

*IROS 2018 Workshop on Soft Robotic Modeling and Control: Bringing Together Articulated Soft Robots and Soft-Bodied Robots* Madrid, October 5, 2018

# A review on the control of flexible joint manipulators

#### Alessandro De Luca

Dipartimento di Ingegneria Informatica, Automatica e Gestionale (DIAG)

deluca@diag.uniroma1.it



#### **Summary**



#### Motivations and definitions

- elastic/flexible joint, serial elastic actuation (SEA), variable stiffness actuation (VSA)
- concentrated, collocated and distributed flexibility
- Dynamic modeling of elastic joint manipulators
  - control properties
  - differences with flexibility in the links
- Regulation tasks
  - partial state vs. full state feedback
  - PD+ control laws, with different gravity compensation/cancellation techniques
- Trajectory tracking tasks
  - inverse dynamics (feedforward)
  - feedback linearization
  - torque control
- Latest approach
  - least modification of elastic dynamics: exact gravity cancellation, link damping, ESP ...

# **Classes of soft robots**

**Robots with elastic joints** 



- lightweight but stiff link design reduces robot inertia and preserves kinematic accuracy at end-effector level
- compliant elements can absorb impact energy
  - soft coverage of links (safe bags)
  - elastic transmissions/joints (HD, cable-driven, ...)



- elastic joints decouple instantaneously the *larger* inertia of the driving motors from the *smaller* inertia of the links (where collisions occur!)
  - robots with *relatively soft* joints need more *sensing* and better *control* laws to compensate for static deflections and dynamic vibrations



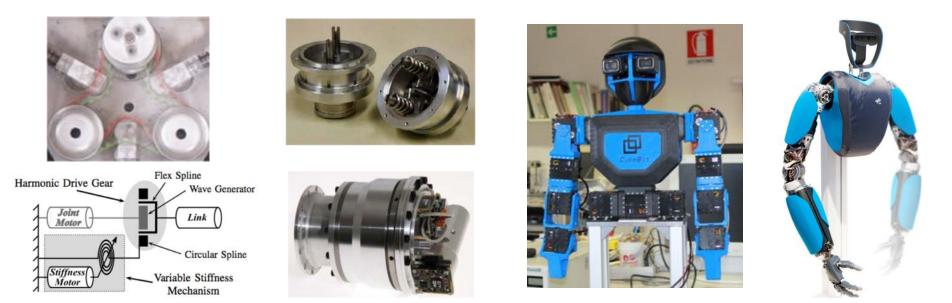
#### torque-controlled robots (DLR LWR-III, KUKA LWR 4, KUKA iiwa, ...)

# **Classes of soft robots**

**Robots with Variable Stiffness Actuation (VSA)** 



- uncertain/dynamic interaction with the environment requires to adjust the compliant behavior of the robot and/or to control contact forces
  - passive joint elasticity & active impedance control used in parallel
- nonlinear flexible joints with variable (controlled) stiffness do their best:
  - can be made stiff when moving slow (performance), soft when fast (safety)
  - enlarge the set of achievable task-oriented compliance matrices
  - feature also: robustness, energy optimization, explosive motion tasks, ...



IROS 2018 Workshop on Soft Robotic Modeling and Control

# **Classes of soft robots**

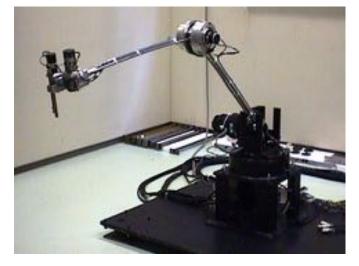
**Robots with flexible links** 



- distributed link deformations in robots
  - need to design very long and slender arms for the application
  - use of lightweight materials to save weight/costs
  - due to large payloads and/or high motion speed (or large contact forces)
- as for joint elasticity, neglecting link flexibility will limit static (steady-state error) or dynamic (vibrations, poor tracking) performance
- additional control problems due to the non-collocation of typical output quantities of interest w.r.t. the input commands









## **Additional notes**





#### elastic joints vs. SEA (Serial Elastic Actuators)

- consider/use the same physical phenomenon: compliance in actuation
- compliance added on purpose in SEA, mostly is a disturbance in elastic joints
- different range of stiffness: 5-10K Nm/rad down to 0.2-1K Nm/rad in SEA
- joint torque sensors introduce joint elasticity!
- joint deformation is often considered in the linear domain
  - modeled as a concentrated torsional spring with constant stiffness at the joint
  - nonlinear flexible joints are handled too, and share similar control properties
  - viscosity may also be present (visco-elastic joints)
  - nonlinear stiffness characteristics are needed in VSA
- (serial or antagonistic) VSA working at constant stiffness are elastic joints
- often classified as underactuated mechanical systems
  - have less commands than generalized coordinates
  - however, are controllable in the first approximation (the easy case!)

