating signs in the sequence of ¢;(£)’s
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Mode shapes

Shapes of spatial dynamic deformations of the flexible arm

= first four bending mode shapes (normalized to 1) at resonant frequencies
f1 = 3.2678, f, = 8. 8936 f3 = 16. 1314 fa = 28.2751 [Hz]

2 25
Al
vl
05
# nodes
T w.r.t. the
I ;o oz o os 5os o o5 o5 1 | neutral axis
= modal
index 1

_ I I Il Il Il Il i i i L L L L L L L L L I
~o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
x_[m] x [m]
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Pole-zero patterns

Joint and tip transfer functions (no modal damping)

= first two modes = adding the third mode
w; = 20.5325, w, = 55.8801 [rad/s] = 101.3565 [rad/s]
poli-zeri FdT di giunto (2 modi) poli-zeri FdT di tip (2 modi) poli-zeri FAT di giunto (3 modi) poli-zeri FdT di tip (3 modi)
60 T T T 60 T T T 150 T T T 150 T T T
X X
40t | . 40t 100} >< 100} ><
° befare 2 ‘
20} X ) 20} X 501 X 501 8
@]
‘ o ‘
2 ) >(£< (ﬁ X (>"<) 0
< 0 X < oo o X o o < R < 0 o xlo
& ® @ & ] ‘
E © E E X E X
non-minimum © o
-20 X -20 + X : -50 % -50 %
0 ;
-40 | ‘ 40 | -100 } X -100 f (pon-minimum
X X
-60 ‘ : : -60 : : ‘ -150 ‘ : : -150 : : :
-1 -0.5 0 0.5 1 240 -20 0 20 40 -1 -0.5 0 0.5 -100  -50 0 50 100
Real Axis Real Axis Real Axis Real Axis
clamped joint tip clamped joint tip
output output output output
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Frequency responses

Bode plots with the first three modes of the flexible arm

w; = 20.5325, w, = 55.8801, w;= 101.3565 [rad/s]

clamped joint output / tip output
= / 1 @ 50f | | | :
= =
() ()
S LT g B ) «
c : c
(o)) (@)}
© ©
= = 50 .
100 R R L L L 100 L L R R R ‘
10" 10° 10' 10° 10° 10" 10° 10' 10° 10°
Frequency (rad/sec) Frequency (rad/sec)
0 T T A | T T “r O T T T T T A | T T AR |
b5 & -360 - .
T 90} °
(0] [0
(2] (2]
© ©
= <
D— n—_720 -
-180 3 J ‘ | ‘ ‘ ‘
I I I I I I
10" 10° 10' 10° 10° 10" 10° 10' 10° 10°
Frequency (rad/sec) Frequency (rad/sec)

mag: multiple anti-resonance/resonance patterns mag: pure resonances (no effect of specular zeros),
(similar as the single pattern for an elastic joint) with multiple 0dB crossing if gain is increased
phase: nominally, there is always a stability margin phase: phase lag increases when adding modes ...
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Control-oriented remarks
Single flexible link

* in the pole-zero patterns of P.(s), zeros always precede and alternate with
poles on the imaginary axis = input-output passivity property!

* the zero patterns of P;(s) are always symmetric w.r.t. the imaginary axis
= non-minimum phase property = no (direct) system inversion is feasible!
= similar properties can be seen also from the frequency responses (Bode plots)

* modal damping does not modify the non-minimum phase nature of P;(s)
= it destroys the perfect symmetries in the zero-pole patterns of P.(s) or P;(s),

but the open-loop system remains anyway asymptotically stable

= when ‘'moving’ the output along the link (P,.(s)), zeros migrate on the

imaginary axis and different phenomena occur

= total pole-zero cancellation when pointing at CoM (vibrations become
unobservable from the rigid motion variable 8)

» for aspecial x™ € (0,?), all zeros vanish together at infinity: P,+(s) has then
maximum relative degree equal to 2(n, + 1)

= beyond x* (e.g., for x = ¢, at the tip), all pairs of zeros reappear in R* /R~
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Dynamic modeling

Robots with multiple flexible links

= 3 convenient kinematic description should be adopted, both for rigid body
motion and flexible deformation

= differential relationships for computing kinetic and potential energy, within
a Lagrangian approach

