
Robotics 1

Inverse kinematics
Prof. Alessandro De Luca

Robotics 1 1

Inverse kinematics
what are we looking for?

Robotics 1 2

direct kinematics is always unique;
how about inverse kinematics for this 6R robot?

°

O0

O6

𝑝 =

Inverse kinematics problem

n given a desired end-effector pose (position +
orientation), find the values of the joint variables 𝑞
that will realize it

n a synthesis problem, with input data in the form
§ 𝑇 = 𝑅 𝑝

0$ 1
= %𝐴&(𝑞)

n a typical nonlinear problem
n existence of a solution (workspace definition)
n uniqueness/multiplicity of solutions (𝑟 ∈ ℝ' , 𝑞 ∈ ℝ&)
n solution methods

§ 𝑟 = 𝑓((𝑞), for a task function

Robotics 1 3

classical formulation:
inverse kinematics for a given end-effector pose 𝑇

generalized formulation:
inverse kinematics for a given value 𝑟 of task variables

Solvability and robot workspace
for tasks related to a desired end-effector Cartesian pose

n primary workspace 𝑊𝑆): set of all positions 𝑝 that can be
reached with at least one orientation (𝜙 or 𝑅)
n out of WS1 there is no solution to the problem
n if 𝑝 ∈ 𝑊𝑆!, there is a suitable 𝜙 (or 𝑅) for which a solution exists

n secondary (or dexterous) workspace 𝑊𝑆*: set of positions 𝑝
that can be reached with any orientation (among those
feasible for the robot direct kinematics)
n if 𝑝 ∈ 𝑊𝑆", there exists a solution for any feasible 𝜙 (or 𝑅)

n 𝑊𝑆* Í𝑊𝑆)

Robotics 1 4

Workspace of Fanuc R-2000i/165F

𝑊𝑆! ⊂ ℝ"
(≈ 𝑊𝑆! for spherical wrist

without joint limits)

Robotics 1 5

section for a
constant angle 𝑞!

rotating the
base joint angle 𝑞!

Workspace of a planar 2R arm

n if 𝑙" ¹ 𝑙*
n 𝑊𝑆! = 𝑝 Îℝ": 𝑙! − 𝑙" ≤ 𝑝 ≤ 𝑙! + 𝑙" ⊂ ℝ"
n 𝑊𝑆" = Æ

n if 𝑙" = 𝑙* = 𝑙
n 𝑊𝑆! = 𝑝 Îℝ": 𝑝 ≤ 2𝑙 ⊂ ℝ"
n 𝑊𝑆" = 𝑝 = 0 (all feasible orientations at the origin!... an infinite number)

Robotics 1 6

𝑥
𝑞1

𝑞2

𝑃•

𝑙1

𝑙2

𝑦

𝑙! + 𝑙"

𝑙! − 𝑙"𝜕𝑊𝑆"
outer and inner

boundaries

2 orientations
if 𝑝 Î int(𝑊𝑆")
= 𝑊𝑆" − 𝜕𝑊𝑆"

1 orientation
on 𝜕𝑊𝑆"

𝑂

𝑂 •

𝑝 = 𝑂𝑃

Wrist position and E-E pose
inverse solutions for an articulated 6R robot

LEFT DOWN RIGHT DOWN

LEFT UP RIGHT UP

4 inverse solutions
out of singularities
(for the position of

the wrist center only)

8 inverse solutions considering
the complete E-E pose

(spherical wrist: 2 alternative
solutions for the last 3 joints)

Unimation PUMA 560

Robotics 1 7

Inverse kinematic solutions of UR10
6-dof Universal Robot UR10, with non-spherical wrist

Robotics 1 9

video (slow motion)

desired pose

home configuration at start

[rad]

[m]p	=	
−0.2373
−0.0832
1.3224

R =
3/2 0.5 0
−0.5 3/2 0
0 0 1

𝑞 = 0 −𝜋/2 0 −𝜋/2 0 0 T

8 inverse kinematic solutions of UR10

Robotics 1 10

shoulderRight
wristDown
elbowUp

shoulderRight
wristDown

elbowDown

shoulderRight
wristUp

elbowUp

shoulderRight
wristUp

elbowDown

shoulderLeft
wristDown

elbowDown

shoulderLeft
wristDown
elbowUp

shoulderLeft
wristUp

elbowDown

shoulderLeft
wristUp

elbowUp

𝑞 =

1.0472
−1.2833
−0.7376
−2.6915
−1.5708
3.1416

𝑞 =

1.0472
−1.9941
0.7376
2.8273
−1.5708
3.1416

𝑞 =

1.0472
−1.5894
−0.5236
0.5422
1.5708
0

𝑞 =

1.0472
−2.0944
0.5236
0

1.5708
0

𝑞 =

2.7686
−1.8583
0.7376
−0.4501
1.5708
−1.7214

𝑞 =

2.7686
−1.1475
−0.7376
0.3143
1.5708
−1.7214

𝑞 =

2.7686
−1.5522
0.5236
2.5994
−1.5708
1.4202

𝑞 =

2.7686
−1.0472
−0.5236
3.1416
−1.5708
1.4202

Multiplicity of solutions
few examples

n E-E positioning of planar 2R robot (𝑚 = 𝑛 = 2)
n 2 regular solutions in int(𝑊𝑆!)
n 1 solution on 𝜕𝑊𝑆!
n for 𝑙! = 𝑙": ∞ solutions in 𝑊𝑆"

n E-E positioning of elbow-type spatial 3R robot (𝑚 = 𝑛 = 3)
n 4 regular solutions in 𝑊𝑆! (with singular cases yet to be investigated ...)