## **Dynamic modeling**

#### Lagrangian formulation for the complete model



Motor N

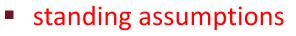
- open chain robot with N (rotary or prismatic) elastic joints and N rigid links, driven by electrical actuators
- use N motor variables  $\theta$  (as reflected through the gear ratios) and N link variables q

center of mass of rotors

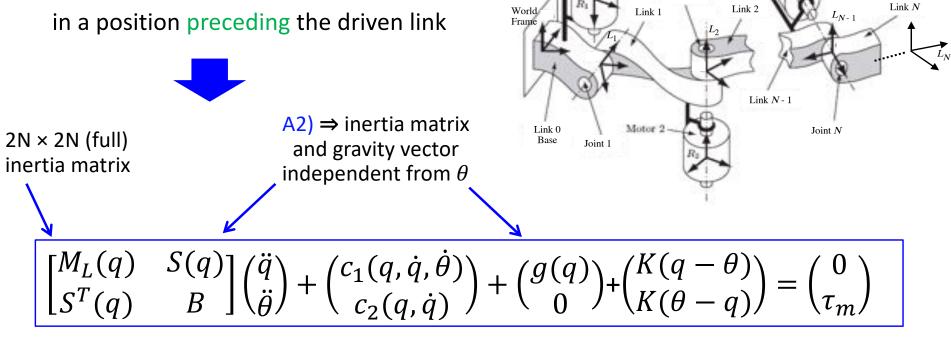
on rotation axes

Joint 2

Motor 1



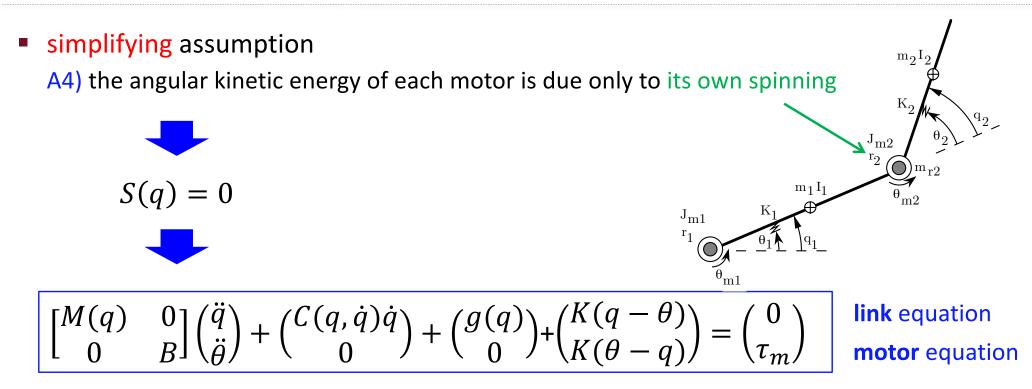
- A1) small displacements at joints
- A2) axis-balanced motors
- A3) each motor is mounted on the robot



### **Dynamic modeling**

Approximation for the reduced model (Spong 87)



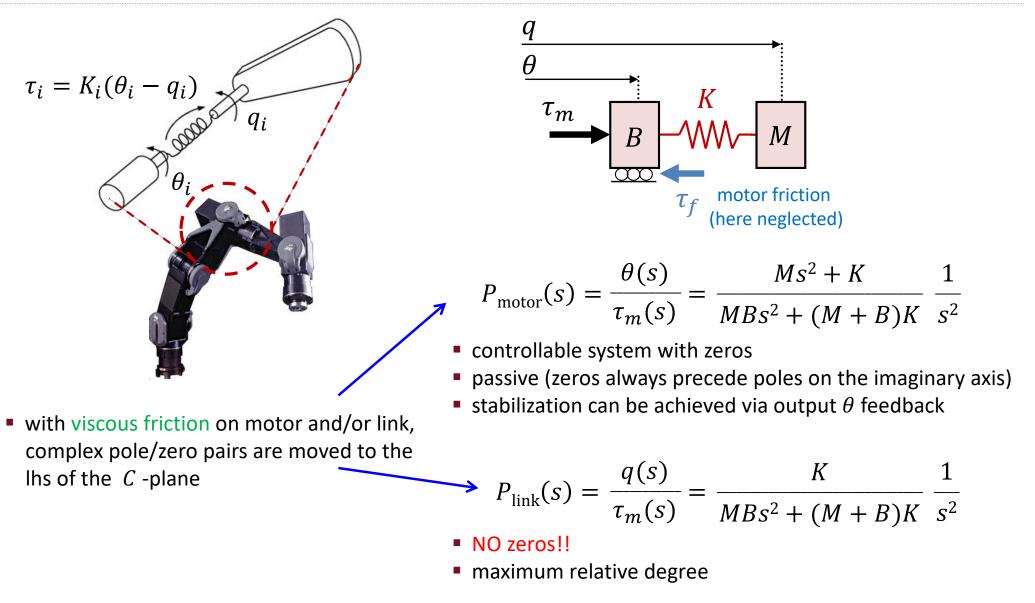


| complete model                                                           | reduced model                                                    |
|--------------------------------------------------------------------------|------------------------------------------------------------------|
| inertial and stiffness couplings                                         | only stiffness couplings                                         |
| linearizable by <b>dynamic</b> state feedback<br>[De Luca, Lucibello 98] | linearizable by <mark>static</mark> state feedback<br>[Spong 87] |
| always valid (under assumptions A1-A3)                                   | A4 valid when gear ratios are very high                          |

