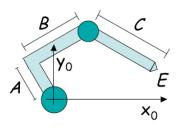
Prova Scritta di Robotica I

3 Dicembre 2007

Esercizio 1



Si consideri il robot a due giunti rotatori schematizzato in figura. Utilizzando la notazione di Denavit-Hartenberg, si fornisca l'espressione della cinematica diretta relativa alla posizione dell'organo terminale E. Con i seguenti valori dei parametri geometrici

$$A = 0.3,$$
 $B = 0.4,$ $C = 0.5$ [m]

determinare l'unica soluzione cinematica inversa ammissibile che posiziona E nel punto

$$P = \left[\begin{array}{c} -0.2 \\ 0.1 \end{array} \right] \quad [\text{m}]$$

in presenza dei seguenti limiti di fondo corsa per le variabili di giunto:

$$\theta_1 \in [-130^\circ, 135^\circ], \qquad \theta_2 \in [-160^\circ, 140^\circ].$$

Esercizio 2

Sull'asse di un motore elettrico che aziona un singolo braccio robotico (in rotazione sul piano orizontale) è montato un encoder incrementale che fornisce 2400 impulsi per giro. Il motore produce sul suo asse di uscita una coppia massima di $0.32~\rm Nm$ e deve essere in grado di accelerare da fermo con $0.8~\rm rad/s^2$ un carico inerziale di $20~\rm kgm^2$. Trascurando gli effetti dissipativi, si scelga un opportuno valore del rapporto di riduzione dell'organo di trasmissione e si determini di conseguenza per questo azionamento la risoluzione angolare sul lato del carico.

Esercizio 3

Pianificare una traiettoria q(t) per un giunto rotatorio di un manipolatore in modo da effettuare uno spostamento Δq con le seguenti caratteristiche:

- velocità e accelerazione iniziale e finale nulle;
- modulo della velocità limitato da V_{max} e quello dell'accelerazione da A_{max} ;
- \bullet accelerazione continua nell'intero intervallo di moto [0, T] (estremi inclusi).

Tra le diverse soluzioni possibili, sceglierne una con l'obiettivo di ridurre il più possibile il tempo totale T di trasferimento. La traiettoria deve essere completamente specificata dai dati del problema. Per la tipologia scelta, fornire qualitativamente i profili di posizione, velocità e accelerazione ed il valore numerico di T in corrispondenza ai seguenti dati:

$$\Delta q = -\frac{3}{5} \pi \text{ rad}, \qquad V_{max} = 1.5 \text{ rad/s}, \qquad A_{max} = 3 \text{ rad/s}^2.$$

[180 minuti di tempo; libri aperti]

Soluzioni

3 Dicembre 2007

Esercizio 1

Il robot considerato ha la cinematica di un 2R planare privo di offset. L'assegnazione delle terne è quindi standard. L'unica attenzione da porre è nella determinazione del parametro a_1 relativo alla lunghezza dell'asse del primo braccio che è pari a

$$a_1 = \sqrt{A^2 + B^2} =: D = 0.5,$$

per cui i due assi 'cinematici' dei bracci hanno lunghezza uguale (D=C). La configurazione $\theta_1=\theta_2=0$ è mostrata in Figura 1. La tabella di Denavit-Hartenberg è:

i	α_i	a_i	d_i	θ_i
1	0	D	0	q_1
2	0	C	0	q_2

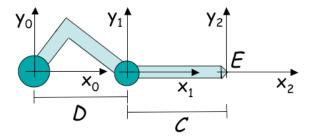


Figura 1: Configurazione $\theta_1 = \theta_2 = 0$

La cinematica diretta per la posizione del punto $E=O_2$ sarà allora:

$$p_x = Dc_1 + Cc_{12}$$

 $p_y = Ds_1 + Cs_{12}$.