n spatial 6R robot arms (𝑚 = 𝑛 = 6)
n £ 16 distinct solutions, out of singularities: this “upper bound” of

solutions was shown to be attained by a particular instance of
“orthogonal” robot, i.e., with twist angles 𝛼# = 0 or ±𝜋/2 (∀𝑖)

n analysis based on algebraic transformations of robot kinematics
n transcendental equations are transformed into a single polynomial equation

in one variable (number of roots = degree of the polynomial)
n seek for a transformed polynomial equation of the least possible degree

singular solutions

Robotics 1 11

A 6R robot with 16 IK solutions
all distinct and non-singular

Robotics 1 12

𝑎! = 0.3, 𝑎" = 1, 𝑎1 = 1.5, 𝑑2 = 0.2

an orthogonal manipulator with DH table

Manseur and Doty:
International Journal of Robotics Research, 1989

3𝑇4 =

for the desired end-effector pose

all non-singularbase

end-effector

with non-spherical wrist

solutions found using a fast
numerical inversion algorithm …

there are 16 real solutions
of the inverse kinematics!

Algebraic transformations
whiteboard …

Robotics 1 13

start with some trigonometric equation in the joint angle 𝜃 to be solved …
𝑎 sin𝜃 + 𝑏 cos 𝜃 = 𝑐

introduce the algebraic transformation
𝑢 = tan ⁄𝜃 2

cos 𝜃 =
1 − 𝑢!

1 + 𝑢!sin 𝜃 =
2𝑢

1 + 𝑢!
(⇒ sin" 𝜃 + cos" 𝜃 = 1)

tan 𝜃 = tan 2 ⁄𝜃 2 =
2 tan ⁄𝜃 2

1 − tan! ⁄𝜃 2 =
2𝑢

1 − 𝑢!
(using the duplication formula)

substituting in (✻)

(✻)

𝑎
2𝑢

1 + 𝑢! + 𝑏
1 − 𝑢!

1 + 𝑢! = 𝑐

⇒

⇒ 𝑏 + 𝑐 𝑢!− 2𝑎 𝑢 − 𝑏 − 𝑐 = 0

⇒ 𝑢",! =
𝑎 ± 𝑎! + 𝑏! − 𝑐!

𝑏 + 𝑐 ⇒ 𝜃!," = 2arctan 𝑢!,"
only if argument is real, else no solution

polynomial equation of second degree in 𝑢

(… and the related inverse formulas)

1. in int 𝑊𝑆! , except for case 3: ∞! regular solutions,
at which the E-E can take a continuum of ∞
orientations (but not all orientations in the plane!)

2. if 𝑝 = 3𝑙 : only 1 solution, singular
3. if 𝑝 = 𝑙 :∞! solutions, 3 of which singular

4. if 𝑝 < 𝑙: ∞! regular solutions (that are never singular)

A planar 3R arm
workspace and number/type of inverse solutions

𝑙! = 𝑙" = 𝑙% = 𝑙

any planar orientation is feasible in 𝑊𝑆!

Robotics 1 14

𝑦

𝑥𝑞"

𝑞!

𝑙1

𝑙2
𝑙3

𝑞$ 𝑝•

𝑝𝑥

𝑝𝑦
𝑛 = 3,𝑚 = 2

𝑊𝑆! = 𝑝 ∈ ℝ": 𝑝 ≤ 3𝑙 ⊂ ℝ"

𝑊𝑆" = 𝑝 ∈ ℝ": 𝑝 ≤ 𝑙 ⊂ ℝ"

Workspace of a planar 3R arm
with generic link lengths

Robotics 1 15

lmin= l3 = 0.3⇒

⇒

Rin = 0,

0.5

Exercise #3 in
classroom test
of 21 Nov 2014

Multiplicity of solutions
summary of the general cases

n if 𝑚 = 𝑛
n ∄ solutions
n a finite number of solutions (regular/generic case)
n “degenerate” solutions: infinite or finite set, but anyway

different in number from the generic case (singularity)

n if 𝑚 < 𝑛 (robot is kinematically redundant for the task)
n ∄ solutions
n ∞&'(solutions (regular/generic case)
n a finite or infinite number of singular solutions

n use of the term singularity will become clearer when dealing
with differential kinematics

n instantaneous velocity mapping from joint to task velocity
n lack of full rank of the associated 𝑚×𝑛 Jacobian matrix 𝐽(𝑞)