## Single elastic joint

#### **Transfer functions of interest**

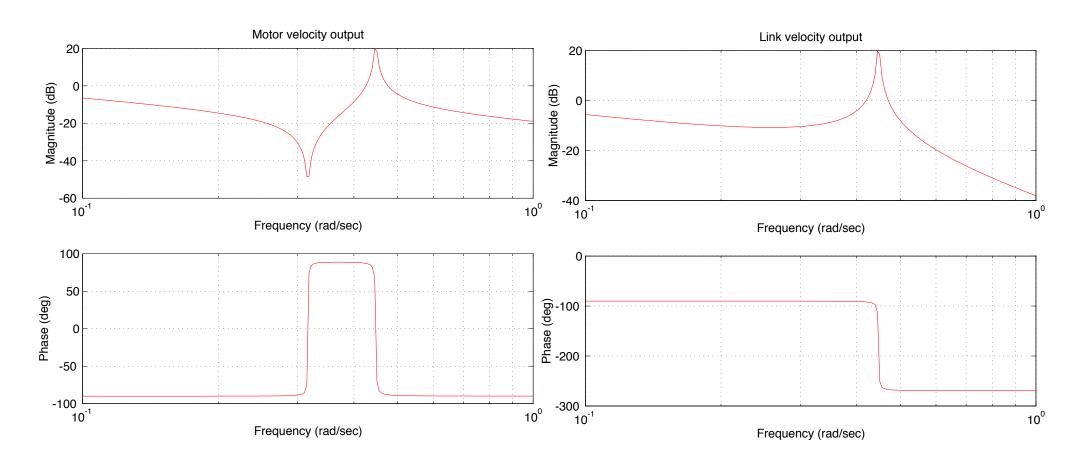




# Single elastic joint

# STADIUM VIE

#### Transfer functions of interest (with some added damping...)

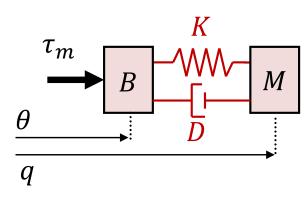


- typical antiresonance/resonance behavior on motor velocity output
- pure resonance on link velocity output (weak or no zeros)

#### **Visco-elasticity of the joints**

Introduces a structural change ...





on Spong model

$$\begin{bmatrix} M(q) & 0 \\ 0 & B \end{bmatrix} \begin{pmatrix} \ddot{q} \\ \ddot{\theta} \end{pmatrix} + \begin{pmatrix} C(q, \dot{q})\dot{q} \\ 0 \end{pmatrix} + \begin{pmatrix} g(q) \\ 0 \end{pmatrix} + \begin{pmatrix} K(q-\theta) + D(\dot{q} - \dot{\theta}) \\ K(\theta - q) + D(\dot{\theta} - \dot{q}) \end{pmatrix} = \begin{pmatrix} 0 \\ \tau_m \end{pmatrix}$$

| coupling type | consequence for the model                                          |
|---------------|--------------------------------------------------------------------|
| stiffness     | basic static coupling, maximum relative degree (= 4) of output $q$ |
| damping       | reduced relative degree, static I/O linearization                  |
| inertia       | reduced relative degree, only dynamic I/O linearization            |

## **Regulation task**

Using a minimal PD action on motor side



for a desired constant link position  $q_d$ 

- evaluate the associated desired motor position at steady state
- collocated (partial state) feedback preserves passivity, with stiff  $K_{\theta}$  gain dominating gravity
- focus on the term for gravity compensation (acting on link side) from motor measurements

$$\theta_d = q_d + K^{-1}g(q_d) \qquad \qquad \tau_m = \tau_g + K_\theta(\theta_d - \theta) - D_\theta\dot{\theta}$$

| $	au_g$                                                                                                                                 | gain criteria for stability                                                          |                                |  |
|-----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------|--|
| $g(q_d)$                                                                                                                                | $\lambda_{min} \begin{bmatrix} K & -K \\ -K & K + K_{\theta} \end{bmatrix} > \alpha$ | [Tomei 91]                     |  |
| $g(\theta - K^{-1}g(q_d))$                                                                                                              | $\lambda_{min} \begin{bmatrix} K & -K \\ -K & K + K_{\theta} \end{bmatrix} > \alpha$ | [De Luca, Siciliano, Zollo 04] |  |
| $g(\overline{q}(\theta)), \ \overline{q}(\theta): \ g(\overline{q}) = K(\theta - \overline{q})$                                         | $K_{\theta} > 0,  \lambda_{min}(K) > \alpha$                                         | [Ott, Albu-Schäffer 04]        |  |
| $g(q) + BK^{-1}\ddot{g}(q)$                                                                                                             | $K_{	heta} > 0, \qquad K > 0$                                                        | [De Luca 10]                   |  |
| gravity cancellation<br>(with full state feedback): more on this later $\alpha = \max(\left\ \frac{\partial g(q)}{\partial q}\right\ )$ |                                                                                      |                                |  |