= use recursive procedures for open chains of flexible links, as in rigid case
= modeling results from the single link case can be embedded (with caution
on boundary conditions) in the description of each flexible link of the robot
= to limit complexity, we sketch here only the planar case e
= robots with N flexible links
= under small bending deformations
limited to the plane of motion
= possibly including gravity

QUANSER 2 DOF Serial Flexible Link
with strain feedback

Without vibration control
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Kinematics
Planar robots with multiple flexible links

here, N = 2

for link 1
= rigid motion by clamped angle 6;(t); lateral bending w; (x;,t), x; € [0, ¢;]
awi
)

= position vectors and (rigid/flexible) rotation matrices (Wl-’e =
Pxi=t;

L =
Pi (xl) (Wi (xl)) B (COS Qi — sSin 01) E o= ( 1 _Wl,e)
e = pi(€) l sinf; cos0; Y \wyg,
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Kinematics

Planar robots with multiple flexible links

" recursive equations for absolute quantities in base frame ()?0, 170)
pi =1+ W; 'p; T =T+ Wy 1y W= Wi Ej g A

= differential kinematics
= absolute angular velocity of frame (X}, Y;)

[ -1
— !
hi= ) G+ ) e
j=1 k=1

pi =17+ W ‘o + W Dy
with

Pi= (Wi?xi)) (

link extension
is neglected
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Kinetic and potential energy

Planar robots with multiple flexible links

N N
T:ZThi-I_szi-l_Tp
=1 i=1

= kinetic energy of hub i

1 1

_ cT . .
Ty = o My Ty +E]hiai

2

= kinetic energy of link i
1 (4
Ty = 5[ p; (x)p{ (x)p; (x;) dx;
0

= kinetic energy of payload
1

T, = _mp".ﬂlzlw+17;N+1 + E]p (ay + Wll\le)z

2

N N
U =nghi +ZUg{)i

i=1 i=1

" gravitational energy of hub i
Ughi = —MpiJo T
" gravitational energy of link i
Y
Upsi = —g8 j pi () pi(xdx,
= gravitational energy of payload

ng mpgorN+1

= elastic energy of link i
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Euler-Lagrange equations
Planar robots with multiple flexible links

= introduce any finite-dimensional discretization for w; (x;, t)
Nej

wi(x, t) = z @;;(x;)0;;(t) t=1,..,N
j=1
= the Lagrangian is given in terms of N + M generalized coordinates,
with M = YV . n,; (flexible variables)

L=T-U=L{8:;()}{6;®}{6:®}{5:;;(®D

and satisfies to

d (0L dL ,
: —— =T l=1,...,N
dt\ad,) a6,

e aL—O =1 i =1,..,N
dt 6611 6511_ ]_ yey N L=1, ...,

being 7; the torque delivered by the actuator at joint i

Rome, May 2023 EECI-I1GSC—-M16 31



Dynamic model

Planar robots with multiple flexible links

= the general dynamic model (with modal damping) is then given by

(Mee(e; 0) Mpgs(6,0) ) ( i ) N (CQ(Q, 5, 9,8))
Mgs(6,8) Mss(6,8)/\ 6 cs5(0,8,0,08)

96(6,0) 0 T
+(g5(0,5))+(D8+K5) = (o)
with blocks of suitable sizes (e.g., Mgs in the inertia matrixis N X M)
= ..orinthe more compact form
M(q)g +c(q,4) +g(q) + ( 9 ) = (T)
D6+ Ké 0
being g = (8,6) € RVNtM

= as in the rigid case, the vector of centrifugal/Coriolis terms can be
factorized using the Christoffel symbols

N .  (Se0(q.9) Ses(q.9)\ (¢
@) =350 = (559(61» ) Ss5(0.) ) (5)
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Model properties

Planar robots with multiple flexible links

= matrix M — 2S is skew-symmetric —also blockwise, e.g., Mss — 2555

= the dynamics of flexible robots can be expressed in terms of a set of
dynamic coefficients a € RP that summarize the mechanical (rigid +
flexible) properties of the links

v(6,6,6,6,6,8)a =)

= alinear parametrization is useful for the experimental identification of a

= possible choices of the assumed modes — i.e., the basis functions
®ij (x;) for describing the bending deformation shapes of the links

= admissible functions satisfy only geometric b.c.’s
= comparison functions (Finite Elements, Ritz-Kantorovich expansion)
satisfy also natural b.c.s

= orthonormal eigenfunctions (links models as Euler-Bernoulli beams) lead
to simplifications in inertia submatrix M55 (block diagonal, constant)
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Some model simplifications