Robotics 1 16

Dexter 8R robot arm
n 𝑚 = 6 (position and orientation of E-E)
n 𝑛 = 8 (all revolute joints)
n ∞" inverse kinematic solutions (redundancy degree = 𝑛 −𝑚 = 2)

exploring inverse kinematic solutions by a robot self-motion

video

Robotics 1 17

Solution methods

ANALYTICAL solution
(in closed form)

NUMERICAL solution
(in iterative form)

§ preferred, if it can be found*

§ use ad-hoc geometric inspection
§ algebraic methods (solution of

polynomial equations)
§ systematic ways for generating a

reduced set of equations to be
solved

* sufficient conditions for 6-dof arms
• 3 consecutive rotational joint axes are

incident (e.g., spherical wrist), or
• 3 consecutive rotational joint axes are

parallel

§ certainly needed if 𝑛 > 𝑚
(redundant case) or at/close to
singularities

§ slower, but easier to be set up
§ in its basic form, it uses the

(analytical) Jacobian matrix of the
direct kinematics map

§ Newton method, Gradient method,
and so on…

Robotics 1 18

D. Pieper, PhD thesis, Stanford University, 1968

𝐽1 𝑞 =
𝜕𝑓1(𝑞)
𝜕𝑞

Inverse kinematics of planar 2R arm

direct kinematics

𝑝) = 𝑙!𝑐! + 𝑙"𝑐!"
𝑝* = 𝑙!𝑠! + 𝑙"𝑠!"

data 𝑞!, 𝑞" unknowns

“squaring and summing” the equations of the direct kinematics
𝑝)" + 𝑝*" − 𝑙!" + 𝑙"" = 2𝑙!𝑙" 𝑐!𝑐!" + 𝑠!𝑠!" = 2𝑙!𝑙"𝑐"

and from this
𝑐" = V𝑝)" + 𝑝*" − 𝑙!" + 𝑙"" 2𝑙!𝑙", 𝑠" = ± 1− 𝑐""

2 solutions in analytical formmust be in [−1,1] (else, point 𝑃
is outside robot workspace!)

Robotics 1 19

𝑞1

𝑞2

𝑃•

𝑙1

𝑙2

𝑦

𝑥
𝑝𝑥

𝑝𝑦

𝑞2 = atan2 𝑠2, 𝑐2

Inverse kinematics of 2R arm (cont’d)

𝑞" = atan2 𝑝3, 𝑝4 − atan2 𝑙2𝑠2, 𝑙" + 𝑙2𝑐2

a

b

by geometric inspection
𝑞! = 𝛼 − 𝛽

2 solutions
(one for each value of 𝑠2)

note: difference of atan2’s needs
to be re-expressed in (−𝜋 , 𝜋]!

𝑞!% and 𝑞!%% have same absolute
value, but opposite signs

Robotics 1 20

• p

𝑞"%

𝑞!%

𝑞!%%

𝑞"%%

{𝑞!, 𝑞"}UP/LEFT {𝑞!, 𝑞"}DOWN/RIGHT

𝑦

𝑥𝑝𝑥

𝑝𝑦 • 𝑃

𝑞!

𝑙1

𝑙2

𝑞"

𝑞! = atan2 𝑠!, 𝑐!
= atan2 ⁄𝑝* 𝑙! + 𝑙"𝑐" − 𝑝)𝑙"𝑠" det , ⁄𝑝) 𝑙! + 𝑙"𝑐" + 𝑝*𝑙"𝑠" det

Algebraic solution for 𝑞!

det = 𝑙!" + 𝑙"" + 2𝑙!𝑙"𝑐" > 0
except if 𝑙! = 𝑙" and 𝑐" = −1

being then 𝑞! undefined
(singular case: ∞! solutions)

notes: a) this method provides directly the result in (−𝜋, 𝜋]
b) when evaluating atan2, det > 0 can be in fact eliminated

from the expressions of 𝑠" and 𝑐" (not changing the result)

linear in
𝑠! and 𝑐!

another
solution
method…

Robotics 1 21

𝑝) = 𝑙!𝑐! + 𝑙"𝑐!" = 𝑙!𝑐! + 𝑙" 𝑐!𝑐" − 𝑠!𝑠"

𝑝* = 𝑙!𝑠! + 𝑙"𝑠!" = 𝑙!𝑠! + 𝑙" 𝑠!𝑐" + 𝑐!𝑠"

𝑙! + 𝑙"𝑐" −𝑙"𝑠"

𝑙"𝑠" 𝑙! + 𝑙"𝑐"

𝑐!
𝑠! =

𝑝)
𝑝*

Robotics 1 22

Inverse kinematics of polar (RRP) arm

𝑝𝑥

𝑝𝑦

𝑝𝑧

𝑞1

𝑞2

𝑞3

𝑑1

𝑞! = atan2 ⁄𝑝* 𝑐" , ⁄𝑝) 𝑐"
if 𝑝&! + 𝑝'! = 0, then 𝑞" remains undefined (stop); else

(2 regular solutions 𝑞" , 𝑞! , 𝑞$)

𝑞" = atan2 ⁄𝑝+ − 𝑑! 𝑞% , V± 𝑝)" + 𝑝*" 𝑞%

if 𝑞$ = 0, then 𝑞" and 𝑞! remain both undefined (stop); else
(if we stop, it is
a singular case:

∞" or ∞!

solutions)

eliminating 𝑞) > 0 from both arguments

𝑝&! + 𝑝'! + 𝑝(− 𝑑" ! = 𝑞$!

