

Robotics 1

Service robotics

Prof. Alessandro De Luca

DIPARTIMENTO DI INGEGNERIA INFORMATICA AUTOMATICA E GESTIONALE ANTONIO RUBERTI

Some application domains

- extreme environments
 - space
 - underwater
- medical robotics
 - assistive
 - rehabilitative
 - surgical
- home cleaning
- agriculture
- lawn mowing
- food industry

- mine exploration
- de-mining
- civil and naval construction
- automatic refueling
- museum guide
- fire fighting
- inspection and surveillance
- emergency rescue
- entertainment
- humanoids

professional & personal service robots

Service robots on the market!

Bluebotics Esatroll - Paquito 2.0 logistics in factory floor

Yujin GoCart2 elderly and health care

Cyberdyne HAL exoskeleton for walking

Lely Vector automated feeding

Vorwerk vacuum cleaner

Thymio educational mobile robot

Space robotics

• NASA *Sojourner*, first robot to explore Mars in 1997

 DLR Rotex robot arm in a set of experiments of the Spacelab-D2 mission on the Columbia shuttle in 1993

Space robotics

video

Opportunity Maneuvers out of Sand Trap

wheels untrapping on sandy soil

assembly tasks and catching floating objects with *Rotex*

Space robotics

SALVIN SE

• robotic arm SSRMS (Canadarm) in operation on the Space Shuttle, with outstretch of about 17 meters

service manipulator SPDM (Dextre)
 on the International Space Station
 (ISS), mounted on a supporting rail
 and used to refuel satellites

Robots on ISS

video

Canadarm2 delivering Destiny Lab from Space Shuttle Endevour to ISS (about 2007)

service manipulator and Robonaut on the ISS (artistic views)

Underwater robotics

• Odyssey-IV (MIT)

- typically actuated by thrusters (directional forces on the tail)
- cannot translate sideways ("maneuvers" are necessary)

 Odin-III, omni-directional (University of Hawaii)

 ROMEO in Antarctica (CNR, Automazione Navale, Genova)

Underwater robotics

Ansaldo underwater arm performing a cable hooking task (SAUVIM project)

video

video

UBC Gavia underwater robot (University of British Columbia)

Underwater robotics

- Aqua robot, amphibious robotic vehicle (McGill University)
- size and weight: 50x65x13 cm, 18 kg
- locomotion: through six independently actuated flippers
- maximum depth: 37 m
- sensors: two cameras (front/back), acoustic sensor for localization (sonar), tri-ocular sensor (structured light)
- power source: 48V lithium battery

Outdoor exploration

• the LAMA robot at CNRS-LAAS (Toulouse) is a french-russian cooperation

Volcanology

video

video

RoboVolc vehicles on the surface of the Etna volcano: wheeled and tracked robots (University of Catania, 2003)

De-mining

 teleoperated mobile robot on tracks used by the police for bomb disposal

- PEMEX lightweight anti-personnel mine detector (EPFL, Lausanne)
- weight: 16 kg, max 6 kg for wheel
- two 70 W DC motors (vel 2 m/s)
- oscillating sensorized head

Medical robotics patient aid

• MOVAID project for the aid of disabled people in home activities (Scuola Sup Sant'Anna, Pisa)

 deambulation support system *PAM-AID* (Trinity College, Ireland)

MOVAID project

video

domestic activities using the 8R Dexter arm

Medical Robotics rehabilitative

- robotic arm with shoulder and elbow having full mobility and with a gripper hand (Pittsburgh University)
- in tests on monkeys (with immobilized upper limbs), motion commands sent to the arm by the central nervous system (brain) are measured by a set of electrodes and used to command the robotic arm

Medical robotics

rehabilitative

- commercialized by Ossur (Iceland)
- a prosthesis sensorized at the knee (angle and force), capable of processing sensor data and of extracting a gait model of the user, so as to adapt its dynamical behavior (knee motion and stiffness)

Medical robotics rehabilitative

- "RUPERT" Robotic Upper Extremity Repetitive Therapy (Arizona State University + Kinetic Muscles, Inc.)
- sustains the human arm with pneumatic muscles (McKibben actuators)
- it can be programmed for the execution of cyclic exercises of rehabilitation

Exoskeletons

video

SARCOS master-slave for teleoperation

Medical robotics

hospital and nursing

video

 HELPmate mobile robot (USA) works in hospitals as auxiliary personnel

 user interface of the *Care-O-Bot* robot nurse (IPA Fraunhofer, Germany)

Surgical robotics

overview of the operating room

command station

(haptic) interface

• da Vinci[©] system (Intuitive Surgical Inc.) [see the course "Medical Robotics"]

Surgical robotics

Robodoc by Integrated Surgical Systems (USA)
 was used first for orthopedic surgery (ankle replacement)

• Steady-Hand force-assisted system (Johns Hopkins Univ) improves accuracy and repeatability of surgeons allowing task-driven compliance

Surgical robotics

 emulation of a laser brain surgery operation and graphic rendering of a surgery intervention on the spinal cord patient is first "mapped" off-line by a series of CAT scans; data are then "localized" in the actual operation field (IPA Fraunhofer)

Home cleaning

commercial videoiRobot *Roomba 560* (USA)now available everywhere!