Planar robots with multiple flexible links

= 3 common approximation evaluates the total kinetic energy in the
undeformed arm configuration, i.e., with deflections 6 = 0

= M = M(6), and thus ¢ = ¢(8, 6, 8)
= cg loses its quadratic dependence on )
" moreover, if Mgs is constant
= c5 becomes a quadratic function of 8 only

= cg loses its quadratic dependence on )
" if also Mgs is constant

=>cs =0
= cg becomes a quadratic function of 8 only

= assumption of small deformations of each link implies gs = g5(0)
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Control problems

Formulation of objectives and operative conditions

= regulation to an equilibrium configuration (9, 5,0, 8) = (8,4,6,4,0,0)
= only a desired joint position 8 is given, §,4 is to be determined
= may use full or partial state feedback, depending on available sensors

= G,; may come from the kineto-static inversion of a desired Cartesian
pose/position 1y, although no closed-form inverse solution exists

= direct kinematics of flexible link robots is in fact a function of all the
rigid and flexible variables: r = kin(8, 6)

= asymptotic tracking of a joint trajectory 8,(t) —the easy case
= asymptotic tracking of an end-effector trajectory r;(t) —more difficult

= in both cases, we assume that the full state is measurable

= tracking control laws will stiffen the flexible arm at the chosen output

" rest-to-rest motion in given time T (not just a trajectory planning task!)
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Sensing requirements

For full or partial state feedback

= full state feedback requires sensing of
= joint/motor position and velocity variables 8 (encoders) and 6 (tacho)

= deflection variables § and deflection rates 6 (no direct sensor available)
= at least an encoder on motor axis + online numerical differentiation

= different sensors can measure the link deflection 6 (or deformation
related quantities), each with pros and cons

" strain gauges, accelerometers, optical sensors, video camera (on board
or fixed in workspace), piezoelectric actuation/sensing devices, ....

= use of state observers, especially in linear case (separation principle)

Torsional spring

/

Piezoelectric actuator

Piezoelectric sensor
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Regulation with joint PD + feedforward
Partial state feedback solution

= consider the control law
T=Kp(0g—6) —Kp0 + gg(04,64)

with symmetric (diagonal) Kp > 0, K > 0, and link deflection at
steady state corresponding to 8, given by

8 = —K 'gs(04)

Theorem
If P

H H<a and Amin(op K)>a>0
then the desired closed-loop equilibrium state (64,64, 0,0) is
globally asymptotically stable <
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Regulation with joint PD + feedforward

Sketch of analysis

= Lyapunov-based proof, using LaSalle (as in the flexible joint case™)

= determination of lower bound

= in view of small link deformations

1 2U
U, ==8TKS§ < U = |6l < 2T <o
e 2 emax ” ” V Amax(K)
= bound on the gradient of the gravitational term
ag ‘ ZUe max
—|| < ag + 21 ||6]| £ ap + @ : =«
aq | ! ° 1»V Amax(K)

" in the absence of gravity, a pure PD law on the motor position error

» for a desired tip pose 14, compute 8, solving via iterative techniques

kin(8,-K 1gs(0)) =14
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Regulation with joint PD + feedforward

Numerical results

= a planar two-link flexible robot with gravity (in vertical plane), with two bending
modes for each link at f1; = 1.4, f;, = 5.1and f,; = 5.3, f,, = 32.4 [Hz]

= at rest from the downward vertical 6(0) = (—90°,0°) to 8; = (—45°,0°)

50 | joint gngles | 20 | joint torques

o=17
Kp = (18,18) O

K, =(10,2) £
—SO/ﬁ O e - eI -

]

U _ 10, -

Nm
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-100 ‘ | ‘ -10
0 1 2 3 4 0 1 2 3 4
sec sec
01 }st link dgflection§ 0.005 2nd link d‘eﬂectlons
no need to use O e . Y R A i
full state e g
feedback 0.1 : 4 -0.005 i
for vibration v
suppression ... g, ‘ ‘ ‘ 001
0 1 2 3 4 0 1 2 3 4
sec sec
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Joint trajectory tracking

Control design approach

= assume that
= the dynamic model of the (planar) robot with flexible links is available

" the system state is fully measurable

= given a desired joint trajectory 8, (t) € C#, we proceed by system
inversion from the joint position output

= a nonlinear static state feedback is obtained that exactly linearizes and
decouples the input-output behavior, leaving an unobservable internal
(nonlinear) dynamics

