IEEE/RSJ International Conference on Intelligent Robots and Systems

IROS2018.org / October 1 - 5, 2018 / Municipal Conference Centre / Madrid, Spain

IROS 2018 Workshop on Robot Safety:

Filling the Gap Between Technology Offer and Industry Needs for a Fully Deployable Human Robot Collaboration

Experiences with a control architecture enabling safe human-robot collaboration

Alessandro De Luca

DIAG, Sapienza Università di Roma

Summary

- physical Human-Robot Interaction (pHRI)
 - safety, coexistence, and collaboration
- control architecture handling pHRI through consistent robot behaviors
- methods and results with
 - lightweight research manipulators (DLR LWR-III, KUKA LBR 4+)
 - lightweight commercial manipulator (Universal Robots UR10)
 - full-size industrial robot in a cell (ABB IRB 4600)
 - medium-size robot with closed control architecture (KUKA KR5 Sixx)
- lessons learned

Hierarchical control architecture of consistent behaviors for safe pHRI

Safety

Lightweight mechanical design Compliance at robot joints Collision detection and safe reaction

Coexistence

Robot and human sharing the same workspace

Collision avoidance
No need of physical contact

Collaboration

Physical, with intentional contact and coordinated exchange of forces

Contactless, e.g., gestures or voice commands

(A. De Luca, F. Flacco: BioRob 2012)

Types of collaborative operations (ISO 10218-1 & -2, and more in TS 15066)

(V. Villani et al.: Mechatronics 2018)

Relation of our control architecture with the ISO collaborative operations

		Speed	Separation Distance	Torques	Operator controls	Main risk reduction
(SAFETY Safety-rated monitored stop COEXISTENCE	Zero while operator in Collaborative WS	Small or zero	Gravity + load compensation only	None while operator in Collaborative WS	No motion in presence of operator
	Hand guiding COLLABORATION	Safety-rated monitored speed	Small or zero	As by direct operator input	E-stop; Enabling device; Motion input	Motion only by direct operator input
	Speed and separation monitoring COEXISTENCE	Safety-rated monitored speed	Safety-rated monitored distance	As required to execute application and maintain min separation distance	None while operator in Collaborative WS	Contact between robot and operator prevented
	Power and force limiting COLLABORATION	Max determined by RA to limit impact forces	Small or zero	Max determined by RA to limit static forces	As required by application	By design or control, robot cannot impart excessive force

Implementation of Safety, Coexistence, and Collaboration layers - 1

• sensorless collision detection (use this if everything else fails!): robot stops and is gravity compensated

DLR LWR-III IROS 2006 & 2008

distinguishing accidental (hard) collisions from intentional (soft) contacts: robot reacts then differently

KUKA LBR 4+ IROS 2014, ICRA 2015

Implementation of Safety, Coexistence, and Collaboration layers - 2

- continuous coexistence: external sensors to avoid contact and modify robot motion or reduce speed
- parallel algorithm freq (Hz): 195.459, Repulsive velocity parallel: 0.000
- **2** coexistence dominates collaboration (with a designated body part) when both actions are inconsistent

KUKA LBR 4+ ICRA 2012, IROS 2013, J Intell Rob Syst 2015

Implementation of Safety, Coexistence, and Collaboration layers - 3

- physical collaboration: contact force estimation combining internal signals and external depth sensing (virtual force sensor)
- **2 collaboration: force**, admittance or impedance control laws at the **contact** for holding, pushing, ...

KUKA LBR 4+ IROS 2014, ICRA 2016

RGB-D sensors and efficient distance monitoring in the depth space

SYMPLEXITY Laser cell with robotized Manual Polishing (MP) substation

WS monitoring with 2 Kinects

UR10 automatic speed scaling based on sensed H-R distance (zero for physical human-robot collaboration)
ISO/TS15066:2016

RGB & D views from the right Kinect

SYMPLEXITY robotized MP cell with UR10 – control framework

- potential safety-related issues
 - Kinect failure or severe occlusions ⇒ no or wrong distance computed
 - distance computation algorithm failure ⇒ no control signals provided
 - robot control algorithm failure ⇒ unpredictable robot motion
- first two handled separately; last relies on UR10 safe low-level control

SYMPLEXITY robotized MP cell – UR10 safe low-level control

from the manual

in use: a screenshot..

category 0 protective stop

- robot motion is stopped by immediate removal of power
- each joint brakes as fast as possible
- used if a safety-related limit is exceeded or a fault occurs in the safety-related HW of the control system (EN ISO13850:2008 or IEC60204-1:2006)
- user can define limits to be used in Normal Mode
- enforced also when an external high-level control software is being used...

