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Summary

§ Motivations and definitions
§ elastic/flexible joint, serial elastic actuation (SEA), variable stiffness actuation (VSA)

§ concentrated, collocated and distributed flexibility

§ Dynamic modeling of elastic joint manipulators
§ control properties 

§ differences with flexibility in the links

§ Regulation tasks
§ partial state vs. full state feedback

§ PD+ control laws, with different gravity compensation/cancellation techniques

§ Trajectory tracking tasks
§ inverse dynamics (feedforward)

§ feedback linearization

§ torque control

§ Latest approach
§ least modification of elastic dynamics: exact gravity cancellation, link damping, ESP …
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Classes of soft robots
Robots with elastic joints

§ lightweight but stiff link design reduces robot inertia and preserves 
kinematic accuracy at end-effector level

§ compliant elements can absorb impact energy 
§ soft coverage of links (safe bags)
§ elastic transmissions/joints (HD, cable-driven, ...)

§ elastic joints decouple instantaneously the larger inertia of the driving 
motors from the smaller inertia of the links (where collisions occur!)
§ robots with relatively soft joints need more sensing and better control laws 

to compensate for static deflections and dynamic vibrations

torque-controlled robots (DLR LWR-III, KUKA LWR 4, KUKA iiwa, ...)
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Classes of soft robots
Robots with Variable Stiffness Actuation (VSA)

§ uncertain/dynamic interaction with the environment requires to adjust 
the compliant behavior of the robot and/or to control contact forces
§ passive joint elasticity & active impedance control used in parallel

§ nonlinear flexible joints with variable (controlled) stiffness do their best:
§ can be made stiff when moving slow (performance), soft when fast (safety)
§ enlarge the set of achievable task-oriented compliance matrices
§ feature also: robustness, energy optimization, explosive motion tasks, ...
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Classes of soft robots
Robots with flexible links

§ distributed link deformations in robots
§ need to design very long and slender arms for the application
§ use of lightweight materials to save weight/costs
§ due to large payloads and/or high motion speed (or large contact forces)

§ as for joint elasticity, neglecting link flexibility will limit static (steady-state 
error) or dynamic (vibrations, poor tracking) performance

§ additional control problems due to the non-collocation of typical output 
quantities of interest w.r.t. the input commands
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Additional notes
…also terminology varies for the considered robots

§ elastic joints vs. SEA (Serial Elastic Actuators)
§ consider/use the same physical phenomenon: compliance in actuation
§ compliance added on purpose in SEA, mostly is a disturbance in elastic joints
§ different range of stiffness: 5-10K Nm/rad down to 0.2-1K Nm/rad in SEA

§ joint torque sensors introduce joint elasticity! 
§ joint deformation is often considered in the linear domain 

§ modeled as a concentrated torsional spring with constant stiffness at the joint 
§ nonlinear flexible joints are handled too, and share similar control properties
§ viscosity may also be present (visco-elastic joints)
§ nonlinear stiffness characteristics are needed in VSA 

§ (serial or antagonistic) VSA working at constant stiffness are elastic joints
§ often classified as underactuated mechanical systems

§ have less commands than generalized coordinates 
§ however, are controllable in the first approximation (the easy case!)
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Dynamic modeling
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Lagrangian formulation for the complete model

§ open chain robot with N (rotary or prismatic) elastic joints and N rigid links, driven by 
electrical actuators

§ use N motor variables * (as reflected through the gear ratios) and N link variables $
§ standing assumptions

A1) small displacements at joints 
A2) axis-balanced motors
A3) each motor is mounted on the robot

in a position preceding the driven link
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Dynamic modeling
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inertial and stiffness couplings only stiffness couplings

linearizable by dynamic state feedback 

[De Luca, Lucibello 98]

linearizable by static state feedback

[Spong 87]

always valid (under assumptions A1-A3) A4 valid when  gear ratios are very high

Approximation for the reduced model (Spong 87)

§ simplifying assumption

A4) the angular kinetic energy of each motor is due only to its own spinning 
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Single elastic joint
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§ NO zeros!!
§ maximum relative degree

§ with viscous friction on motor and/or link, 
complex pole/zero pairs are moved to the    
lhs of the = -plane



Single elastic joint
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Transfer functions of interest (with some added damping…)
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§ typical antiresonance/resonance behavior on motor velocity output
§ pure resonance on link velocity output (weak or no zeros) 



Visco-elasticity of the joints
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coupling type consequence for the model
stiffness basic static coupling, maximum relative degree (= 4) of output '
damping reduced relative degree, static I/O linearization
inertia reduced relative degree, only dynamic I/O linearization

Introduces a structural change …

on Spong model



Regulation task
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(()-) ./01
2 −2
−2 2 + 25 > ! [Tomei 91]

((7 − 289( )- ) ./01
2 −2
−2 2 + 25 > ! [De Luca, Siciliano, Zollo 04]

( ) 7 , ) 7 : ( ) = 2(7 − )) 25 > 0, ./01 2 > ! [Ott, Albu-Schäffer 04]

( ) + =289(̈ ) 25 > 0, 2 > 0 [De Luca 10]

for a desired constant link position )?
§ evaluate the associated desired motor position at steady state
§ collocated (partial state) feedback preserves passivity, with stiff 25 gain dominating gravity
§ focus on the term for gravity compensation (acting on link side) from motor measurements