= exponential stabilization of the output tracking error is performed on
the linear side of the problem

= stability/boundedness of the internal dynamics should be enforced
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Joint trajectory tracking

System input-output inversion

* from second set of M equations in dynamic model, solve (globally) for
6 =-—Mz3(cs+gs+KGS+ D6+ Ms6)

= plugitin the first set of N equations = effects of flexible dynamics
on rigid dynamics

(Mgg — MgsMzsMgs)0 + cg + gg — MgsMzg(cs + gs + KE+D6) =1

= the matrix weighting 6 has always full rank (as Schur complement of
an invertible matrix)

(M99 M95)( [ 0) _ (Maa — MosMgs Mjs Mes)

Mbs Mss) \=MssMgs 1)~ 0 Mgs

= § depends on T in a nonsingular way, and thus the output 6 has
uniform vector relative degree {2, 2,..., 2}
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Joint trajectory tracking

Input-output decoupling and exact linearization

= define the nonlinear control law
T = (Mgg — MgsMz3 Mps) a+ cg + go — MgsM5z3 (cs5 + gs + KS + DS)

in which the only inversion needed is of the simpler inertia block Mg
" the closed-loop system is

6=a
6§ =—Mzs(Mpsa+cs+gs+ Do+ KS)
» for exponentially stabilizing the output tracking errore = 6,; — 0, set
a = éd + KD(éd — 8) + Kp(ed — 9)
with (diagonal) Kp > 0, Kp > 0
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Joint trajectory tracking

Analysis of the internal dynamics

= zero dynamics: when the output 8(t) = 0 (or is a constant)
§ = —Mjz(cs + gs + DS + K&5)
has an asymptotically stable equilibrium at 6, = —K 1 g5(0)
= shown via Lyapunov argument (the entire closed-loop system is stable)
= clamped dynamics: when the output 8(t) = 0,(t)
§ = —Ax(t)6 — A ()6 + f5(¢)
where (in the simpler case of inertia matrix independent from 6)
f5(t) = =Mz5 (84) (MgS(Hd)éd +¢5(04,6q) + 95(9d))
A;(t) = Mg5 (8)K
Ay (t) = Ms5(64)D

all time-varying functions are bounded = closed-loop stability holds
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Joint trajectory tracking

Numerical results

= a planar two-link flexible robot without gravity (in horizontal plane), with two
modes for each link at f;; = 0.48, f1, = 1.8and f,4 = 2.18, f,, = 15.9 [HZ]

= rest-to-rest sinusoidal trajectory: 8,;(0) = (0°,0°) to 6,4(T) = (45°,45°)inT =8

K. — ( 1 4) joint angles joint errors
Kp=(2,4)  40f 2 1 ost -
low §a|.ns, LB gl = . :

but “stiffer” = 1 3

at joint 2 ; o W

{s]

1p errors joint torques

0.1

non-minimum __92

. 0.05
phase behavior_

of 2nd link tip: E z 0
error yi; — 84z -0.05 -
is opposite to 1 _ L | - ‘ o
error 6, — 04, 0 5 10 15 R 5 10 15 ——=joint1
(s] [s) ---=joint 2
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Joint trajectory tracking

Final remarks

input-output linearization as nonlinear/MIMO counterpart of inverting
P.(s) = 6.(s)/t(s) with minimum phase zeros (stable zero dynamics)

the ‘stiffer’ is the tracking of a desired trajectory at the joint level, the
less vibrational energy is dissipated in the rest of the flexible arm!

a nominal feedforward is computed by integration of flexible dynamics
§=—Mzs5(04,8)(cs(04,6,04,6) + gs(84) + DS + K& + Mgs(64,6)0,)
starting from 6,;(0) = &,,64(0) = 8, (typically, both = 0) = nominal
(bounded) evolutions (84(t), 64(t)) associated to the output 84(t)

use of (84(t),84(t),04(t),84(t)) in the inversion control law (without
nonlinear feedback) yields 74(t) and a simple local tracking controller

T=14(t) + Kp(04(t) — 0) + Kp(04(t) — )
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End-effector trajectory tracking

Control design approaches

accurate end-effector trajectory tracking is the "hardest’ control
problem for robots with flexible links

direct application of inversion control to the end-effector/tip output
leads to closed-loop instability (viz. unboundedness of internal state)
" |inear (single-link) case: non-minimum phase tip transfer function