𝑞% = + 𝑝)" + 𝑝*" + 𝑝+ − 𝑑! "

our choice: take here only the positive value...

note: here
𝑞! is NOT a
DH variable!

𝑝) = 𝑞%𝑐"𝑐!
𝑝* = 𝑞%𝑐"𝑠!
𝑝+ = 𝑑! + 𝑞%𝑠"

direct
kinematics

𝑃

Robotics 1 23

Inverse kinematics of 3R elbow-type arm

𝑝&

𝑝𝑦
𝑝𝑧

𝑞1

𝑞2
𝑞3

𝑑1

𝐿2

𝐿3

symmetric structure without offsets
e.g., first 3 joints of Mitsubishi PA10 robot

more details (e.g., full handling of singular cases)
can be found in the solution of Exercise #1

in written exam of 11 Apr 2017

𝑓, 𝑏 : facing, backing
point 𝑝 = 𝑝5, 𝑝6, 𝑝7

𝑢, 𝑑 : elbow up, down

4 regular inverse
kinematics solutions in 𝑊𝑆"

𝑊𝑆" = {spherical shell centered at (0,0, 𝑑"),
with outer radius 𝑅)*+ = 𝐿! + 𝐿$
and inner radius 𝑅,- = 𝐿! − 𝐿$ }

𝑃

Robotics 1 24

Inverse kinematics of 3R elbow-type arm
step 1

∈ −1, +1 (else, 𝑝 is out of workspace!)

± 𝑠$= ± 1 − 𝑐$!

direct
kinematics

𝑝&

𝑝𝑦

𝑝𝑧

𝑞1

𝑞2
𝑞3

𝑑1

𝐿2

𝐿3

𝑝) = 𝑐! 𝐿"𝑐" + 𝐿%𝑐"%
𝑝* = 𝑠! 𝐿"𝑐" + 𝐿%𝑐"%
𝑝+ = 𝑑! + 𝐿"𝑠" + 𝐿%𝑠"%

𝑝&! + 𝑝'! + 𝑝(− 𝑑" ! = 𝑐"! 𝐿!𝑐! + 𝐿$𝑐!$! + 𝑠"! 𝐿!𝑐! + 𝐿$𝑐!$! + 𝐿!𝑠! + 𝐿$𝑠!$!

= ⋯ = 𝐿!! + 𝐿$! + 2𝐿!𝐿$ 𝑐!𝑐!$ + 𝑠!𝑠!$ = 𝐿!! + 𝐿$! + 2𝐿!𝐿$𝑐$
𝑐$ = ⁄𝑝&! + 𝑝'! + 𝑝(− 𝑑" ! − 𝐿!! − 𝐿$! 2𝐿!𝐿$

𝑞%
, = atan2 𝑠%, 𝑐%two solutions

𝑞%
' = atan2 −𝑠%, 𝑐% =− 𝑞%

,

Robotics 1 25

only when 𝑝)" + 𝑝*" > 0 …

… being 𝑝&! + 𝑝'! = 𝐿!𝑐! + 𝐿$𝑐!$! > 0𝑝&

𝑝𝑦

𝑝𝑧

𝑞1

𝑞2
𝑞3

𝑑1

𝐿2

𝐿3

again, two solutions
𝑞!
, = atan2 𝑝*, 𝑝)

𝑞!
' = atan2 −𝑝*, −𝑝)

direct
kinematics

𝑝) = 𝑐! 𝐿"𝑐" + 𝐿%𝑐"%
𝑝* = 𝑠! 𝐿"𝑐" + 𝐿%𝑐"%
𝑝+ = 𝑑! + 𝐿"𝑠" + 𝐿%𝑠"%

𝑐" = N𝑝& ± 𝑝&! + 𝑝'!

𝑠" = N𝑝' ± 𝑝&! + 𝑝'!(else 𝑞1 is undefined —infinite solutions!)

Inverse kinematics of 3R elbow-type arm
step 2

Robotics 1 26

define and solve a linear system 𝐴𝑥 = 𝑏
in the algebraic unknowns 𝑥 = (𝑐! , 𝑠!)

combine first the two equations of direct
kinematics and rearrange the last one

coefficient matrix 𝐴 known vector 𝑏

4 regular solutions for 𝑞!,
depending on the combinations
of +,− from 𝑞" and 𝑞$

provided det 𝐴 = 𝑝&! + 𝑝'! + 𝑝(− 𝑑" ! ≠ 0

𝑝&

𝑝𝑦

𝑝𝑧

𝑞1

𝑞2
𝑞3

𝑑1

𝐿2

𝐿3

Inverse kinematics of 3R elbow-type arm
step 3

𝑐"𝑝& + 𝑠"𝑝' = 𝐿!𝑐! + 𝐿$𝑐!$

𝑝(− 𝑑" = 𝐿!𝑠! + 𝐿$𝑠!$

= 𝐿! + 𝐿$𝑐$ 𝑐! − 𝐿$𝑠$𝑠!