Cleaning robot contest

• competition among robot vacuum cleaners in home environments (IROS'02, Lausanne)

Cleaning of external surfaces

- *Skywash* cleans civil airplane bodies and is "the largest robot worldwide" (AEG/Dornier/FhG-IPA/Putzmeister)
- a robot prototype for cleaning large glass windows of civil buildings

Lawn mowers

video

• *Automower* autonomous robot by Husqvarna (Sweden) has low power consumption (biocut) and solar recharge

Food industry

• *Ulixes* robot by IMT (Germany) aligns 10000 sausages per hour

 AdeptOne SCARA robot with 4-sausage gripper

Automatic refueling

cooperation of Reis Robotics,
 Mercedes, BMW, and IPA Fraunhofer

• Smart Pump system (USA)

Automatic refueling

• OSCAR robot (France) for gasoline refuel of flees of transportation busses

Automatic refueling

a "kit" is available for all car models: tank cap, transponder, pipe union

Autofill system in two tank stations of OK (Mörgby, Sweden) and BP (USA)

Inspection and surveillance

• 5-dof *Scorbot* arm mounted on a *ATRV-JR* (fixed wheels, skid-steering vehicle)

• 6-dof *Puma* arm mounted on the *Nomad XR400* (multiple steering wheels, synchro-driven)

two examples of mobile manipulators

Inspection and surveillance

 Hilare 2bis mobile robot (LAAS), with trailer and manipulator arm, and its localization on a indoor map

> sensors: encoders (on wheels and arm joints), ultrasound, SICK laser, and camera on end-effector gripper

Inspection and surveillance

• motion planning of a robotized inspection task inside an electricity power plant (*Move3D* simulation)

Mine exploration

- *Groundhog* (Carnegie Mellon)
- 750 kg, double axes, articulated
- movable SICK laser (rangefinder)
- gas and immersion sensors
- SLAM algorithm (Simultaneous Localization And Mapping)

RoboCup and RoboRescue

- RoboCup middle-size league (wheeled mobile robots, here with omni-directional vision)
- Orpheus robot won the RoboRescue (exploration and search of victims in a disaster environment)

2003 edition, Padova Fair

DARPA Grand Challenge

5 SICK lasers for mapping and localization on the 2005 winning VW Touareg "Stanley"

the "Ghostrider" motorcycle testing in Nevada

• competition for fully autonomous vehicles on a long mixed-type track

DARPA Grand Challenge

video interview

S. Thrun of Stanford Racing (Stanford Univ+VW America+many more)

A. Levandowski of Blue Team (LaRaison Inc+Univ Berkeley+Texas A&M)

Stanley navigation: GPS, laser scanners, vision, radar Ghostrider navigation: GPS, inertial unit, motorcycle dynamics, stereovision

Free time

• the robotic ball boy (RWI and Carnegie Mellon Univ, USA) that won in 1996 the "Clean up the tennis court!" competition of the AAAI

Robots filling a glass of beer

video

a single KUKA robot

two cooperating ABB robots

video

Museum guidance

• three mobile robots for museum guidance (Museum für Kommunikation, Berlin)

Entertainment

 the Anaconda robot (Edge Innovations, USA) weights various tons, has 60 artificial spinal vertebrae, is 12 meters long, and is actuated by hydraulic motors so as to reach a speed of up to 60 km/h

Human motion replication

• the anthropomorphic robot by Sarcos Entertainment Systems (USA) replicates the movements of a human wearing a sensorized exoskeleton

Human-Robot Interaction

• physical and cognitive interaction between a Sarcos robot and a human

intrinsic mechanical compliance in the robot structure is here more important than accuracy in motion execution

Human-Robot Interaction (HRI)

45

video

video

cognitive interaction (cHRI)
in Robot@CWE EU Project

physical interaction (pHRI)
in PHRIENDS EU Project

Human-robot collaboration

 Mr. Helper (Tohoku Univ) collaborates in carrying heavy and/or large loads

 CoBot scooter-like robot for mounting car doors (General Motors)

Robot hands

• the *UBHand* series of robot dexterous hands (Univ Bologna)

3 fingers with 9 degrees of freedom, tendon actuation, supporting palm, and tactile sensors on all phalanges

Anthropomorphic UBHand IV

the UBHand IV has deformable elements as joint hinges (compliant mechanisms);
 the endo-skeletal structure with 5 fingers may host distributed sensors
 and continuous compliant cover (G. Vassura, Univ Bologna)