### **Inverse dynamics**

Feedforward action for following a desired trajectory in nominal conditions



given a desired smooth link trajectory  $q_d(t) \in C^4$ 

 compute symbolically the desired motor acceleration and, therefore, also the desired link jerk (i.e., up to the fourth time derivative of the desired motion)

$$\begin{bmatrix} M(q) & 0\\ 0 & B \end{bmatrix} \begin{pmatrix} \ddot{q}\\ \ddot{\theta} \end{pmatrix} + \begin{pmatrix} C(q, \dot{q})\dot{q}\\ 0 \end{pmatrix} + \begin{pmatrix} g(q)\\ 0 \end{pmatrix} + \begin{pmatrix} K(q-\theta)\\ K(\theta-q) \end{pmatrix} = \begin{pmatrix} 0\\ \tau_m \end{pmatrix}$$
$$\tau_{m,d} = B\ddot{\theta}_d + K(\theta_d - qd)$$
$$= BK^{-1} \begin{bmatrix} M(q_d) q_d^{(4)} + 2\dot{M}(q_d) q_d^{(3)} + \ddot{M}(q_d)\ddot{q}_d + \frac{d^2}{dt^2} (C(q_d, \dot{q}_d)\dot{q}_d + g(q_d)) \end{bmatrix}$$
$$+ \begin{bmatrix} M(q_d) + B \end{bmatrix} \ddot{q}_d + C(q_d, \dot{q}_d)\dot{q}_d + g(q_d)$$

- the inverse dynamics can be efficiently computed using a modified Newton-Euler algorithm (with link recursions up to the fourth order) running in O(N)
- the feedforward command can be used in combination with a PD feedback control on the motor position/velocity error, so as to obtain a local but simple trajectory tracking controller

#### **Feedback linearization**

For accurate trajectory tracking tasks



the link position q is a linearizing (flat) output

$$\begin{bmatrix} M(q) & 0 \\ 0 & B \end{bmatrix} \begin{pmatrix} \ddot{q} \\ \ddot{\theta} \end{pmatrix} + \begin{pmatrix} C(q, \dot{q})\dot{q} \\ 0 \end{pmatrix} + \begin{pmatrix} g(q) \\ 0 \end{pmatrix} + \begin{pmatrix} K(q-\theta) \\ K(\theta-q) \end{pmatrix} = \begin{pmatrix} 0 \\ \tau_m \end{pmatrix} \longleftrightarrow q^{(4)} = u$$

differentiating twice the link equation and using the motor acceleration yields

$$\tau_m = BK^{-1}M(q)u + K(\theta - q) + B\ddot{q} + BK^{-1}\left(2\dot{M}q^{(3)} + \ddot{M}\ddot{q} + \frac{d^2}{dt^2}(C\dot{q} + g(q))\right)$$

- an exactly linear and I/O decoupled closed-loop dynamics is obtained
  - to be stabilized with standard linear techniques (pole placement, LQ, ...)
- requires higher derivatives of q
   q, q, q, q<sup>(3)</sup>
- however, these can be computed from the model using the state measurements
- requires higher derivatives of the dynamics components
- A  $O(N^3)$  Newton-Euler recursive numerical algorithm is available also for this problem

M, Ċ, ġ

#### **Torque control**

A different set of state measurements can be used directly for tracking control



$$\begin{bmatrix} M(q) & 0 \\ 0 & B \end{bmatrix} \begin{pmatrix} \ddot{q} \\ \ddot{\theta} \end{pmatrix} + \begin{pmatrix} C(q, \dot{q})\dot{q} \\ 0 \end{pmatrix} + \begin{pmatrix} g(q) \\ 0 \end{pmatrix} + \begin{pmatrix} K(q - \theta) \\ K(\theta - q) \end{pmatrix} = \begin{pmatrix} 0 \\ \tau_m \end{pmatrix}$$
$$\tau = K(\theta - q) \qquad \text{measurable by a joint torque sensor}$$
$$BK^{-1}\ddot{\tau} + \tau = \tau_m - B\ddot{q} \qquad \text{rewriting the motor dynamics}$$

$$\tau_m = BK^{-1}\ddot{\tau}_d + \tau_d + K_T(\tau_d - \tau) + K_S(\dot{\tau}_d - \dot{\tau}) + \alpha B\ddot{q}$$