= 𝐿$𝑠$𝑐! + 𝐿! + 𝐿$𝑐$ 𝑠!

𝐿" + 𝐿)𝑐) −𝐿)𝑠)
*,,

𝐿)𝑠)
*,, 𝐿" + 𝐿)𝑐)

𝑐"
𝑠" = 𝑐!

*,, 𝑝- + 𝑠!
*,, 𝑝.

𝑝/ − 𝑑!

(else 𝑞! is undefined —infinite solutions!)
𝑞!

.,/ , *,0

= atan2 𝑠!
.,/ , *,0 , 𝑐!

.,/ , *,0

Inverse kinematics
for robots with spherical wrist

𝑥0

𝑦0

𝑧0

𝑥6
𝑦6

𝑧6 = 𝑎
first 3 robot joints
of any type (RRR, RRP, PPP, …)

find 𝑞!, ⋯ , 𝑞- from the input data
§ 𝑝 (origin 𝑂-)
§ 𝑅 = 𝑛 𝑠 𝑎 (orientation of 𝑅𝐹-)

𝑧3 𝑧5

j4j5

j6
𝑂1 = 𝑝

𝑊

𝑑6

j1

1. 𝑊 = 𝑝 − 𝑑-𝑎 ⇒ 𝑞!, 𝑞", 𝑞% (inverse “position” kinematics for main axes)

2. 𝑅 = .𝑅%(𝑞!,𝑞",𝑞%) %𝑅-(𝑞/,𝑞0,𝑞-)

given Euler 𝑍𝑌𝑍 or 𝑍𝑋𝑍
rotation matrix with
𝑞2 ,𝑞3 ,𝑞1 (𝜃2 ,𝜃3 ,𝜃1)

known,
after step 1

⇒ %𝑅- 𝑞/,𝑞0,𝑞- = .𝑅%1𝑅

Robotics 1 27

𝑧4

⇒ 𝑞/, 𝑞0, 𝑞-

last 3 joints RRR, with
axes intersecting in 𝑊

(inverse “orientation”
kinematics for the wrist)two regular

solutions

6R robot Unimation PUMA 600

8 different (regular) inverse solutions
that can be found in closed form

spherical
wrist

Robotics 1 28

𝑎 = 0𝑧1(𝑞)

𝑛 = 0𝑥6(𝑞)

𝑠 = 0𝑦6(𝑞)

𝑝 = 𝑂6(𝑞)

here 𝑑4 = 0,
so that 𝑂4 = 𝑊 directly

a function of
𝑞!, 𝑞", 𝑞) only!

Finding nice kinematic relations
whiteboard …

Robotics 1 29

§ the most complex inverse kinematics that can be solved in principle in closed
form (i.e., analytically) is that of a 6R serial manipulator, with arbitrary DH table
§ ways to systematically generate equations from the direct kinematics that could be

easier to solve ⇒ some scalar equations may contain perhaps a single unknown variable!

§ generating from the direct kinematics a reduced set of equations to be solved (setting
w.l.o.g. 𝑑! = 𝑑4 = 0) ⇒ 4 compact scalar equations in the 4 unknowns 𝜃", … , 𝜃5

Manseur and Doty: International Journal of Robotics Research, 1988

3𝑇4 = 3𝐴! 𝜃! !𝐴" 𝜃" ⋯ 8𝐴4 𝜃4 = 𝑈3

(*) Paul, Shimano, and Mayer: IEEE Transactions on Systems, Man, and Cybernetics, 1981

method used for the
Unimation PUMA 600 in (*)

3𝐴!9! 3𝑇4 = 𝑈! (= !𝐴"⋯ 8𝐴4)
!𝐴"9! 3𝐴!9! 3𝑇4 = 𝑈" = "𝐴2⋯ 8𝐴4

⋯
1𝐴89! ⋯ !𝐴"9! 3𝐴!9! 3𝑇4 = 𝑈8 (= 8𝐴4)

3𝑇4 8𝐴49! = 𝑉8 (= 3𝐴!⋯ 1𝐴8)
3𝑇4 8𝐴49! 1𝐴89! = 𝑉1 = 3𝐴!⋯ 2𝐴1

⋯
3𝑇4 8𝐴49! 1𝐴89!⋯ !𝐴"9! = 𝑉! (= 3𝐴!)

or also ...