* nonlinear (multilink) case: unstable zero dynamics in end-effector motion
main ideas suggested in the literature

" resort to tailored feedforward strategies (input shaping, flatness,
non-causal bounded solutions for exact output trajectory reproduction)

= use feedback for stabilization to a suitable state trajectory, avoiding
cancelations (causal solutions for asymptotic output trajectory tracking)

choice of smooth trajectories inducing smaller arm deflections is in
any case of interest (but not sufficient)
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Stable inversion of non-minimum phase system

Worked out SISO linear example for an exact and causal solution

a plant with transfer function

py =28 _ s 1
u(s) s(s+2)
an equivalent minimal (reachable and observable) state-space realization
x=Ax+Bu y=Cx C(sl —A)™ B = P(s)
A=(8 _12) B=((1)) C=(-1 1)
or X1 = Xy X, = —2X, + U Y =Xy — Xq

desired output trajectory
yva®) =1—e"* a>0 (y4(0) = 0)

we proceed first in the time domain and then in the Laplace domain
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Stable inversion of non-minimum phase system

In the time domain

= differentiate the output as many times as needed (here, just once) to obtain u
Y =Xy — Xq Yy=X,—X1=-—3X,+U
= the inversion-based control
u=3x+yq = ug(x,yq) = Y = Ya

guarantees, with y(0) = x,(0) — x,(0) = y4(0), that y(t) = y,(t), vVt = 0,
provided the evolution of the internal state remains bounded

= the inverse system of our plant is
§=A8+Buy(&,y,) u=ug(x,y4) with £(0) = x(0)
or & =6, &=+ V4 u =38+ Yy

which is clearly unstable: for a generic initial condition, its evolution is unbounded ...
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Stable inversion of non-minimum phase system

In the time domain

for the desired output trajectory, the second state variable evolves as

X, =X, + V5 = x5 + ae”*

its solution is

x,(t) = (xZ(O) + - :x_ 1) el — (a :l_ 1) e~ %t

and is bounded if and only if x,(0) = —a/(a + 1)
from y4(0) = 0, it also follows that x;(0) = x,(0) = —a/(a + 1)

with these initial conditions, the state evolution is bounded under inverse control

(e —@+D) O =-( f‘r ) et

x1 (1) =cx+1

and the exact trajectory tracking problem is solved by

g (t) = 3, () + ya(t) = (“(“ — 2)) et

a+1
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Stable inversion of non-minimum phase system

In the Laplace domain

invert the transfer function of the plant

compute in the transformed domain
s+ 2

ug(s) = PH(s)yals) = ——

however, the transfer function is a ‘complete’ representation of a plant only in the
zero state (x(0) = 0)

Va ()

we should take instead the initial conditions into account when using the Laplace
transform of the state and output equations in time, i.e.,

sx(s) =x,(8)  sx,(s) = —2x,(s) + u(s)
y(s) = x,(s) — x1(s)
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Stable inversion of non-minimum phase system

In the Laplace domain

= the complete (input + initial state)-output mapping in the Laplace domains is thus

s — (x2(0) — x1(0))s — (2x1(0) + x,(0))
y(s)—S(S+2)u()+ s(s +2)
_ N(x(0), )
= Pls)uls) + s(s+2)
= inversion for a desired y,(s) is given by
N(x(0), N (x(0),
ug(s) = P7(s) (yd ()~ S)) = P o)~
= the Laplace transform of the desired output trajectory y,(t) is
B 1 1 0
yd(s)_;_s+a “=
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Stable inversion of non-minimum phase system

In the Laplace domain

= expansion in partial fractions/residuals of u;(s) leads (with tedious passages) to

(s) = s(s+2) (1 1 ) N(x(0),s)
“als) = s—1 \s s+a s—1
_(s+2)  s(s+2)  N(x(0);s)
T s—1 (s—-1)(s+a) s—1
_ 3 _ (3—-a)s+a _ N(x(0),s)
=1+ s—1 (1 (s—1)(s+a)) s—1
3 3/(a+1) a(2-a)/(a+1) _ N(x(0),s)
os—1 s—1 s+a s—1
5+ )
3 3a/(a+ 1) — N(x(0),s) N ala —2)/(a+1)
B s—1 s+a

= to discard the presence of the unstable polein s = 1 (i.e., of the unbounded
exponential et in the time domain), it is necessary and sufficient that