@/ = @A + 25 7- − 7 − B57̇

Using a minimal PD action on motor side

7- = )- + 289(()-)

gravity cancellation
(with full state feedback): more on this later…



Inverse dynamics
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Feedforward action for following a desired trajectory in nominal conditions

given a desired smooth link trajectory #4(;) ∈ *4
§ compute symbolically the desired motor acceleration and, therefore, also the desired 

link jerk (i.e., up to the fourth time derivative of the desired motion)

§ the inverse dynamics can be efficiently computed using a modified Newton-Euler 

algorithm (with link recursions up to the fourth order) running in > ?
§ the feedforward command can be used in combination with a PD feedback control 

on the motor position/velocity error, so as to obtain a local but simple trajectory 

tracking controller



Feedback linearization
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§ an exactly linear and I/O decoupled closed-loop dynamics is obtained

§ to be stabilized with standard linear techniques (pole placement, LQ, …)

§ requires higher derivatives of q

§ however, these can be computed from the model using the state measurements

§ requires higher derivatives of the dynamics components

§ A < =3 Newton-Euler recursive numerical algorithm is available also for this problem

!, !̇, !̈, !(8)

'̈, -̈, 0̈

§ the link position q is a linearizing (flat) output 

For accurate trajectory tracking tasks

§ differentiating twice the link equation and using the motor acceleration yields



Torque control
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§ 5 < 1 for avoiding over-compensation

§ useful for designing a motor side disturbance observer, e.g., to realize friction compensation

§ basis for many cascaded controller designs that start from a rigid body control law 18(#, #̇)
§ higher derivatives are still required (1̈8, #̈)

12 = &.341̈8 + 18 + .9 18 − 1 + .: 1̇8 − 1̇ + 5&#̈

A different set of state measurements can be used directly for tracking control

measurable by a joint torque sensor

rewriting the motor dynamics



Torque feedback
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original motor dynamics

After the torque feedback
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visco-elastic case

physical interpretation: 
scaling of the motor inertia and motor friction! 
[Ott, Albu-Schäffer 08]

An inner loop that largely reduces motor inertia and friction



Full-state feedback
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⇒ joint level control structure of the DLR (and KUKA) lightweight robots

inertia scaling via torque feedback

regulation via motor PD, e.g. with

"# = % + '( ) − '( " − '+"̇
) = - ./(1) + '3 14 − 1 − 531̇

"# = "4 − '( " − "4 − '+"̇ − '6 14 − 1 − '71̇ + "8 + "49:

motor inertia scaling vibration damping

setpoint control

dynamics feedforward and

desired torque command

friction compensation 

and/or disturbance observer

(+ integral actions)
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torque control
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position control
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impedance control

Combining torque feedback with a motor PD regulation law



Exact gravity cancellation
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A slightly different view

§ for rigid robots this is trivial, due to collocation



Exact gravity cancellation
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… based on the concept of feedback equivalence between nonlinear systems

§ for elastic joint robots, non-collocation of input torque and gravity term

??

??



Exact gravity cancellation
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… generalized also to VSA robots

§ same problem formulation holds also for VSA robots (here, in antagonistic configuration), 
with the additional consideration of the internal stiffness state

??
??

??



Feedback equivalence
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Exploit the system property of being feedback linearizable (without forcing it!)

linear, controllable system

feedback transformations
static state feedback 

+ change of coordinates 
both invertible

gravity-loaded system gravity-free system

≈  linearizing outputs



Flexible joint robots are feedback linearizable…
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§ robots with elastic joints
§ also with joints having nonlinear flexibility

§ robots with VSA-based actuation
§ antagonistic VSA-II

§ serial DLR-VS joint

§ ...

linearizing output = link position (4)

linearizing output = link position (4)
+ joint stiffness (2)

… with linearizing outputs of suitable relative degrees



Exact gravity cancellation
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Elastic joint robots (including link/motor damping)

requires full state feedback



Numerical results
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Exact gravity cancellation for a 1-DOF elastic joint

exact reproduction of same link behavior
with and without gravity 

different motor behavior
with and without gravity 



A global PD-type regulator
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Exact gravity cancellation combined with PD law on modified motor variables

Global asymptotic stability can be shown using a Lyapunov analysis
under “minimal” sufficient conditions (also without viscous friction)

andi.e., no strict 
positive lower bounds



Numerical results
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Regulation of a 1-DOF arm with elastic joint under gravity

gravity-loaded system under PD 
+ gravity cancellation

vs. 
gravity-free system under PD 

(with same gains)
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Numerical results

Madrid, October 5, 2018 IROS 2018 Workshop on Soft Robotic Modeling and Control 27

Exact gravity cancellation for the VSA-II of UniPisa

via
feedback

exact reproduction of link behavior

exact reproduction of stiffness behaviorapplied torques for gravity cancellation



Link vibration damping
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§ same principle of feedback equivalence (including state transformation)

§ ESP = Elastic Structure Preserving control 

§ generalizations to trajectory tracking, to nonlinear joint flexibility, and to viscoelastic joints

89
8:9

DLR method for VSA-driven bimanual humanoid torso David [Keppler et al. 16] 



Short outlook

§ Mature control field recently revamped by the new “explosion” of interest 
for compliant and soft robots
§ simpler control laws are always welcome
§ sensing requirements could be a bottleneck
§ iterative learning on repetitive tasks already in place for flexible manipulators

§ Control ideas assessed for concentrated elasticity at the joints can migrate 
to other classes of soft-bodied manipulators
§ but intrinsic constraints and control limitations should be kept in mind (e.g., 

instabilities in the system inversion of tip trajectories for flexible link robots)

§ Emerging notion: not fighting against the natural dynamics! 
§ and trying also not to give up too much of the desirable performance … 
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