3𝑇4 =
𝑛 𝑠 𝑎 𝑝
0 0 0 1 = 3𝐴4 𝜃

𝑎7 = 𝑎: 𝜃 𝑧
𝑝7 = 𝑝: 𝜃 𝑧

𝑝 " = 𝑝: 𝜃 𝑝(𝜃)
𝑝:𝑎 = 𝑝: 𝜃 𝑎 𝜃

… then solve easily for the remaining 𝜃" and 𝜃#

solved analytically
or numerically …

𝑧 = 0 0 1 :

n use when a closed-form solution 𝑞 to 𝑟+ = 𝑓((𝑞) does not
exist or is “too hard” to be found

n all methods are iterative and need the matrix 𝐽(𝑞 = ,-<(/)
,/

n Newton method (here only for 𝑚 = 𝑛, at the 𝑘th iteration)

n 𝑟0 = 𝑓5 𝑞 = 𝑓5 𝑞6 + 𝐽5 𝑞6 𝑞 − 𝑞6 + 𝑜 𝑞 − 𝑞6

n convergence for 𝑞. (initial guess) close enough to some 𝑞∗: 𝑓3(𝑞∗) = 𝑟4
n problems near singularities of the Jacobian matrix 𝐽3 𝑞
n in case of robot redundancy (𝑚 < 𝑛), use the pseudoinverse 𝐽3#(𝑞)
n has quadratic convergence rate when near to a solution (fast!)

¬ neglected
in Taylor expansion

Numerical solution of
inverse kinematics problems

Robotics 1 30

𝑞6,! = 𝑞6 + 𝐽3'!(𝑞6) 𝑟4 − 𝑓3 𝑞6

(analytical Jacobian)

Operation of Newton method
n in the scalar case, also known as “method of the tangent”
n for a differentiable function 𝑓(𝑥), find a root 𝑥∗ of 𝑓 𝑥∗ = 0 by

iterating as

Robotics 1 31

animation from
http://en.wikipedia.org/wiki/File:NewtonIteration_Ani.gif

an approximating sequence

𝑥6,! = 𝑥6 −
𝑓(𝑥6)
𝑓7 𝑥6

𝑥!, 𝑥", 𝑥%, 𝑥/, 𝑥0, ⋯ ⟶ 𝑥∗

function
tangent

n Gradient method (max descent)
n minimize the error function

𝐻 𝑞 = "
2
𝑟F − 𝑓1(𝑞) 2 = "

2
𝑟F − 𝑓1(𝑞) G 𝑟F − 𝑓1(𝑞)

𝑞HI" = 𝑞H − 𝛼 ∇J𝐻(𝑞H)

Numerical solution of
inverse kinematics problems (cont’d)

Robotics 1 32

from
∇7𝐻(𝑞) = ⁄𝜕𝐻(𝑞) 𝜕𝑞 8 = − 𝑟0 − 𝑓5 𝑞

8 ⁄𝜕𝑓5(𝑞) 𝜕𝑞
8
= −𝐽58(𝑞) 𝑟0 − 𝑓5(𝑞)

𝑞HI" = 𝑞H + 𝛼 𝐽1G(𝑞H) 𝑟F − 𝑓1(𝑞H)

n the scalar step size 𝛼 > 0 should be chosen so as to guarantee
a decrease of the error function at each iteration: too large
values for 𝛼 may lead the method to “miss” the minimum

n when the step size is too small, convergence is extremely slow

we get

Revisited as a feedback scheme

𝐽1G(𝑞) ó
õ

𝑓1(𝑞)

+

-

𝑒𝑟F 𝑞𝑞̇
𝑞(0)

𝑟F = cost

𝑒 = 𝑟F − 𝑓1 𝑞 ® 0 ⟺ closed-loop equilibrium 𝑒 = 0
is asymptotically stable

𝑉 = "
2 𝑒

G𝑒 ³ 0 is a Lyapunov candidate function

in particular, 𝑒 = 0

asymptotic stability

(𝛼 = 1)

Robotics 1 33

𝑟

𝑉̇ = 𝑒G𝑒̇ = 𝑒G
𝑑
𝑑𝑡 𝑟F − 𝑓1(𝑞) = −𝑒G𝐽1 𝑞 𝑞̇ = −𝑒G𝐽1 𝑞 𝐽1G 𝑞 𝑒 ≤ 0

𝑉̇ = 0 ⟺ 𝑒 ∈ 𝒩 𝐽1G(𝑞)

null space

Properties of Gradient method
n computationally simpler: use the Jacobian transpose, rather

than its (pseudo)inverse
n same use also for robots that are redundant (𝑛 > 𝑚) for the task
n may not converge to a solution, but it never diverges
n the discrete-time evolution of the continuous scheme

is equivalent to an iteration of the Gradient method
n the scheme can be accelerated by using a gain matrix 𝐾 > 0

note: 𝐾 ⟶ 𝐾 +𝐾8, with 𝐾8 skew-symmetric, can be used also to “escape”
from being stuck in a stationary point of 𝑉 = 6

7 𝑒
1𝐾𝑒, by rotating the error

𝐾𝑒 out of the null space of 𝐽31 (when a singularity is encountered)
Robotics 1 34

𝛼 = Δ𝑇𝑞HI" = 𝑞H + ∆𝑇 𝐽1G(𝑞H) 𝑟F − 𝑓1(𝑞H) ,

𝑞̇ = 𝐽1G 𝑞 𝐾𝑒 = 𝐽1G 𝑞 𝐾 𝑟F − 𝑓1(𝑞)

𝑞69" = 𝑞6 +

1
𝑠!