Le due soluzioni cinematiche inverse per questa struttura sono fornite dalle¹:

$$\begin{array}{lcl} \theta_2 & = & \operatorname{ATAN2}\{s_2,c_2\} \\ & c_2 = \frac{p_x^2 + p_y^2 - D^2 - C^2}{2CD}, & s_2 = \pm \sqrt{1 - c_2^2} \\ \\ \theta_1 & = & \operatorname{ATAN2}\{s_1,c_1\} \\ & s_1 = (D + Cc_2)p_y - Cs_2p_x, & c_1 = (D + Cc_2)p_x + Cs_2p_y. \end{array}$$

 $^{^{1}}$ Il denominatore ($C^{2} + D^{2} + 2CDc_{2}$) è omesso nelle espressioni di s_{1} e c_{1} in quanto sempre positivo (tranne nel caso in cui C = D ed il secondo braccio è completamente ripiegato, ossia ci si trova in una singolarità che viene trattata a parte).

Il doppio segno nell'espressione di s_2 produce due valori per θ_2 (opposti rispetto allo 0). La scelta del segno di s_2 si propaga poi nel calcolo di θ_1 , fornendo una coppia di soluzioni per (θ_1, θ_2) .

Una posizione P appartiene allo spazio di lavoro del robot (in assenza di limiti di giunto) se e solo se

$$-1 \le c_2 \le +1$$

ossia, in base all'espressione di c_2 , se e solo se

$$|C - D| \le \sqrt{p_x^2 + p_y^2} \le C + D.$$

Tali disequazioni individuano una corona circolare centrata nell'origine (nel caso presente, essendo C=D, la circonferenza interna si riduce al punto origine). In corrispondenza ai valori di uguaglianza si è sulla frontiera dello spazio di lavoro ed il robot è in una configurazione singolare. Quando $C \neq D$, la coppia di soluzioni per (θ_1, θ_2) si riduce ad un'unica soluzione (con $\theta_2 = 0$ o π , rispettivamente sulla circonferenza esterna o interna). Nel caso C = D e per $p_x = p_y = 0$ (P = 0) si hanno invece infiniti valori per θ_1 (tutti con $\theta_2 = \pi$).

Con i dati numerici del problema, il punto P è all'interno dello spazio di lavoro (trascurando per il momento i limiti di giunto) e non si verificano quindi singolarità. Le due distinte soluzioni cinematiche inverse sono:

$$(\theta_1, \theta_2)_I = (76.356^{\circ}, 154.158^{\circ}),$$

 $(\theta_1, \theta_2)_{II} = (-129.486^{\circ}, -154.158^{\circ}).$

La prima viola il limite superiore sul giunto 2 ($[-160^{\circ}, 140^{\circ}]$) e non è quindi ammissibile. La seconda è invece la soluzione cercata (è disponibile il file Matlab di questo esercizio).

Esercizio 2

Si tratta di operare le conversioni necessarie. La risoluzione dell'encoder incrementale sul lato del motore è pari a $\Delta\theta_m=360^\circ/2400=0.15^\circ\approx 0.0026$ rad. In assenza di attrito o di altri fenomeni di dispersione/dissipazione, il bilanciamento dinamico del carico è dato da $\tau=I\ddot{\theta}$ (la gravità è assente perchè il braccio si muove sul piano orizzontale). La coppia richiesta sul lato del carico è dunque $\tau=20\cdot 0.8=16$ [kgm² · rad/s²] = 16 [Nm]. Data la coppia massima fornibile dal motore sul suo asse di uscita, per realizzare tale coppia sul lato del carico occorre scegliere un rapporto di riduzione $N_r=\tau/\tau_m=16/0.32=50$. Pertanto la risoluzione angolare sul lato del carico dell'intero azionamento sarà $\Delta\theta=\Delta\theta_m/N_r=0.003^\circ\approx 5\cdot 10^{-5}$ rad.

Esercizio 3

La scelta di un unico polinomio del quinto ordine per il profilo di posizione q(t) può soddisfare i vincoli del problema, ma implica un moto relativamente lento perchè la velocità massima verrebbe eventualmente raggiunta in un solo istante (quello centrale t=T/2). D'altronde una traiettoria con velocità $\dot{q}(t)$ trapezoidale (avente il tratto a velocità massima di durata più lunga possibile, compatibilmente con il tempo necessario per le fasi di massima accelerazione/decelerazione) violerebbe il requisito di continuità dell'accelerazione nell'istante iniziale, in quello finale e nei due istanti di switch intermedi (profilo bang-coast-bang).

