Robotics 1

Position and orientation of rigid bodies

Prof. Alessandro De Luca

Difartiminto di ingtcnima Intoamatica
Automatica e Gestionale Antomio Rubekti

UNIVERSTTA DI ROMA

Position and orientation

rigid body

- position: ${ }^{A} \boldsymbol{p}_{A B}$ (vector $\in \mathbb{R}^{3}$)

Cartesian coordinates of vector $\overrightarrow{A B}$ expressed in $R F_{A}$

- orientation:
orthonormal 3×3 matrix
($R^{T}=R^{-1} \Rightarrow R^{T} R=I$), with det $=+1$

$$
{ }^{A} R_{B}=\left[\begin{array}{lll}
{ }^{A} \boldsymbol{x}_{B} & { }^{A} \boldsymbol{y}_{B} & { }^{A} \boldsymbol{z}_{B}
\end{array}\right]
$$

- $\boldsymbol{x}_{A} \boldsymbol{y}_{A} \boldsymbol{z}_{A}\left(\boldsymbol{x}_{B} \boldsymbol{y}_{B} \boldsymbol{z}_{B}\right)$ are axis vectors (of unitary norm) of frame $R F_{A}\left(R F_{B}\right)$
- components in ${ }^{A} R_{B}$ are the direction cosines of the axes of $R F_{B}$ with respect to (w.r.t.) $R F_{A}$

Position of a rigid body

- for position representation, use of other coordinates than the Cartesian ones is possible, e.g., cylindrical or spherical
- direct transformation from cylindrical to Cartesian

$$
\begin{aligned}
& x=r \cos \theta \\
& y=r \sin \theta \\
& z=h
\end{aligned}
$$

is always well defined

$$
\text { (with } r \geq 0 \text { or } r \gtreqless 0 \text {) }
$$

- inverse transformation from Cartesian to cylindrical

$$
\begin{array}{rrr}
& \begin{array}{c}
\text { assuming }+ \\
(r \geq 0 \text { only }) \\
r
\end{array} & =\sqrt{x^{2}+y^{2}} \\
x^{2}+y^{2}=r^{2} & & \begin{aligned}
\theta \\
\frac{y}{x}=\tan \theta
\end{aligned} \quad \Rightarrow \quad \begin{aligned}
\theta & =\operatorname{atan} 2\{y, x\} \quad \text { with a singularity } \\
h & =z
\end{aligned} \quad \text { for } x=y=0
\end{array}
$$

atan2 function

- arctangent with output values "in the four quadrants"
- two input arguments
- takes values in $[-\pi,+\pi]$
- undefined only for $(0,0)$
- uses the sign of both arguments to define the output quadrant
- based on arctan function with output values in $[-\pi / 2,+\pi / 2]$
- available in main languages (C++, Matlab, ...)

$$
\operatorname{atan} 2(y, x)= \begin{cases}\arctan \left(\frac{y}{x}\right) & x>0 \\ \pi+\arctan \left(\frac{y}{x}\right) & y \geq 0, x<0 \\ -\pi+\arctan \left(\frac{y}{x}\right) & y<0, x<0 \\ \frac{\pi}{2} & y>0, x=0 \\ -\frac{\pi}{2} & y<0, x=0 \\ \text { undefined } & y=0, x=0\end{cases}
$$

Orientation of a rigid body

$$
\begin{aligned}
& { }^{A} R_{A}={ }^{A} R_{B}{ }^{B} R_{A}=I \\
& { }^{B} R_{C}=\left(\begin{array}{ccc}
0 & 0 & 1 \\
-1 & 0 & 0 \\
0 & -1 & 0
\end{array}\right)={ }^{B} R_{A}{ }^{A} R_{C}={ }^{A} R_{B}^{T}{ }^{A} R_{C}
\end{aligned}
$$

Rotation matrix

NOTE: in general, the product of rotation matrices does not commute!