Human-Robot Collaboration (HRC) for Manual Polishing

Force/Torque (F/T) sensor at wrist

- manual polishing force is measured
- end-effector Jacobian is known

contact force at unknown location

- not measurable by the F/T sensor
- possibly applied by the human while
 manipulating the work piece held by robot
- contact Jacobian is **not** known

Dynamic model of a robot with contacts and residual computation

robot dynamic model takes the form

$$M(q)\ddot{q} + C(q,\dot{q})\dot{q} + g(q) = \tau + J_e^T(q)F_e + J_c^T(q)F_c$$

- joint torques resulting from different contacts
 - (measured) at the end-effector level
 at a generic point along the structure

$$oldsymbol{ au}_e = oldsymbol{J}_e^T(q) oldsymbol{F}_e$$
 $oldsymbol{ au}_c = oldsymbol{J}_c^T(q) oldsymbol{F}_c$

- lacksquare monitor the robot generalized momentum $p=M(q)\dot{q}$
- (model-based) residual vector signal to detect and isolate the generic contacts

$$r(t) = K_i \left(p - \int_0^t \left(C^T(q, \dot{q}) \dot{q} - g(q) + \tau + J_e^T(q) F_e - r \right) ds \right)$$

$$m{K}_i
ightarrow \infty$$
 (sufficiently large) \Rightarrow $m{r} \simeq m{ au}_c$

Position/Admittance control during collaborative manual polishing

 when there is no extra contact along the structure, position and orientation of the end-effector are both held fixed by a stiff kinematic control law

$$\dot{q} = J_e^\# K_e \left(\begin{array}{c} v_r \\ \omega_r \end{array} \right) = J_e^\# K_e \left(\begin{array}{c} I & 0 \\ 0 & T(\phi) \end{array} \right) \left(\begin{array}{c} p_d - p \\ \phi_d - \phi \end{array} \right)$$
 as large as possible \uparrow constant values

- the controller counterbalances all forces/torques applied by the operator during manual polishing
- when the human intentionally pushes on the robot body, control of the end-effector orientation is relaxed

$$J_e(q) = \left(egin{array}{c} J_p(q) \ J_o(q) \end{array}
ight)$$
 ax6 for UR10 residual-based reaction to extra contacts $\dot{q} = J_p^\# K_p \left(p_d - p
ight) + \left(I - J_p^\# J_p
ight) K_r r$

human can reconfigure the arm, thus reorient the work piece held by the robot

Emulation of MP: HRC phase – experiments with UR10 at DIAG

no F/T sensor, switching to Freedrive mode

Universal Robots UR10

Mechatronics 2018

with F/T sensor, using residual method tuned by accurate dynamic identification

A Model-Based Residual Approach for Human-Robot Collaboration during Manual Polishing Operations

Claudio Gaz, Emanuele Magrini, Alessandro De Luca

Dipartimento di Ingegneria Informatica, Automatica e Gestionale, Sapienza Università di Roma

May 2017

Emulation of MP: HRC phase – experimental results with UR10

SYMPLEXITY cell for

Abrasive Finishing (AF) & Quality Assessment (QA) of Metallic Surface of Workpieces

robot ABB IRB 4600-60, with integrated SafeMove option

- certified communication with cell PLC, using ProfiSAFE protocol
- due to intrinsic risks in the technological process, only contactless collaboration or HR coexistence during visual check or measuring phases of the task
- 2 external Kinects to recognize human gestures (e.g., automatic doors opening, ...)
- initially... only 2 internal Kinects at the top corners of the cabin for monitoring human-robot distances

Coexistence and contactless collaboration in the SYMPLEXITY industrial cell

External view of the cell

Kinect views of the real-time distance computation

Recognition of human gesture commands by an external Kinect

SYMPLEXITY AF/QA cell with ABB IRB 4600 – control framework

- SafeMove + external I/O modules are considered "safe" (industrial certification)
- potential safety-related issues
 - Kinect failure or severe occlusions ⇒ no or wrong distances computed
 - distance computation algorithm failure ⇒ no control signals provided
 - ⇒ **risk** analysis and assessment ⇒ **mitigation** strategies

Risk assessment and mitigation – Kinect failure

reasons

- Kinect hardware/driver fails, cable unplugged, ...
- severe occlusion
- bad lighting conditions

detection

- captured depth image is always the same
- number of "black" pixels (associated to no valid depth values) in the depth image is larger than a critical threshold
- frame rate is too slow

mitigating actions

- activate an alarm (acoustic and/or visual) to warn the operator
- use optional laser scanner or barriers to understand where the human is and possibly slow down or stop the robot

Risk assessment and mitigation – distance computation algorithm failure

reasons

- bad communication between robot and host PC (Ethernet unplugged?)
- bad filtering of CAD robot model from the image
- excessive noise in Kinect

detection

- discontinuity over short times of the (minimum) distance value
- monitoring and averaging the last few distance samples

mitigating actions

- noise filtering of depth image to avoid isolated black pixels
- activate an alarm (acoustic and/or visual) to warn the operator
- define "macro areas" of robot operation using laser scanner or barriers
- if the algorithm fails, robot slows down or stops depending on which macro area the human is in