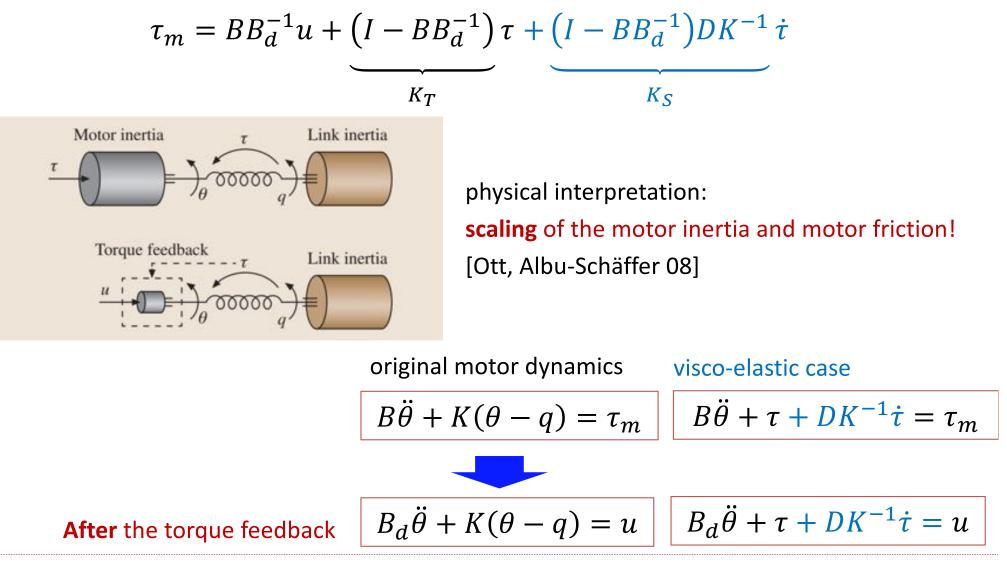
- $\alpha < 1$  for avoiding over-compensation
- useful for designing a motor side disturbance observer, e.g., to realize friction compensation
- basis for many cascaded controller designs that start from a rigid body control law  $\tau_d(q, \dot{q})$
- higher derivatives are still required ( $\ddot{\tau}_d$ ,  $\ddot{q}$ )

### **Torque feedback**

An inner loop that largely reduces motor inertia and friction



consider a pure proportional torque feedback (+ a derivative term for the visco-elastic case)



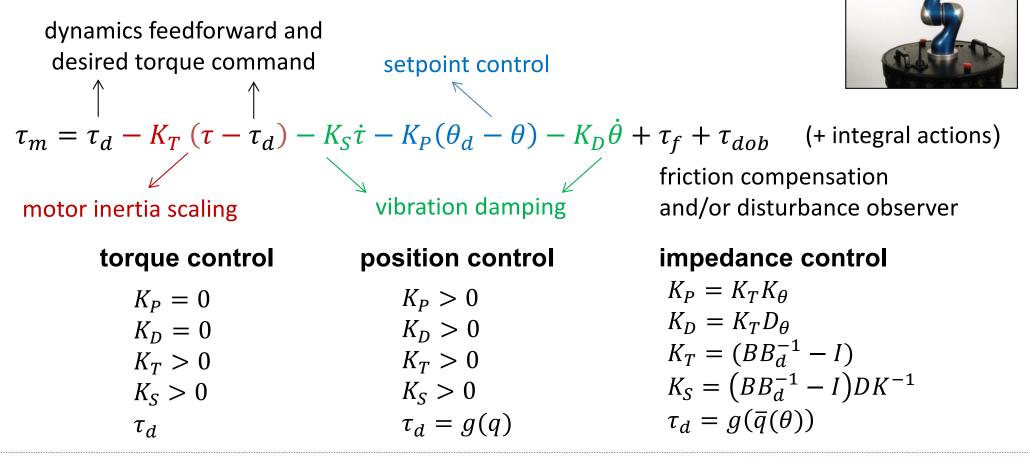
IROS 2018 Workshop on Soft Robotic Modeling and Control

#### **Full-state feedback**

Combining torque feedback with a motor PD regulation law

inertia scaling via torque feedback regulation via motor PD, e.g. with

#### ⇒ joint level control structure of the DLR (and KUKA) lightweight robots



 $\tau_m = (I + K_T)u - K_T \tau - K_S \dot{\tau}$ 

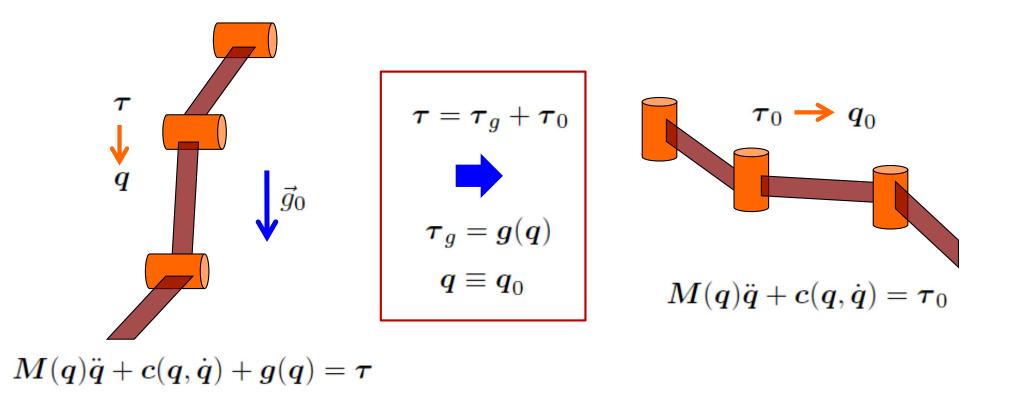
 $u = q(\bar{q}(\theta)) + K_{\theta}(\theta_{d} - \theta) - D_{\theta}\theta$ 