Change of coordinates

Change of coordinates

$$
\begin{aligned}
& { }^{1} \boldsymbol{p}=\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right) \\
& { }^{0} R_{1}=\left(\begin{array}{ccc}
1 / \sqrt{3} & 1 / \sqrt{3} & 1 / \sqrt{3} \\
1 / \sqrt{6} & -2 / \sqrt{6} & 1 / \sqrt{6} \\
1 / \sqrt{2} & 0 & -1 / \sqrt{2}
\end{array}\right) \\
& { }^{0} \boldsymbol{p}={ }^{0} R_{1}{ }^{1} \boldsymbol{p}=\left(\begin{array}{c}
\sqrt{3} \\
0 \\
0
\end{array}\right) \\
& \|\boldsymbol{p}\|=\left\|{ }^{0} \boldsymbol{p}\right\|=\left\|{ }^{1} \boldsymbol{p}\right\|=\sqrt{3} \\
& \text { - } x_{0} \text { is aligned with } p=\overrightarrow{O P} \\
& \text { - } z_{0} \text { is orthogonal to } y_{1}\left(\boldsymbol{z}_{0}^{T} \boldsymbol{y}_{1}=0\right) \\
& \text { and is positive on } \boldsymbol{x}_{1}\left(\boldsymbol{z}_{0}^{T} \boldsymbol{x}_{1}=1 / \sqrt{2}\right) \\
& \text { - } y_{0} \text { completes a right-handed frame }
\end{aligned}
$$

Orientation of frames in a plane

(elementary rotation around z-axis)

similarly:

$$
R_{z}(-\theta)=R_{z}{ }^{T}(\theta)
$$

$$
R_{x}(\theta)=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \theta & -\sin \theta \\
0 & \sin \theta & \cos \theta
\end{array}\right] \quad R_{y}(\theta)=\left[\begin{array}{ccc}
\cos \theta & 0 & \sin \theta \\
0 & 1 & 0 \\
-\sin \theta & 0 & \cos \theta
\end{array}\right]
$$

Rotation of a vector around z

$$
\begin{aligned}
x & =\|v\| \cos \alpha \\
y & =\|v\| \sin \alpha
\end{aligned}
$$

or...

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right]=\left[\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=R_{z}(\theta)\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \quad \begin{aligned}
& \text {.. same as } \\
& \text { before! }
\end{aligned}
$$

Equivalent interpretations of a rotation matrix

the same rotation matrix (e.g., $R_{z}(\theta)$) may represent

the orientation of a rigid body with respect to a reference frame $R F_{0}$
e.g., $\left[{ }^{0} \boldsymbol{x}_{c}{ }^{0} \boldsymbol{y}_{c}{ }^{0} z_{c}\right]=R_{z}(\theta)$

the change of coordinates from $R F_{C}$ to $R F_{0}$
e.g., ${ }^{0} \boldsymbol{p}=R_{z}(\theta){ }^{C} \boldsymbol{p}$

the rotation operator on vectors

$$
\text { e.g., } \boldsymbol{v}^{\prime}=R_{z}(\theta) \boldsymbol{v}
$$

the rotation matrix ${ }^{0} R_{C}$ is an operator superposing frame $R F_{0}$ to frame $R F_{C}$

Composition of rotations

Axis/angle representation

Axis/angle: Direct problem

$$
R(\theta, \boldsymbol{r})=C R_{z}(\theta) C^{T}
$$

sequence of three rotations (one of which is elementary)

after the first rotation the z-axis coincides with r
\boldsymbol{n} and \boldsymbol{s} are orthogonal unit vectors such that

$$
n \times s=r
$$

Inner and outer products

 whiteboard...- (inner) row by column products between two 3×3 (orthonormal) matrices

$$
C^{T} C=\left[\begin{array}{c}
\boldsymbol{n}^{T} \\
\boldsymbol{s}^{T} \\
\boldsymbol{r}^{T}
\end{array}\right]\left[\begin{array}{lll}
\boldsymbol{n} & \boldsymbol{s} & \boldsymbol{r}
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]=I
$$