𝑐"! 𝑠"!
− 𝑐" + 𝑐"! − 𝑠" + 𝑠"! |7;7!

𝛼 − 𝑠" + 𝑠"! 𝑐" + 𝑐"!
−𝑠"! 𝑐"! |7;7!

× 1 − 𝑐" + 𝑐"!
1 − 𝑠" + 𝑠"! |7;7!

A case study
analytic expressions of Newton and gradient iterations

n 2R robot with 𝑙! = 𝑙" = 1, desired end-effector position 𝑟4 = 𝑝4 = (1,1)
n direct kinematic function and error

n Jacobian matrix

n Newton versus Gradient iteration

Robotics 1 35

𝑓5 𝑞 = 𝑐" + 𝑐"!
𝑠" + 𝑠"! 𝑒 = 𝑝0 − 𝑓5 𝑞 = 1

1 − 𝑓5(𝑞)

𝐽5 𝑞 =
𝜕𝑓5(𝑞)
𝜕𝑞 = − 𝑠" + 𝑠"! −𝑠"!

𝑐" + 𝑐"! 𝑐"!

𝑒6
det 𝐽8(𝑞)

𝐽5<"(𝑞6)

𝐽58(𝑞6)

Error function
n 2R robot with 𝑙! = 𝑙" = 1 and desired end-effector position 𝑝4 = (1,1)

Robotics 1 36

plot of 𝑒 " as a function of 𝑞 = (𝑞!, 𝑞")

𝑒 = 𝑝4 − 𝑓3(𝑞)

two local minima
(inverse kinematic solutions)

Configuration space of 2R robot
whiteboard …

n can we represent the correct ‘‘distance’’ between two configurations 𝑞% and 𝑞%%
of this robot on a (square) region in ℝ!?

Robotics 1 37

n configuration space is a torus 𝑆𝑂 1 × 𝑆𝑂 1 , i.e., the surface of a ‘‘donut’’

n the right metric is a geodesic on the torus …

𝑞!

𝑞"

−𝜋 𝜋
−𝜋

𝜋
𝑞;

𝑞;;

𝑞;

𝑞;;

𝑞;

𝑞;;
close or far?

join the
two sides
𝑞! = −𝜋

and 𝑞! = 𝜋

join the
two sides
𝑞" = −𝜋

and 𝑞$ = 𝜋

𝑞!

𝑞"

(0,0)

&

Error reduction by Gradient method
n flow of iterations along the negative (or anti-) gradient
n two possible cases:

Robotics 1 38

start

one solution

local maximum
(stop if this is the initial guess)

. .

another start...

...the other solution

saddle point
(stop after some iterations)

(𝑞!, 𝑞"); = (0, 𝜋/2) (𝑞!, 𝑞");; = (𝜋/2,−𝜋/2) (𝑞!, 𝑞")<=5 = (−3𝜋/4,0) (𝑞!, 𝑞")>=??@A = (𝜋/4,0)

𝑒 ∈ 𝒩(𝐽89(𝑞)) !

or stuck (at zero gradient)convergence

Convergence analysis
when does the gradient method get stuck?

n lack of convergence occurs when
n the Jacobian matrix 𝐽B(𝑞) is not full rank (the robot is in a “singular configuration”)
n AND the error 𝑒 is in the null space of 𝐽89(𝑞)

Robotics 1 39

(𝑞!, 𝑞"):;- = (−3𝜋/4,0)

(𝑞!, 𝑞")<;==>? = (𝜋/4,0) 𝑒 ∈ 𝒩(𝐽58(𝑞))

𝑝%

𝑝

𝑒 ∉ 𝒩(𝐽58(𝑞)) !!

𝑝%

𝑝

𝑒 ∈ 𝒩(𝐽58(𝑞))
𝑝?

𝑝

(𝑞!, 𝑞") = (𝜋/9,0)

the algorithm will
proceed in this case,

moving out of
the singularity

𝑞1

𝑞2

𝑝% =
1
1

𝑒 = 𝑝% − 𝑝 = 1 − 2
1 − 2

𝐽&' 𝑞 = − 𝑠" + 𝑠"$ 𝑐" + 𝑐"$
−𝑠"$ 𝑐"$ |)*)!"##$%

= − 2 2
− 2 2

Issues in implementation
n initial guess 𝑞.