Additional safety hardware – Laser scanners

- add two laser scanners (KEYENCE SZ-V 32n), placed at calf height (~50 cm)
- maximize **coverage** of the free area in the cell
- each sensor localizes the (radial) position of the operator in the cell, estimating an approximate/conservative distance to the robot
- no missed situations: robot slows down or stops according to sensed distance/area
- mixed Kinect/laser scanner solution is a compromise between certified safety and a more flexible sharing of the 3D workspace by human and robot

Safety issues – solution with scaling of speed and extra hardware

Final control and communication architecture

HRC under a closed control architecture – KUKA KR5 Sixx R650

- low-level motor control laws not known nor accessible to the user
- controller reference is given as a velocity or a position in joint space (also Cartesian commands are accepted)
- user programs, based e.g. on other exteroceptive sensors (Kinect, F/T sensor, vision) implemented on external PC via the RSI (RobotSensorInterface), communicating with KUKA controller every 12 ms
- available measures: joint positions (by encoders) and (absolute value of) applied motor currents

typical motor currents on the first three joints

Collision detection and then stop - KUKA KR5 Sixx

high-pass filtering of motor currents (a signal-based detection...)

Distinguish accidental collisions from intentional contact and then collaborate - KUKA KR5 Sixx

both high-pass and low-pass filtering of motor currents (with time-varying thresholds)

— here the collaboration mode is manual guidance of the robot

Other possible robot reactions after collaboration mode is established

collaboration mode: pushing/pulling the robot

KUKA KR5 Sixx ICRA 2013

> collaboration mode: compliant-like robot behavior

Trials on collision detection and hard/soft contact with human subjects

26 volunteers (informed students, in the age range 20-24, about 20% female)

a total of
168 collisions,
in series of 5
for each user
(with repeated
attempts)

collision detection	trial	trial	trial	trial	trial	total	%	%	%
	1	2	3	4	5	count	over all	over all	over last
							trials	attempts	trials
at attempt # 1	19	19	18	23	25	104	80%	61.9%	92.6%
at attempt # 2	6	2	4	3	1	16	12.3%	9.5%	3.7%
at attempt # 3	1	4	3	0	0	8	6.2%	4.8%	0%
at attempt # 4	0	1	1	0	0	2	1.5%	1.2%	0%
# of user trials	26	26	26	26	26	130	100%	-	
robot fails to stop	8	13	13	3	1	38	-	22.6%	3.7%
# of user attempts	34	39	39	29	27	168	-	100%	100%
false stops						6	4.6%	3.6%	

416 contacts, half of which were intended to be soft

distinguishing between soft contacts (S) and accidental collisions (H)	number of soft trials	number of successes	number of fails	% of successes	% of fails
group 1: sequence SSHHSSHH	52	39	13	75.0%	25.0%
group 1: sequence HHSSHHSS	52	44	8	84.6%	15.4%
group 2: sequence SSSSHHHH	52	44	8	84.6%	15.4%
group 2: sequence HHHHSSSS	52	45	7	86.5%	13.5%
overall	208	172	36	82.7%	17.3%

end-users experience a "learning" process

adapt thresholds!

Including the use of a F/T sensor to isolate whole-body collisions

collaboration and collision at end-effector

KUKA KR5 Sixx submitted to ICRA 2019

collaboration
at end-effector
and collision
on robot body
(also simultaneously)

Conclusions

- lightweight research manipulators
 - dynamic model more easily available, torque control mode, up to 1 KHz loops
 - safe collision detection, monitored coexistence, physical collaboration: feasible
- lightweight commercial manipulators
 - dynamic model to be identified, no access to current/torque control mode
 - certified control software for safety, otherwise as above
- full-size industrial robots in a cell
 - coexistence can still be achieved (using just kinematic motion commands)
 - safety requires low-level hardware in place and certified sensors for monitoring
 - no true physical collaboration
- medium-size robot with closed control architecture
 - "poor man's" access/knowledge, user-defined control loops at low frequency
 - moderate physical collaborative features could be reached

Acknowledgments

- Fabrizio Flacco (+2016)
- Researchers at DIAG
 - Claudio Gaz, Emanuele Magrini
 - former: Raffaella Mattone
- PhD students at DIAG
 - Khaled Al Khudir, Maram Khatib
- Master students at DIAG
 - Andrea Carlesimo, Milad Geravand, Eleonora Mariotti, Beatrice Procoli
- Colleagues at UNIMORE
 - Federica Ferraguti, Fabio Pini
- Colleagues in Munich
 - Alin Albu-Schäffer (DLR), Sami Haddadin (DLR ⇒ ... ⇒ TUM)