- dyadic expansion of a $n \times n$ generic matrix

$$
\boldsymbol{e}_{i}=\left[\begin{array}{lllll}
0 & \ldots & 1 & \ldots & 0
\end{array}\right]^{T}, \quad i=1, \ldots, n \quad \Rightarrow \quad A=\sum_{i, j=1}^{n} a_{i j} \boldsymbol{e}_{i} \boldsymbol{e}_{j}^{T}\left(=I A I^{T}\right)
$$

- product of three $n \times n$ matrices using dyadic form

$$
B=\left[\begin{array}{llll}
\boldsymbol{b}_{1} & \boldsymbol{b}_{2} \ldots & \boldsymbol{b}_{n-1} & \boldsymbol{b}_{n}
\end{array}\right] \Rightarrow B A B^{T}=\sum_{i, j=1}^{n} a_{i j} \boldsymbol{b}_{i} \boldsymbol{b}_{j}^{T}
$$

- (outer) column by row products between two 3×3 matrices

$$
\begin{aligned}
C C^{T}=I \Rightarrow C C^{T} & =\left[\begin{array}{lll}
\boldsymbol{n} & \boldsymbol{s} & \boldsymbol{r}
\end{array}\right]\left[\begin{array}{c}
\boldsymbol{n}^{T} \\
\boldsymbol{s}^{T} \\
\boldsymbol{r}^{T}
\end{array}\right]=\left[\begin{array}{lll}
\boldsymbol{n} & \boldsymbol{s} & \boldsymbol{r}
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
\boldsymbol{n}^{T} \\
\boldsymbol{s}^{T} \\
\boldsymbol{r}^{T}
\end{array}\right] \\
& =\boldsymbol{n \boldsymbol { n } ^ { T } + \boldsymbol { s \boldsymbol { s } ^ { T } + \boldsymbol { r r } ^ { T } = I }} \mathrm{l}
\end{aligned}
$$

Skew-symmetric matrices whiteboard...

- properties of a skew-symmetric matrix
- a square matrix S is skew-symmetric iff $S^{T}=-S$

$$
\Leftrightarrow s_{i j}=-s_{j i} \Rightarrow s_{i i}=0 \text { (zeros on the diagonal) }
$$

- any square matrix A can be decomposed into its symmetric and skew-symmetric parts

$$
A=\frac{A+A^{T}}{2}+\frac{A-A^{T}}{2}=A_{\text {symm }}+A_{\text {skew }}
$$

- in quadratic forms the skew-symmetric part vanishes (only the symmetric part matters)

$$
x^{T} A x=\frac{1}{2}\left[x^{T} A x+\left(x^{T} A x\right)^{T}\right]=\frac{1}{2}\left[x^{T} A x+x^{T} A^{T} x\right]=x^{T} \frac{A+A^{T}}{2} x=x^{T} A_{\text {symm }} x
$$

- canonical form of a 3×3 skew-symmetric matrix also called vee map \vee

$$
\boldsymbol{v}=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \Rightarrow S(\boldsymbol{v})=\left[\begin{array}{ccc}
0 & -z & y \\
z & 0 & -x \\
-y & x & 0
\end{array}\right] \quad S=\left[\begin{array}{ccc}
0 & -v_{z} & v_{y} \\
v_{z} & 0 & -v_{x} \\
-v_{y} & v_{x} & 0
\end{array}\right] \stackrel{\downarrow}{\Rightarrow} \boldsymbol{v}=\left[\begin{array}{l}
v_{x} \\
v_{y} \\
v_{z}
\end{array}\right]
$$