n only one inverse solution is generated for each guess
n multiple initializations for obtaining other solutions

n optimal step size 𝛼 > 0 in Gradient method
n a constant step may work good initially, but not close to the

solution (or vice versa)
n an adaptive one-dimensional line search (e.g., Armijo’s rule) could

be used to choose the best 𝛼 at each iteration
n stopping criteria

n understanding closeness to singularities

Robotics 1 40

Cartesian error
(possibly, separate for

position and orientation)

algorithm
increment

𝑟0 − 𝑓5 𝑞6 ≤ 𝜀 𝑞69" − 𝑞6 ≤ 𝜀7

good numerical conditioning
of Jacobian matrix (SVD)

(or a simpler test on its determinant, for 𝑚 = 𝑛)
𝜎I,- 𝐽5 𝑞6 ≥ 𝜎J

Numerical tests on RRP robot

n RRP/polar robot: desired E-E position 𝑟0 = 𝑝0 = 1, 1, 1
—see slide #22, with 𝑑" = 0.5

n the two (known) analytical solutions, with 𝑞U ≥ 0, are
𝑞∗ = (0.7854, 0.3398, 1.5)
𝑞∗∗ = (𝑞"∗ − 𝜋, 𝜋 − 𝑞!∗ , 𝑞$∗) = (−2.3562, 2.8018, 1.5)

n norms 𝜀 = 10<3 (max Cartesian error), 𝜀7 = 10<1 (min joint increment)
n 𝑘IL& = 15 (max # iterations), det 𝐽5(𝑞) ≤ 10<2 (singularity closeness)

n numerical performance of Gradient (with different steps 𝛼) vs. Newton
n test 1: 𝑞J = (0, 0, 1) as initial guess
n test 2: 𝑞J = (−𝜋/4, 𝜋/2, 1)— ‘‘singular” start, since 𝑐! = 0 (see slide #22)
n test 3: 𝑞J = (0, 𝜋/2, 0)— ‘‘doubly singular” start, since also 𝑞$ = 0
n solution and plots with MATLAB code

Robotics 1 41

Numerical test - 1
n test 1: 𝑞J = (0, 0, 1) as initial guess; evolution of the error norm

Robotics 1 42

Gradient: 𝛼 = 0.5

slow, 15 (max)
iterations

Gradient: 𝛼 = 1

too large, oscillates
around solution

Newton

very fast, converges
in 5 iterations

0.15⋅10-8

Gradient: 𝛼 = 0.7

good, converges
in 11 iterations

0.57⋅10-5

Cartesian errors
component-wise

𝑒𝑥

𝑒𝑦

𝑒𝑧

Numerical test - 1

n test 1: 𝑞J = (0, 0, 1) as initial guess; evolution of joint variables

Robotics 1 43

Gradient: 𝛼 = 1 Gradient: 𝛼 = 0.7
not converging
to a solution

converges in
11 iterations

Newton
converges in
5 iterations

both to the same solution 𝑞∗ = (0.7854, 0.3398, 1.5)

Numerical test - 2
n test 2: 𝑞J = (−𝜋/4, 𝜋/2, 1): singular start

Robotics 1 44

Gradient
𝛼 = 0.7

with check of
singularity:

blocked at start

without check:
it diverges!

Newton

er
ro

r n
or

m
s

starts toward
solution, but
slowly stops

(in singularity):
when Cartesian error
vector 𝑒 ∈ 𝒩 𝐽58(𝑞) jo

in
t v

ar
ia

bl
es

!!

Numerical test - 3
n test 3: 𝑞J = (−𝜋/4, 𝜋/2, 1): doubly singular start

Robotics 1 45

Newton
is either

blocked at start
or (w/o check)

explodes!
⇒ “NaN” in MATLABer

ro
r n

or
m

Gradient (with 𝛼 = 0.7)
① starts toward solution
② exits the double singularity
③ slowly converges in 19

iterations to the solution
𝑞∗ = (0.7854, 0.3398, 1.5)

jo
in

t v
ar

ia
bl

es

Ca
rte

sia
n

er
ro

rs

➀

➁

➂

0.96⋅10-5

𝑒𝑥

𝑒𝑦

𝑒𝑧

Final remarks
n an efficient iterative scheme can be devised by combining

n initial iterations using Gradient (“sure but slow”, linear convergence rate)
n switch then to Newton method (quadratic terminal convergence rate)

n joint range limits are considered only at the end
n check if the solution found is feasible, as for analytical methods

n or, an optimization criterion and/or constraints included in the search
n drive iterations toward an inverse kinematic solution with nicer properties

n if the problem has to be solved on-line
n execute iterations and associate an actual robot motion: repeat steps at

times 𝑡J, 𝑡" = 𝑡J + 𝑇, ..., 𝑡6 = 𝑡6<" + 𝑇 (e.g., every 𝑇 = 40 ms)
n a “good” choice for the initial guess 𝑞J at 𝑡6 is the solution of the previous

problem at 𝑡6<" (provides continuity, requires only 1-2 Newton iterations)
n crossing of singularities and handling of joint range limits need special care

n Jacobian-based inversion schemes are used also for kinematic control,
moving along/tracking a continuous task trajectory 𝑟4(𝑡)

Robotics 1 46