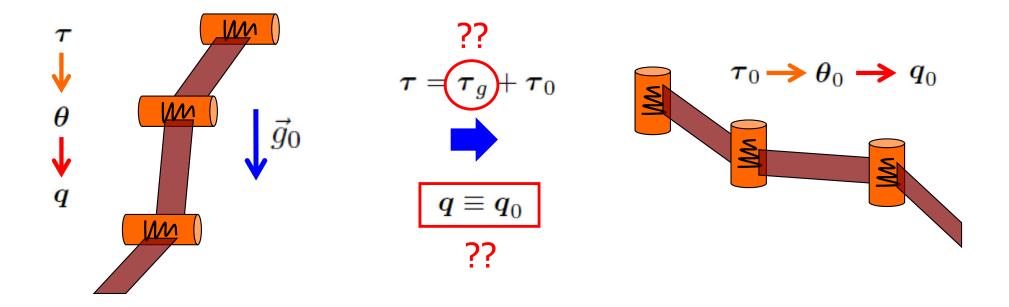
A slightly different view

• for rigid robots this is trivial, due to collocation



... based on the concept of feedback equivalence between nonlinear systems

for elastic joint robots, non-collocation of input torque and gravity term



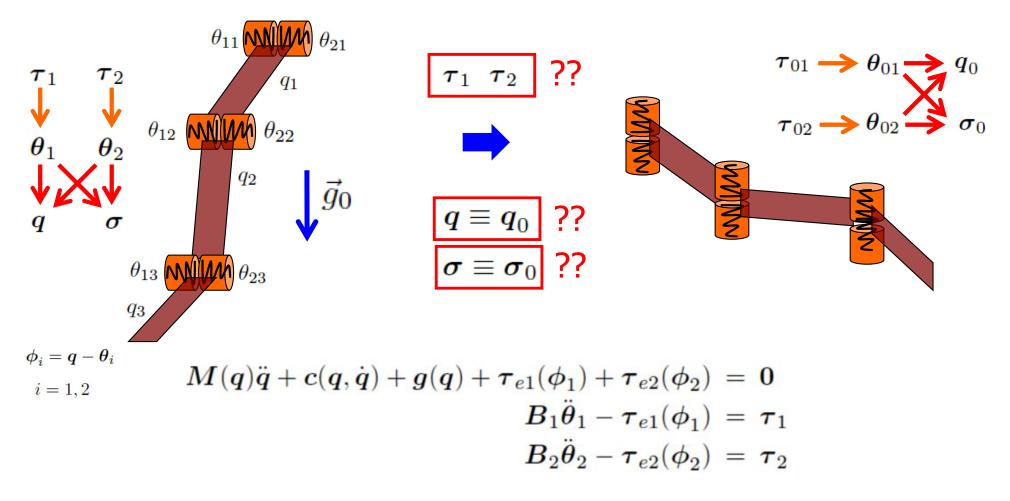
$$egin{aligned} M(q)\ddot{q}+c(q,\dot{q})+g(q)+K(q- heta)&=0\ &B\ddot{ heta}+K( heta-q)&=& au \end{aligned}$$



... generalized also to VSA robots

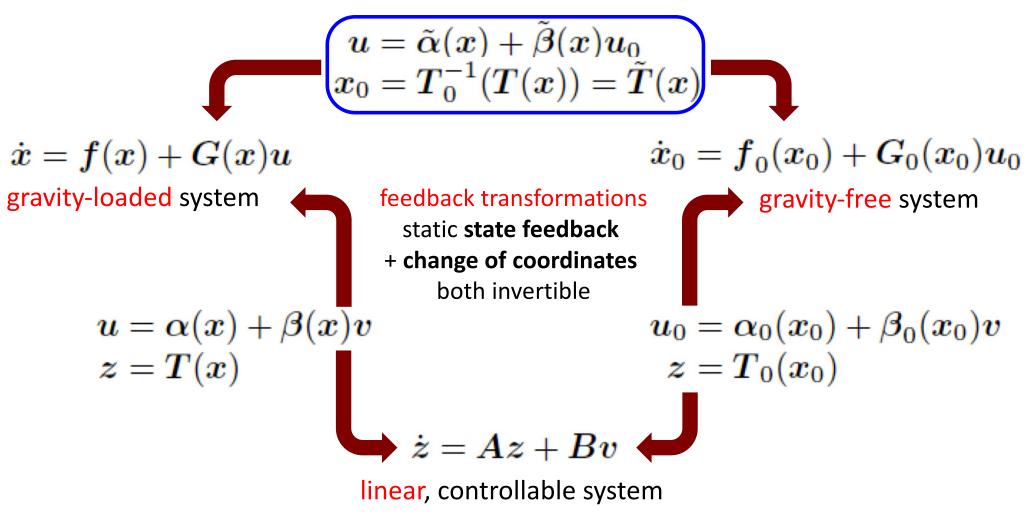


 same problem formulation holds also for VSA robots (here, in antagonistic configuration), with the additional consideration of the internal stiffness state



#### Feedback equivalence

**Exploit the system property of being feedback linearizable (without forcing it!)** 



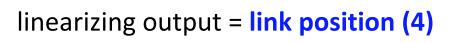


# Flexible joint robots are feedback linearizable...

... with linearizing outputs of suitable relative degrees

- robots with elastic joints
  - also with joints having nonlinear flexibility
- robots with VSA-based actuation
  - antagonistic VSA-II
  - serial DLR-VS joint
  - • • •