- expression of the vector product between two vectors $\in \mathbb{R}^{3}$

$$
\begin{aligned}
& \left.\boldsymbol{n}=\left[\begin{array}{l}
n_{x} \\
n_{y} \\
n_{z}
\end{array}\right], \boldsymbol{s}=\left[\begin{array}{l}
s_{x} \\
s_{y} \\
s_{z}
\end{array}\right] \Rightarrow \boldsymbol{r}=\left[\begin{array}{l}
r_{x} \\
r_{y} \\
r_{z}
\end{array}\right]=\boldsymbol{n} \times \boldsymbol{s}=\left[\begin{array}{l}
n_{y} s_{z}-s_{y} n_{z} \\
n_{z} s_{x}-s_{z} n_{x} \\
n_{x} s_{y}-s_{x} n_{y}
\end{array}\right]=S(\boldsymbol{n}) \boldsymbol{s} \text { determinant of } \begin{array}{ccc}
i & n_{x} & n_{y} \\
n_{x} & n_{z} \\
s_{x} & s_{y} & s_{z}
\end{array}\right] \\
& \boldsymbol{v}_{1} \times \boldsymbol{v}_{2}=S\left(\boldsymbol{v}_{1}\right) \boldsymbol{v}_{2}=-\boldsymbol{v}_{2} \times \boldsymbol{v}_{1}=-S\left(\boldsymbol{v}_{2}\right) \boldsymbol{v}_{1}=S^{T}\left(\boldsymbol{v}_{2}\right) \boldsymbol{v}_{1}
\end{aligned}
$$

Axis/angle: Direct problem

 solution$$
\begin{aligned}
R(\theta, \boldsymbol{r})=C & R_{z}(\theta) C^{T}
\end{aligned}
$$

taking into account

$$
\begin{aligned}
& C C^{T}=\boldsymbol{n} \boldsymbol{n}^{T}+\boldsymbol{s \boldsymbol { s } ^ { T } + \boldsymbol { r } \boldsymbol { r } ^ { T } = I} \\
& \boldsymbol{s n}^{T}-\boldsymbol{n} \boldsymbol{s}^{T}=\left[\begin{array}{ccc}
0 & -r_{z} & r_{y} \\
r_{z} & 0 & -r_{x} \\
-r_{y} & r_{x} & 0
\end{array}\right]=S(\boldsymbol{r})
\end{aligned}
$$

$$
R(\theta, \boldsymbol{r})=\boldsymbol{r} \boldsymbol{r}^{T}+\left(I-\boldsymbol{r r}^{T}\right) c \theta+S(\boldsymbol{r}) s \theta
$$

Final expression of $R(\theta, \boldsymbol{r})$

developing computations...

$$
\begin{gathered}
R(\theta, \boldsymbol{r})= \\
{\left[\begin{array}{ccc}
r_{x}^{2}(1-\cos \theta)+\cos \theta & r_{x} r_{y}(1-\cos \theta)-r_{z} \sin \theta & r_{x} r_{z}(1-\cos \theta)+r_{y} \sin \theta \\
r_{x} r_{y}(1-\cos \theta)+r_{z} \sin \theta & r_{y}^{2}(1-\cos \theta)+\cos \theta & r_{y} r_{z}(1-\cos \theta)-r_{x} \sin \theta \\
r_{x} r_{z}(1-\cos \theta)-r_{y} \sin \theta & r_{y} r_{z}(1-\cos \theta)+r_{x} \sin \theta & r_{z}^{2}(1-\cos \theta)+\cos \theta
\end{array}\right]} \\
\text { note that } \\
\begin{array}{c}
\text { sum of the diagonal } \\
\text { elements of a matrix } \\
\downarrow \\
\text { trace } R(\theta, \boldsymbol{r})=1+2 \cos \theta \\
R(\theta, \boldsymbol{r})=R(-\theta,-\boldsymbol{r})=R^{T}(-\theta, \boldsymbol{r})
\end{array}
\end{gathered}
$$

Axis/angle: a simple example

$$
R(\theta, \boldsymbol{r})=\boldsymbol{r r}^{T}+\left(I-\boldsymbol{r r}^{T}\right) c \theta+S(\boldsymbol{r}) s \theta
$$

$$
r=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]=z_{0}
$$

$$
\begin{aligned}
R(\theta, \boldsymbol{r}) & =\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]+\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right] c \theta+\left[\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] s \theta \\
& =\left[\begin{array}{ccc}
c \theta & -s \theta & 0 \\
s \theta & c \theta & 0 \\
0 & 0 & 1
\end{array}\right]=R_{z}(\theta)
\end{aligned}
$$