Sono possibili però altre soluzioni polinomiali a tratti. Per la q(t) si può avere ad esempio una concatenazione di tre polinomi di grado 3-5-3 o 4-3-4 (con problemi simili al caso di un'unica quintica) o di un numero superiore di tratti polinomiali di grado opportuno (la cui derivazione è laboriosa e richiederebbe informazioni supplementari rispetto ai dati del problema). La soluzione più semplice che tiene presente l'obiettivo di ridurre il tempo di moto T, ossia che fornisce un tratto

percorso a velocità massima che sia più lungo possibile, è quella di scegliere una concatenazione di tre polinomi di grado 4-1-4.

La determinazione di tale legge oraria è più evidente ragionando direttamente sul profilo di velocità (costituito da tre polinomi di grado 3-0-3), come mostrato in Figura 2. La logica è quella di interpolare mediante due polinomi cubici (ciascuna di durata T_s) le condizioni di velocità in partenza e in arrivo con quella costante e pari alla massima del tratto intermedio (di durata T_v). Si devono inoltre imporre valori nulli dell'accelerazione agli estremi del tratto intermedio e negli istanti iniziale e finale, ottenendo così la richiesta continuità in accelerazione su tutto l'intervallo [0,T]. Il moto sarà in ogni caso simmetrico rispetto all'istante t=T/2, con una fase di accelerazione iniziale e di decelerazione finale di tipo quadratico. Calcolando 'visivamente' l'area del profilo di velocità in Figura 2, si può subito ricavare una relazione con lo spostamento richiesto:

$$V_{max}(T_s + T_v) = |\Delta q|.$$

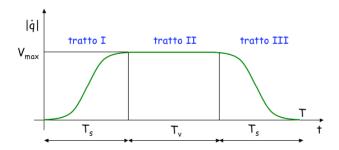


Figura 2: Profilo di velocità scelto

Risulta come al solito più agevole lavorare con polinomi (doppiamente) normalizzati. La traiettoria complessiva sarà espressa nella forma

$$q(t) = q(0) + \Delta q \ s(\tau), \quad \tau = k_i t - t_i, \quad \text{(qui si ha } q(0) = 0)$$

con opportune leggi orarie $s = s_i(\tau)$ e scalature locali del tempo t sui singoli tratti i = I, II, III. Per verificare i vincoli di velocità e accelerazione, poichè

$$\dot{q}(t) = \Delta q \; \dot{s}(\tau) \left(= \Delta q \; k_i \, \frac{ds_i}{d\tau} \right), \qquad \ddot{q}(t) = \; \Delta q \; \ddot{s}(\tau) \left(= \Delta q \; k_i^2 \, \frac{d^2s_i}{d\tau^2} \right),$$

ne segue in generale:

$$|\dot{q}(t)| \le V_{max} \Rightarrow |\dot{s}(\tau)| \le \frac{V_{max}}{|\Delta q|}, \qquad |\ddot{q}(t)| \le A_{max} \Rightarrow |\ddot{s}(\tau)| \le \frac{A_{max}}{|\Delta q|}.$$

Costruiremo ora il profilo di moto per singoli tratti.

Primo tratto. Si ha per $t \in [0, T_s]$. Posto $\tau = t/T_s \in [0, 1]$, imponendo

$$\dot{s}_I(0) = 0, \quad \dot{s}_I(1) = \frac{V_{max}}{|\Delta q|}, \quad \ddot{s}_I(0) = \ddot{s}_I(1) = 0,$$

si ricava per il profilo di velocità

$$\dot{s}_I(\tau) = \frac{V_{max}}{|\Delta q|} \left[3\tau^2 - 2\tau^3 \right].$$

Integrando (con la condizione iniziale $s_I(0) = 0$) e derivando si ottiene rispettivamente

$$s_I(\tau) = \frac{V_{max}T_s}{|\Delta q|} \left[\tau^3 - 0.5\tau^4\right]$$

e

$$\ddot{s}_I(\tau) = \frac{6V_{max}}{|\Delta q|T_s} \left[\tau - \tau^2\right].$$