#### linearizing output = link position (4) + joint stiffness (2)







**Elastic joint robots (including link/motor damping)** 



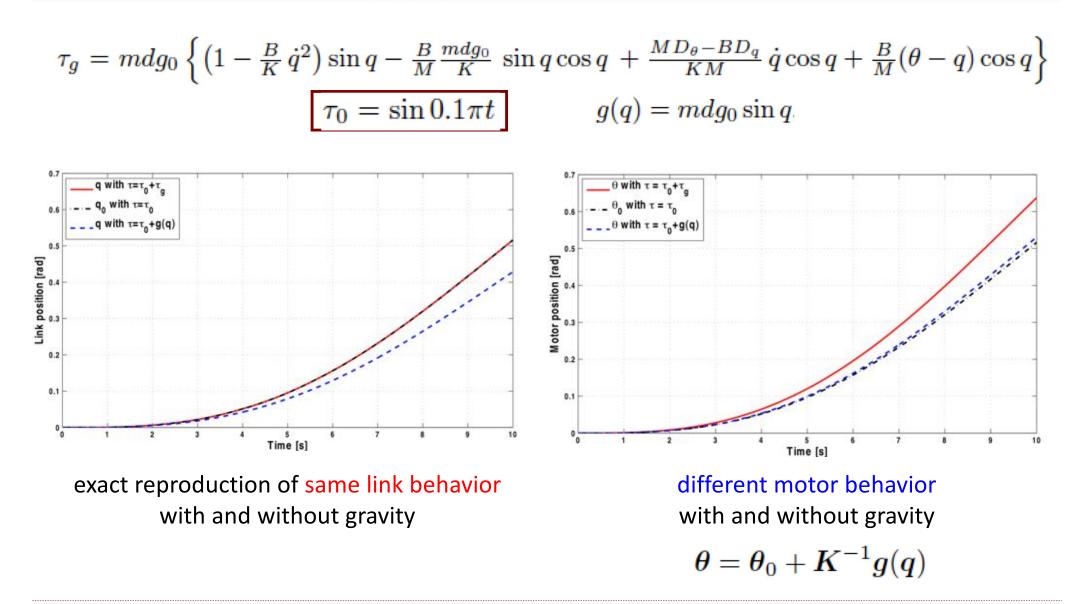
requires full state feedback

i=1

#### **Numerical results**



#### Exact gravity cancellation for a 1-DOF elastic joint



## A global PD-type regulator

Exact gravity cancellation combined with PD law on modified motor variables

$$egin{aligned} & m{ au} = m{ au}_g + m{ au}_0 \ & m{ au}_g = m{g}(m{q}) + m{D}_ heta m{K}^{-1} \dot{m{g}}(m{q}) + m{B} m{K}^{-1} \ddot{m{g}}(m{q}) \ & m{ au}_0 = m{K}_P(m{ heta}_{d0} - m{ heta}_0) - m{K}_D \dot{m{ heta}}_0 \ & = m{K}_P(m{q}_d - m{ heta} + m{K}^{-1} m{g}(m{q})) - m{K}_D (\dot{m{ heta}} - m{K}^{-1} \dot{m{g}}(m{q})) \end{aligned}$$

Global asymptotic stability can be shown using a Lyapunov analysis under "minimal" sufficient conditions (also without viscous friction)