3a 3
N(x(0),s) ~ 2+ 1 = x(0)—x,(0) =0 2x,(0) + x,(0) T T a4 1

which lead to the same initial conditions (and inversion command) already found
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Inversion in the frequency domain

Non-causal exact reproduction of end-effector trajectories

" to get rid of initial conditions, the idea is to view the desired trajectory
as part of a periodic profile = use Fourier transform (in linear domain)

" single-link flexible arm (with generic variables)
T oo .
Mgg mag) (0) 0 0 (9) 0 0\(0)_ (T
" tip position output
6
y© =01 D (5)

= dynamic model rewritten in terms of (y, §)
T T .o .
Mpg Mgsg — MggCe (3’) 0 O (Y) 0 0\(y\_ /(T
.t s —
(m59 m55 — m89Cg> 5 (O D) 6 (O K) (6) (O)

non-symmetric!
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Inversion in the frequency domain

In the Fourier domain

= take bilateral Fourier transforms (at the acceleration level)
+ o0

¥ (w) = j oot §Odt A(w) = j exp(jot) §(t)dt

— CO

T(w) = f+ooexp(ia)t) T(t)dt

and obtain in the dynamic model

T T

m mt, — mggc .

00 560 616 e . (Y(a))) _ (T(a)))
+—D—-——K|\A 0

Mgy Mgs — MggCy i 2 Aw)

= solve for the accelerations and then for the torque, by ‘inversion’ in
frequency domain

(Y((U)> _ (911(60) ngz(w)) (T(C‘))) = T(w) =

Y(w) = r(w)Y(w)

Aw) g21(w) Gy(w) 0 g1 (w)
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Inversion in the frequency domain

Computational procedure

= for a zero-mean y,(t), with y,(t) = 0fort < —T/2andt >T/2,
acceleration can be embedded in (—o0, +00) as a signal of period T

= i, (t) = Y (w) — Ty (w) — 74(t): finite inverse Fourier transform

+00 +T/2
W®= | rt-aa@do=| rt-0)je0)do
— 00 —-T/2
expanding beyond the definition interval [-T /2, T /2] (non-causal)
I e
y4() of T =055 ol | |
e i |
| T
—40 |— ?\\\/\lﬂf Ta (t) Td ~ 0.95 S,
—-60 — | :
e A 5a(®
O, | SCRETOUN | SIS . SRR (WSt

=120 = =
0.00 0.25 0.50 0.75 1.00 1.25 1.50

TIME (SEC)
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Inversion in the frequency domain
Remarks

= outside the given interval T of output motion, the input torque has

= 3 pre-charging action, to bring the internal flexible state from rest to a
suitable initial state att = — T /2

= adischarging action, to bring the internal flexible state from the final
state at t = T /2 back to rest

= from the obtained initial state att = — T /2 (unique for the given
trajectory) inversion control gives a bounded internal evolution

= truncations (in time and/or in frequency) are inherent to the actual
computations (FFT)

= the method was recast also in the time domain (stable/anti-stable
dynamics) and extended to the (multilink flexible) nonlinear setting

= by iterative linear approximations along the nominal trajectory (starting
from the rigid body motion)
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Inversion in the frequency domain
Application to the two-link FLEXARM

bang-bkang (.
accelerations | | §.
from {Q9,0°) | %

to (90%90°) 17

inusoidal

elerations
m (0°,0°)

(90°,-90°)

1075‘ é é )‘ilerazionié é ; ® 02l R ?// 0
exponential convergence rate A ==
of iterations (linear in log scale)

L L L L
0.6 0.7 0.8 0.9
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End-effector trajectory tracking by state feedback

Based on the general regulation theory

" the end-effector trajectory tracking task in robots with flexible links
is an instance of asymptotic output tracking problems (e — 0) with
internal state stability —including disturbances (regulator problem)

= well-established solution techniques in the linear case and, by now,
also in the nonlinear case

" to avoid internal instability during output tracking, the idea is to
compute a ‘natural’ (and bounded!) state trajectory

= that corresponds to the desired output trajectory

= with the desired output trajectory (and the disturbances, if present)
being generated by an autonomous dynamic system (exosystem)

= stabilizing the system with a feedback on the state trajectory error

" including in the control design also a feedforward that keeps the error
to zero in nominal conditions
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End-effector trajectory tracking by state feedback