New robot hand for the iCub

video

• *iCub* robot is like a 3.5y old child, developed by IIT Genova in 2005 in the RobotCub EU Project (platform distributed openly, with open-source SW)

Integration of robot hand + arm

• the complete *UBHand II*, with electrical motors and electronics presented at EXPO92 in Seville

• integration in the forearm of the *Unimation PUMA 560*

... "minimalistic" solutions

 5D manipulation of objects having arbitrary form, using only two linear actuators and sensorized contact surfaces (Univ Pisa, about 15 years ago)

1 motor only for the Soft Hand,
 an articulated and compliant robotic hand of human size and synergy
 (Centro "E. Piaggio", Univ Pisa – IIT, 2014)

Biomorphic robots

• biomorphic robots by MIT Leg Lab, USA: *Troody* dinosaur and *Flamingo* bird

Four-legged locomotion

• AIBO ERS-210 by Sony, playing on the soccer field of RoboCup

16 actuated dofs with encoders, color camera, 3 accelerometers, ultrasound sensors, tactile and micro-switch (feet), battery: everything in 1.6 kg!

Anthropomorphic upper limbs

• *Justin* robot has 7+7+3 degrees of freedom + many dofs in the two hands (DLR, Germany)

 the robot developed in the German national project on humanoids

Justin robotic system @ DLR

video

Humanoid robots

• Metropolis (Fritz Lang, 1927)

• *Pino* by ZMP (2003)

Humanoid robots

• the *ASIMO* project by Honda started in 1986

ASIMO in action

ASIMO climbing stairs (Robodex 2003)

first and second series (smaller size)

video

video

Humanoid robots

• *HRP-2* (58 kg, 150 cm, 30 dofs) 2002 Tokyo Univ

• Sony SDR-3X (about 60 cm)

humanoid robot(Q. Huang, PR China)

Sony Q-RIO

group dancing video (2003)

• Sony *Q-RIO* the first robot able to balance on a surf and stand up from the floor (dead in 2006...)

Humanoid robots

ShoulderOffsetZ

NeckOffsetZ

LowerArmLength

ThighLength

FootHeight

kinematic description

• NAO, Aldebaran Robotics since 2008, replaces AIBO quadrupeds in RoboCup standard league

NAO playtime

Aldebaran Robotics commercial video

... what about dynamic stability?

video

• the *One-Leg Hopper* robot (MIT, USA) demonstrated back in 1982 the feasibility of maintaining a purely dynamic equilibrium during motion

we could go on and on, forever...

video

video

MIT planar two-legged robot doing a flip (1984)

ping-pong with KUKA KR5 robot

the beauty of dynamics and juggling

for professional use

World Robotics Report 2017

- main applications: logistic, defense (mostly, UAV), field robots (e.g., milking)
- almost **60,000** (+24%) service robots for **professional** use sold in 2016
- ~ 400,000 new service robots for professional use to be sold in 2018-20*
 (+45% estimate over last period)
- > 50% of professional service robots are manufactured in the Americas

for professional use

other applications: **social** (\nearrow), exoskeletons (\nearrow), medical systems (\nearrow), construction, cleaning, inspection, agriculture, underwater, rescue...

public relation robots also expect significant increase in turnover (4.5 M\$ in 2018-20*)

for personal/domestic use

- personal/domestic robots market is
 huge: hard to assess figures due
 large variety in products and lifetime
- 6.8M units sold in 2016 (+25%), for a value of 2.6 G\$ (+15%)
- forecast 2018-20*: 43M units
- vacuum and floor cleaning robots
- lawn-mowing robots
- entertainment (e.g., Mindstorm) and leisure
- robots for elderly/handicap assistance

manufacturers by application areas and regions

- 75% of European service robot suppliers are SMEs
- many start ups ...

- 2/3 of all service robot suppliers use ROS (& other Open Source Systems)
- key-technologies: perception, human-machine interaction, mechatronics, safety

Web sites

http://ieee-ras.org

The web site of IEEE-RAS (*Institute of Electrical and Electronics Engineers - Robotics & Automation Society*) with access to conferences, publications, technical committees, etc. – *become a student member of the IEEE-RAS !!*

- http://handbookofrobotics.org
 Multimedia extension of the Springer Handbook of Robotics (2nd Ed, 2016),
 with >700 free robotics videos of historical and state-of the-art value
- http://www.eu-robotics.net
 The new *European Robotics AIBSL*, with euRobotics Forum & Week, etc.
- http://www.euron.org
 EUropean RObotics research Network, with a gallery of robots, videos,
 European robotics projects (no longer updated since 2012)
- http://www.youtube.com/user/RoboticsLabSapienza
 YouTube channel of DIAG Robotics Lab, with videos of our latest research