La posizione (normalizzata) raggiunta al termine del primo tratto è

$$s_I(1) = \frac{V_{max}T_s}{2|\Delta q|}.$$

Il valore massimo dell'accelerazione su questo tratto si ha per $t = T_s/2$ ($\tau = 1/2$)

$$\max \ddot{s}_I = \ddot{s}_I \left(\frac{1}{2}\right) = \frac{3}{2} \frac{V_{max}}{|\Delta q| T_s}$$

da cui segue

$$|\ddot{s}_I(\tau)| \le \frac{A_{max}}{|\Delta q|} \quad \Rightarrow \quad T_s \ge \frac{3}{2} \frac{V_{max}}{A_{max}}.$$

Per minimizzare il tempo totale si prenderà ovviamente il minimo valore per T_s (segno di uguaglianza).

Secondo tratto. Si ha per $t \in [T_s, T_s + T_v]$. Posto $\tau = (t - T_s)/T_v \in [0, 1]$, si avrà

$$\dot{s}_{II}(\tau) = \frac{V_{max}}{|\Delta q|}, \quad \ddot{s}_{II}(\tau) \equiv 0.$$

Integrando (a partire dalla posizione raggiunta al termine del primo tratto) si ottiene

$$s_{II}(\tau) = \frac{V_{max}T_v}{|\Delta q|} \, \tau + s_I(1),$$

da cui la posizione (normalizzata) raggiunta al termine del secondo tratto è pari a

$$s_{II}(1) = \frac{V_{max}T_v}{|\Delta q|} + \frac{V_{max}T_s}{2|\Delta q|}.$$

Terzo tratto. Si ha per $t \in [T_s + T_v, T]$, con $T = T_v + 2T_s$ pari al tempo totale di moto. Posto $\tau = [t - (T_s + T_v)]/T_s \in [0, 1]$, imponendo

$$\dot{s}_{III}(0) = \frac{V_{max}}{|\Delta q|}, \quad \dot{s}_{III}(1) = 0, \quad \ddot{s}_{III}(0) = \ddot{s}_{III}(1) = 0,$$

si ricava per il profilo di velocità

$$\dot{s}_{III}(\tau) = \frac{V_{max}}{|\Delta q|} \left[3(1-\tau)^2 - 2(1-\tau)^3 \right]$$

che risulta perfettamente speculare al profilo di velocità del primo tratto. Integrando con la condizione al contorno in $\tau = 0$ ($t = T_s + T_v$) pari alla posizione raggiunta al termine del secondo tratto²) e derivando si ottiene rispettivamente

$$s_{III}(\tau) = -\frac{V_{max}T_s}{|\Delta q|} \left[(1-\tau)^3 - 0.5(1-\tau)^4 \right] + \frac{V_{max}T_s}{2|\Delta q|} + s_{II}(1)$$

 $^{^2}$ Si sarebbe potuto scegliere la costante di integrazione anche ponendo direttamente $s_{III}(1)=1$.

$$\ddot{s}_{III}(\tau) = -\frac{6V_{max}}{|\Delta q|T_s} \left[(1 - \tau) - (1 - \tau)^2 \right].$$

Per la simmetria del moto, la scelta di T_s operata nel primo tratto garantisce anche l'ammissibilità dell'accelerazione massima nel terzo tratto. La posizione raggiunta al termine del terzo e ultimo tratto deve essere pari allo spostamento totale normalizzato (= 1):

$$s_{III}(1) = \frac{V_{max}T_s}{|\Delta q|} + \frac{V_{max}T_v}{|\Delta q|} = 1.$$

Come previsto, da questa segue

$$V_{max}(T_s + T_v) = |\Delta q|.$$

Sostituendo l'espressione di T_s si ottiene

$$T_v = \frac{|\Delta q|}{V_{max}} - \frac{3}{2} \frac{V_{max}}{A_{max}}$$

e infine

$$T = T_v + 2T_s = \frac{|\Delta q|}{V_{max}} + \frac{3}{2} \frac{V_{max}}{A_{max}}.$$