Linear regulator problem

let the state-output-error equations (with x = (q, q)) of the flexible arm be
x =Ax+ Bt y=~Cx e =Y — Y4
a (smooth) desired output trajectory is assumed to be generated by the
autonomous (anti-stable) exosystem (with state w)
w=5Sw y;=—-0Qw
when (4, B) is stabilizable, the problem has a solution (Vx(0), w(0)) if and
only if the regulator equations are solvable in matrices Il and T’

I[1S = AIl + BT ClT4+Q =0
a state feedback + feedforward controller is then
T=F(x —IIw) + T'w
= with gain matrix F such that A + BF is Hurwitz (Re(4) < 0)
= x4(t) = [Iw(t) is the desired state trajectory: x4(0) is the unique initial
state giving a bounded state solution under inversion control!
= from x4(0) = IIw(0), 74(t) = T'w(t) will give exact trajectory tracking
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Output regulation by state feedback

Reprise of worked out SISO linear example of a non-minimum phase system

= plant (withazeroins = 1)

x=av+Bu y=cx A=() 1) B=()) c=(-1 1)

= exosystem for the (class of) output trajectories y4(t) =1 —e %, a > 0

w=sw=(0 2w = wi®=wi(0) w(0) = wy(0)e

Va=—0Qw=(1 -1)w = yi(Olwoy=q1n=1—e"
= regulator equations for IT (2x2) and I' (1x2)
0 —CUT12) o T21 Uy, ( 0 O)
( 0 —QaTl 9o B ( _27T21 —27T22) t+ Y1 V> ( 11 )

(21 —T11 T2 —T12)+ (=1 1)=(0 0)

at

= solution
1 w,(0) _
B —1 21 _ 0 . ﬁ e % — Wl(O)
n=| = ") r={acn) = xn©- ws0)
41 a+1 — T+1 e

stabilizinggains F = (F; <0 F,<0) 140 = wy(0)(ala —2)/(a+1))e %
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End-effector trajectory tracking by regulation

Numerical results

= asingle-link flexible with three modes at f; = 3.2, f, = 8.9 and f; = 16.1 [HZ]
= sinusoidal tip trajectory: y;4(t) = (m/2) sin(2rt/3)

uscita tip (deg)

gains F

place all 100,

eigenvalues
in—10

errore al tip (deg)

-80 -

tip angle output

deflection variables

A
RIRRY

00

70

60
50
40t
3o

20

ot = §
=6,
=6,

delta (m)
o o
o o
= o

=)

torque input

variabili deformazione

3
2

-0.02 -

t|p traJectory error

10

-0.03
0

T

100

uscita al giunto (deg)

| clamped joint angle (—)
and desired tip trajectory (---)

100 I I I I I I I I I
0 1 2 3 4 5 6 7 8 9 10

Rome, May 2023

EECI - 1GSC—-M16 61



End-effector trajectory tracking by nonlinear regulation
Experimental results on FLEXARM

= nonlinear version of the regulator equations ...
= two modes of the flexible forearm at f; = 4.7 and f; = 14.7 [Hz]
= rest-to-rest 7th-order polynomial trajectory for (64, y¢2)
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Rest-to-rest motion

Problem formulation and solution approach

= task: execute a rest-to-rest slew motion with a flexible link robot
between two (undeformed) configurations in given time

= jssue: fast transfers induce residual oscillations, extending the actual
task completion time

= strategy: design suitable system outputs and plan their trajectories
(and associated torque profiles) so to induce a complete absence of
vibrations at the given final time
= idea: find outputs with maximum relative degree (no zero dynamics)
= closed-form solution in the SISO linear case (absence of zeros)

= direct extension to MIMO nonlinear case (flat outputs to be found,,
meaning that the system is exactly linearizable by dynamic feedback ...)

= 3 feedforward torque command, that can be made more robust, e.g.,
by adding a PD action on errors w.r.t. the associated joint trajectories
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Rest-to-rest motion

Algorithm for a single flexible link

]65 =T Si + a)l-zc?i = (,b{(O)T (i =1,2,..,n,
* choose a parametric output y, with yet unknown coefficients ¢;’s

Ne
y=0+) " cbi=0+cTs
i=1
" impose input T-independence of the successive (even) derivatives

1

y=0+X"° 6 = G + X0 Ciq’)l{(o)) T—Yre qwié = Xgi(0) = —

J
d4 e ! e !
yl === — 3" qw?¢p{(0)T+Y¢ cwid; = Yqwipi(0)=0

and so on, until a set of n, equations is obtained
= the torque 7 will appear in the 2(n, + 1)-th output derivative (the last one)