$$\boldsymbol{K}_P > 0$$
  $\boldsymbol{K} > 0$ 

i.e., **no** strict positive lower bounds

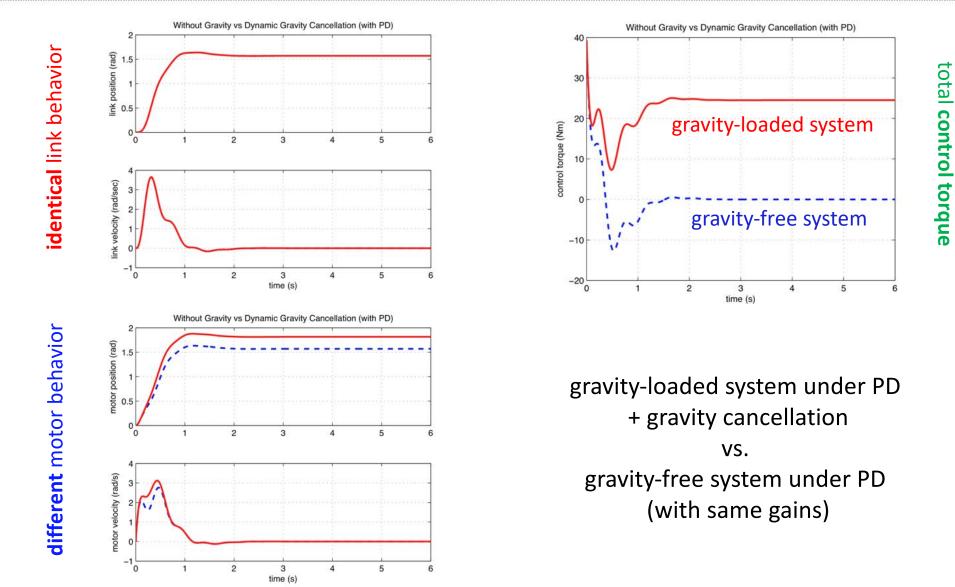
and 
$$oldsymbol{K}_D>0$$



#### **Numerical results**



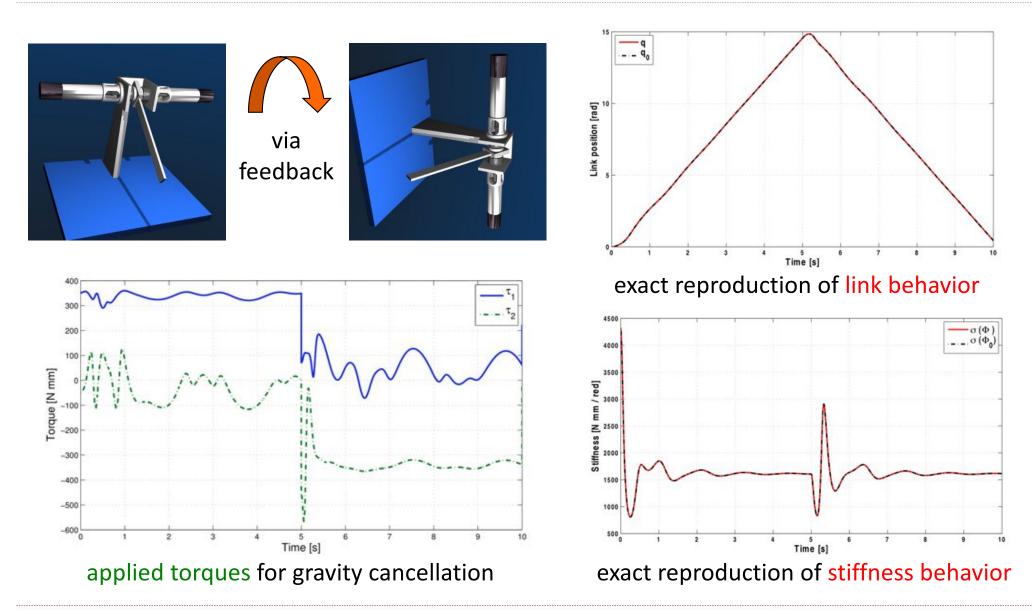
#### **Regulation of a 1-DOF arm with elastic joint under gravity**



#### **Numerical results**

#### Exact gravity cancellation for the VSA-II of UniPisa

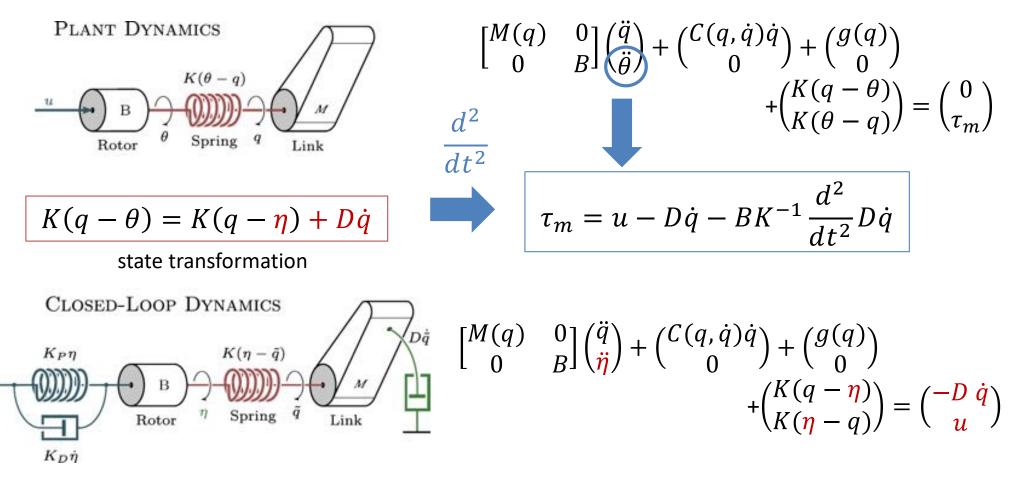




# Link vibration damping



DLR method for VSA-driven bimanual humanoid torso David [Keppler et al. 16]



- same principle of feedback equivalence (including state transformation)
- ESP = Elastic Structure Preserving control
- generalizations to trajectory tracking, to nonlinear joint flexibility, and to viscoelastic joints

# **Short outlook**



- Mature control field recently revamped by the new "explosion" of interest for compliant and soft robots
  - simpler control laws are always welcome
  - sensing requirements could be a bottleneck
  - iterative learning on repetitive tasks already in place for flexible manipulators
- Control ideas assessed for concentrated elasticity at the joints can migrate to other classes of soft-bodied manipulators
  - but intrinsic constraints and control limitations should be kept in mind (e.g., instabilities in the system inversion of tip trajectories for flexible link robots)
- Emerging notion: not fighting against the natural dynamics!
  - and trying also not to give up too much of the desirable performance ...