La soluzione così trovata ha validità solo nel caso in cui i dati del problema consentano di raggiungere la velocità massima V_{max} . Per l'esistenza del tratto intermedio $(T_v \ge 0)$, è necessario e sufficiente che sia

$$|\Delta q| \geq \frac{3}{2} \frac{V_{max}^2}{A_{max}}.$$

Con i dati numerici del problema tale situazione è verificata e si ha $T_s = 0.75$ s, $T_v = 0.5066$ s e un tempo totale T = 2.0066 s. Nelle Figure 3 e 4 sono riportati i profili normalizzati di posizione s, velocità \dot{s} , accelerazione \ddot{s} e jerk \ddot{s} rispetto al tempo normalizzato $\tau = t/T$, nonchè l'effettiva traiettoria q(t) con le sue derivate.

Si può notare che rispetto ad una traiettoria con velocità trapezoidale e stessi vincoli V_{max} e A_{max} , vi è certamente un peggioramento del tempo totale di moto, legato ad un aumento del 50% del tempo necessario alle due transizioni ad accelerazione non nulla. Nel presente caso numerico si ha in particolare

$$\frac{T}{T_{vel,trap}} = \frac{\frac{|\Delta q|}{V_{max}} + \frac{3}{2} \frac{V_{max}}{A_{max}}}{\frac{|\Delta q|}{V_{max}} + \frac{V_{max}}{A_{max}}} = \frac{2.0066}{1.7566} = 1.1423,$$

ossia un rallentamento di circa il 14% (a fronte però di un profilo continuo dell'accelerazione).

Per ulteriore confronto, una traiettoria composta da un singolo polinomio quintico avrebbe fornito come minimo tempo di moto ammissibile

$$T_{quint} = \max\{1.875 \cdot \frac{|\Delta q|}{V_{max}}, \sqrt{5.7735} \cdot \sqrt{\frac{|\Delta q|}{A_{max}}}\} = \max\{2.3562, 1.9046\} = 2.3562,$$

dove i due argomenti confrontati provengono rispettivamente dal limite di velocità e da quello di accelerazione. Ne segue

$$\frac{T_{quint}}{T} = \frac{2.3562}{2.0066} = 1.1742$$

e la traiettoria quintica avrebbe una durata più lunga di circa il 17% rispetto alla soluzione fornita, come peraltro si era intuito fin dall'inizio. Inoltre, in base alle espressioni riportate, più è grande lo spostamento $|\Delta q|$ richiesto, maggiore è il vantaggio percentuale della soluzione fornita (è disponibile il file Matlab di questo esercizio).

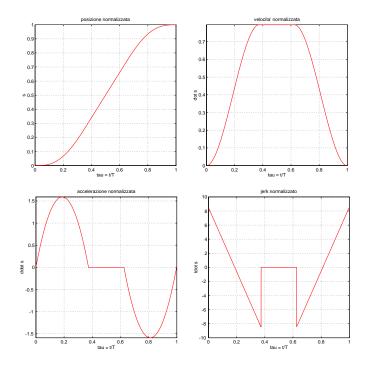


Figura 3: Profili normalizzati di $s(\tau),\,\dot{s}(\tau),\,\ddot{s}(\tau)$ e $\ddot{s}(\tau)$

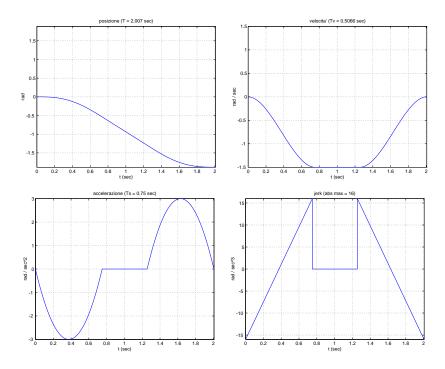


Figura 4: Traiettoria q(t)e sue derivate $\dot{q}(t),\,\ddot{q}(t)$ e $\dddot{q}(t)$