= solve for the coefficients ¢ = (cq, ..., Cp, )

- diag{¢1(0), .., pp (0} c=(=1/] 0 .. 0)

with a Vandermonde matrix |/ generated by (a)f, e a),%e)
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Rest-to-rest motion

Algorithm for a single flexible link

= the torque 74(t) is found by inversion of the highest derivative, imposing

y[Z(ne+1)] _ y£2(ne+1)]

for a suitably planned trajectory y,(t),t € [0, T] (the given transfer time)

= e.g., by solving the interpolation problem

ya(0) =6 ya(M =6 y O =y T)=0 i=1.,2n+1
for which a polynomial of degree 4n, + 3 will be sufficient

" in the Laplace domain, imposing no zeros to the transfer function leads to
the closed-form expression

Tq(s) = l—[ne] " (52 1_[(52 + wf)) Va(s)

i=1"" i=1

to be transformed back in time to yield 74(t)
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Rest-to-rest motion

Numerical results

= single flexible link with n, = 3 modes at f; = 4.05, f, = 12.34 and f3 = 22.87 [HZ]
= angular displacement of 6 — 6; = 90°inT = 2s
= 19-th degree polynomial (also with continuous torque derivatives)

100 0.025

« output deflection
= trajectory variables stroboscopic
70+ o001 al"m mOtIOn
’ jZ: 0.005 |- 06¢ ‘
30 -0.01 0al ‘
10 0.02 o2l
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g angle - £, e
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30+ // t' m
20t /b p |
; angle -

Rome, May 2023 EECI - 1GSC—-M16 66



Rest-to-rest motion

Remarks

" method applies to any linear model of a single-link flexible arm
= output design is related to the controllability canonical form

= in the limit, design output is a specific point x* on the physical beam:
foragiven ng, ¢; = ¢;(xn,)/xn, while lim x; =x~

’ne—)OO

" modified output structure for modal damping in the dynamics

Ne . Ne .
y=9+z C151+V9+z dl5l
i=1 =1

= for better torque/time performance, use smoothed bang-bang or
bang-coast-bang torques (with polynomial interpolating phases)

= the planned feedforward command can be combined with an error
feedback action, e.g., on the clamped joint reference (a by-product)

T=14(t) + Kp(0.4(t) — 9c) + Kp (éc,d(t) - éc)
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Rest-to-rest motion

Experimental results on DMA Sapienza flexible link

» data: ¥ = 0.655m, p =0.7733 kg/m, EI = 6.22 Nm?
= three modesat f; = 14.4,f, = 34.2 and f3 = 69.3 [Hz]
= rest-to-rest 19th-order polynomial trajectory for the design output

| control torque slewoft/2inT =1s
1 (including PD)

-08

Panasonic MPEGT Encoder

tipangle |
(deformation)

video
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Rest-to-rest motion
Numerical results on FLEXARM

= two flat outputs can be found (with relative degrees 4 + 4 after dynamic extension
with 2 integrators), when only one mode is considered (state dimension = 6)

= rest-to-rest 11th-order polynomial trajectories for the two design outputs

control torques

ul, u2

from (0,0) to (m/2, m/2)
inT =25

first deflection
detta variable
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Other issues
Many aspects have been left out!

= spill-over effects
= when truncating infinite-dimensional models
= vibration damping
= especially in regulation tasks
= strain feedback
= direct use in the control design and analysis of the PDE equations
= handling model uncertainties and disturbances
= model identification with link flexibility, robust and adaptive control
= state observers
= reconstructing missing information from different sensor suites
" interaction with the environment
= collision detection and reaction, control of the exchanged forces
= other control methods
= singular perturbation approach, iterative learning, optimal control, ...
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Conclusions
... in short

= extra effort in dynamic modeling pays off
= model-based controllers for accurate trajectory tracking
= proof of stability for model-independent regulation controllers

= more classical control strategies tend to suppress vibrations
wherever they arise
= outcome of our analysis is that the controlled system should be
brought to a vibratory behavior compatible with the given output task
= paradigm shift
= intentional deformation and flexibility to be preserved, rather than
handled as a parasitic effect to be eliminated by control
= robots with flexible links versus robots with flexible joints

= although mechanically similar in a first approximation, they are
intrinsically different from the control point of view
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