Properties of $R(\theta, \boldsymbol{r})$

1. $R(\theta, \boldsymbol{r}) \boldsymbol{r}=\boldsymbol{r}$ (\boldsymbol{r} is the invariant axis in this rotation)
2. when \boldsymbol{r} is one of the coordinate axes, R boils down to one of the known elementary rotation matrices
3. $(\theta, \boldsymbol{r}) \rightarrow R$ is not an injective map: $R(\theta, \boldsymbol{r})=R(-\theta,-\boldsymbol{r})$
4. $\operatorname{det} R=+1=\prod_{i} \lambda_{i}$ (eigenvalues)
5. trace $R=\operatorname{trace} \boldsymbol{r} \boldsymbol{r}^{T}+\operatorname{trace}\left(I-\boldsymbol{r} \boldsymbol{r}^{T}\right) c \theta={\underset{\kappa}{ }}_{1}+2 c \theta=\sum_{i} \lambda_{i}$
6. $\Rightarrow \lambda_{1}=1$
identities in green hold for any matrix!
7. \& 5. $\Rightarrow \lambda_{2}+\lambda_{3}=2 c \theta \Rightarrow \lambda^{2}-2 c \theta \lambda+1=0$

$$
\Rightarrow \lambda_{2,3}=c \theta \pm \sqrt{c^{2} \theta-1}=c \theta \pm i s \theta=e^{ \pm i \theta}
$$

all eigenvalues λ have unitary module ($\Leftarrow R$ orthonormal)

Axis/angle: Inverse problem

GIVEN a rotation matrix $R=\left\{R_{i}\right\}$, FIND a unit vector r and an angle θ such that

$$
R=\boldsymbol{r} \boldsymbol{r}^{T}+\left(I-\boldsymbol{r} \boldsymbol{r}^{T}\right) \cos \theta+S(\boldsymbol{r}) \sin \theta=R(\theta, \boldsymbol{r})
$$

note first that trace $R=R_{11}+R_{22}+R_{33}=1+2 \cos \theta$; so, one could solve

$$
\theta=\operatorname{arcos} \frac{R_{11}+R_{22}+R_{33}-1}{2}
$$

but

- this formula provides only values in $[0, \pi]$ (thus, never negative angles θ)
- loss of numerical accuracy for $\theta \rightarrow 0$ (sensitivity of $\cos \theta$ is low around 0)
- also, we better use more of the input data..

Axis/angle: Inverse problem

solution
from the data

from $R(\theta, \boldsymbol{r})$

$$
R-R^{T}=\left[\begin{array}{ccc}
0 & R_{12}-R_{21} & R_{13}-R_{31} \\
R_{21}-R_{12} & 0 & R_{23}-R_{32} \\
R_{31}-R_{13} & R_{32}-R_{23} & 0
\end{array}\right]=2 \sin \theta\left[\begin{array}{ccc}
0 & -r_{z} & r_{y} \\
r_{z} & 0 & -r_{x} \\
-r_{y} & r_{x} & 0
\end{array}\right]
$$

it follows

$$
\|\boldsymbol{r}\|=1 \Rightarrow \sin \theta= \pm \frac{1}{2} \sqrt{\left(R_{12}-R_{21}\right)^{2}+\left(R_{13}-R_{31}\right)^{2}+\left(R_{23}-R_{32}\right)^{2}}(*)
$$

thus

$$
\theta=\operatorname{atan} 2\left\{ \pm \sqrt{\left(R_{12}-R_{21}\right)^{2}+\left(R_{13}-R_{31}\right)^{2}+\left(R_{23}-R_{32}\right)^{2}}, R_{11}+R_{22}+R_{33}-1\right\}
$$

see the slide with its definition!

$$
\boldsymbol{r}=\left[\begin{array}{l}
r_{x} \\
r_{y} \\
r_{z}
\end{array}\right]=\frac{1}{2 \sin \theta}\left[\begin{array}{l}
R_{32}-R_{23} \\
R_{13}-R_{31} \\
R_{21}-R_{12}
\end{array}\right]
$$

can be used only if

Singular cases

(use when $\sin \theta=0$)

- if $\theta=0$ from (**), there is no solution for \boldsymbol{r} (rotation axis undefined)
- if $\theta= \pm \pi$ from (**), then set $\sin \theta=0, \cos \theta=-1$ and solve

$$
\Rightarrow \quad R=2 \boldsymbol{r} \boldsymbol{r}^{T}-I
$$

$\boldsymbol{r}=\left[\begin{array}{l}r_{x} \\ r_{y} \\ r_{z}\end{array}\right]=\left[\begin{array}{c} \pm \sqrt{\left(R_{11}+1\right) / 2} \\ \pm \sqrt{\left(R_{22}+1\right) / 2} \\ \pm \sqrt{\left(R_{33}+1\right) / 2}\end{array}\right]$

with | $r_{x} r_{y}=R_{12} / 2$ |
| :--- |
| $r_{x} r_{z}=R_{13} / 2$ |
| $r_{y} r_{z}=R_{23} / 2$ |

used to resolve sign ambiguities \Rightarrow two solutions of opposite sign
homework: write a code that determines the two solutions (θ, \boldsymbol{r})

$$
\text { for } R=\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\
0 & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right]
$$

Unit quaternion

- to eliminate non-uniqueness and singular cases of the axis/angle (θ, \boldsymbol{r}) representation, the unit quaternion can be used

$$
\begin{aligned}
& \quad Q=\{\eta, \boldsymbol{\epsilon}\}=\{\cos (\theta / 2), \sin (\theta / 2) \boldsymbol{r}\} \\
& \text { a scalar } \\
& \text { 3-dim vector }
\end{aligned}
$$

- $\eta^{2}+\|\epsilon\|^{2}=1$ (thus, "unit ...")
- (θ, \boldsymbol{r}) and $(-\theta,-\boldsymbol{r})$ are associated to the same quaternion Q
- the rotation matrix R associated to a given quaternion Q is

$$
R(\eta, \boldsymbol{\epsilon})=\left[\begin{array}{ccc}
2\left(\eta^{2}+\epsilon_{x}^{2}\right)-1 & 2\left(\epsilon_{x} \epsilon_{y}-\eta \epsilon_{z}\right) & 2\left(\epsilon_{x} \epsilon_{z}+\eta \epsilon_{y}\right) \\
2\left(\epsilon_{x} \epsilon_{y}+\eta \epsilon_{z}\right) & 2\left(\eta^{2}+\epsilon_{y}^{2}\right)-1 & 2\left(\epsilon_{y} \epsilon_{z}-\eta \epsilon_{x}\right) \\
2\left(\epsilon_{x} \epsilon_{z}-\eta \epsilon_{y}\right) & 2\left(\epsilon_{y} \epsilon_{z}+\eta \epsilon_{x}\right) & 2\left(\eta^{2}+\epsilon_{z}^{2}\right)-1
\end{array}\right]
$$

- no rotation is $Q=\{1, \mathbf{0}\}$, while the inverse rotation is $Q=\{\eta,-\boldsymbol{\epsilon}\}$
- unit quaternions are composed with special rules

$$
Q_{1} * Q_{2}=\left\{\eta_{1} \eta_{2}-\boldsymbol{\epsilon}_{1}^{T} \boldsymbol{\epsilon}_{2}, \eta_{1} \boldsymbol{\epsilon}_{2}+\eta_{2} \boldsymbol{\epsilon}_{1}+\boldsymbol{\epsilon}_{1} \times \boldsymbol{\epsilon}_{2}\right\}
$$

