Robotics 1

Inverse kinematics

Prof. Alessandro De Luca

DIPARTIMENTO DI INGEGNERIA INFORMATICA
AUTOMATICA E GESTIONALE ANTONIO RUBERTI

Robotics 1 1

Inverse kinematics
what are we looking for?

T —
(—-50.19°

Oo

direct kinematics is always unique;

how about inverse kinematics for this 6R robot?
Robotics 1 2

Inverse kinematics problem

= given a desired end-effector pose (position +
orientation), find the values of the joint variables q
that will realize it

= a synthesis problem, with input data in the form
'R p . o .
s T = o 1] = °4,(q) " 7 = fr(q), for a task function
classical formulation: generalized formulation:

inverse kinematics for a given end-effector pose T inverse kinematics for a given value r of task variables

= a typical nonlinear problem
= existence of a solution (workspace definition)

= uniqueness/multiplicity of solutions (r € R™, g € R")
= Solution methods

Robotics 1

Solvability and robot workspace

for tasks related to a desired end-effector Cartesian pose

= primary workspace WS;: set of all positions p that can be
reached with at least one orientation (¢ or R)

= out of WS; there is no solution to the problem
« if p € WSy, there is a suitable ¢ (or R) for which a solution exists

= secondary (or dexterous) workspace WS, : set of positions p
that can be reached with any orientation (among those
feasible for the robot direct kinematics)

» if p € WS,, there exists a solution for any feasible ¢ (or R)

| WSZ C WS]_

Robotics 1 4

Workspace of Fan

section for a
constant angle g4

Area di lavoro
Operating Space

2133 814.5

31

uc R-2000i/165F

ws; c R3

(= WS, for spherical wrist

197

o 'T!!!.!;'“_'_.‘ {

without joint limits)

Side View
Ill
+180°" Jr_ ¥ 0
T \JL- ,?26\‘ 'I
. Top View

rotating the

base joint angle g4
Robotics 1

Workspace of a planar 2R arm

2 orientations
if p € int(WS,)

L1 +1;

/

oW s,
x’ outer and i_nner
i€ 1 =] boundaries 1 orientation
. 1752 on WS,
s WS ={peR%:|l; —L|<|pll <l + 1} cR
| WSZ =
] |f ll = lZ — l

« WS ={p e R%|lpl| < 20} c R?
s« WS, = {p = 0} (all feasible orientations at the origin!... an infinite number)

Robotics 1 6

Wrist position and E-E pose
inverse solutions for an articulated 6R robot

LEFT DOWN Unimation PUMA 560 RIGHT DOWN

LEFT UP RIGHT UP

Robotics 1

Inverse kinematic solutions of UR10
6-dof Universal Robot UR10, with non-spherical wrist

video (slow motion)
desired pose

—0.2373
p= <—0.0832> [m]
1.3224
V3/2 05 0
B R=|—-05 +3/2 0
0 0 1
home configuration at start

q=(0 -m/2 0 —-m/2 0 0)T
[rad]

- r

Robotics 1

shoulderRight
~ wristDown
== elbowUp

1.0472
—1.2833
—0.7376
—2.6915
—1.5708

3.1416

.~

shoulderLeft
wristDown

== elbowDown | -

| 2.7686
—1.0472
—0.5236
3.1416
—1.5708
1.4202

Robotics 1

shoulderRight
- wristDown
== €lbowDown

shoulderLeft
wristDown
elbowUp

shoulderRight
©wristUp
== elbowUp
1.0472
—1.5894

—0.5236
0.5422

shoulderLeft
©wristUp r-
== elbowDown .

2.7686
—1.1475
—0.7376

0.3143

1.5708
—1.7214

shoulderRight
wristUp
elbowDown

1.0472
—2.0944
0.5236

shoulderLeft
wristUp
elbowUp

2.7686
~1.8583
| 07376
=1 04501
1.5708
~1.7214

10

Multiplicity of solutions

few examples

= E-E positioning of planar 2R robot (m = n = 2)
= 2 regular solutions in int(WWS;)
= 1 solution on dWS;

- : ingul lution
« for I; = I,: oo solutions in WS, } singular solutions

» E-E positioning of elbow-type spatial 3R robot (m = n = 3)

= 4 regular solutions in WS (with singular cases yet to be investigated ...)

= spatial 6R robot arms (m = n = 6)
= < 16 distinct solutions, out of singularities: this “upper bound” of
solutions was shown to be attained by a particular instance of
“orthogonal” robot, i.e., with twist angles a; = 0 or £t /2 (Vi)

= analysis based on algebraic transformations of robot kinematics

= transcendental equations are transformed into a single polynomial equation
in one variable (number of roots = degree of the polynomial)

= seek for a transformed polynomial equation of the least possible degree
Robotics 1 11

A 6R robot with 16 IK solutions

all distinct and non-singular

an orthogonal manipulator with DH table ¥ % for the desired end-effector pose

i d: 8, a, a, —0.760117 —0.641689 0.102262 —1.140175
OT — 0.133333 0 0.991071 0

1 0 6, a, 6 —0.635959 0.766965 0.085558 0

2 0 01 a, 2 0 0 0 1

3 d, 6, 0

4 0 6, a, 18y ‘

5 0 B, 0 ‘

6 0 65 0 there are 16 real solutions

‘\‘\ - - = I
4, =03,a, = 1,a, = 1.5,d5 = 0.2 % g™ of the inverse kinematics!

all non-singular

\

8, 6, 6, 0, B det (3%)

with non-spherical wrist

Z5 \ s & 0.000 107.458 112.460 —7.662 0.000 0.000 1.310

_ _B6 2 0.000 107.458 —67.540 —172.338 180.000 180.000 1310

end-effector c.0 3 88670 —176.682 ~178.394 —63.284 157.829 139.944 —0.800

% 4 88.670 ~176.682 1.606 —116.716 22.171 —40.056 —0.800

5 5 113.841 4.741 —179.093 —55.954 —63.659 —42.463 —1.256

6 113.841 4741 0.907 —124.046 —116.341 137.537 —1.256

. 7 168.703 —104.205 146.556 —16.393 —170.903 98.216 0.803

Manseur_ and Doty: . 8 168.703 ~104.205 —33.444 —163.607 —9.097 —81.784 0.803
International Journal of Robotics Research, 1989 9 180,000 107.458 —147.375 —7662 — 164675 180.000 0732
10 180.000 107458 . 32.625 —172.338 —15.325 0.000 0.732

1 —120.748 173.066 —178.472 31.328 ~146.087 142.605 —0.717

12 —120.748 173.066 1.528 148.672 -33913 —37.395 —0.717

. . 13 -96.292 —5.766 —179.142 38.477 51.922 —-39.631 —1.441

solutions found using a fast 4 062 —s766 0858 141523 12807 140360 —1441

. . . . 15 ~11.768 —105.495 —114.490 1.243 6.408 ~179.398 1.318

numerical inversion algorlthm cee 16 ~11.768 —105.495 65.510 178.757 173.592 100.602 1.318

Robotics 1 12

Algebraic transformations

whiteboard ...

start with some trigonometric equation in the joint angle 6 to be solved ...
a sinf +bcosf =c (%)
introduce the algebraic transformation (... and the related inverse formulas)

u =tan(6/2)
S sing= g L7% in 6 + cos? 6 = 1
= = > =
Sin T COS 1+ 02 (= sin CoS)
2tan(0/2 2
tand = tan2(60/2) = an(6/2) - (using the duplication formula)

1—tan2(6/2) 1 —u?

substituting in (k)
polynomial equation of second degree in u

cu +bl_u2 (b +¢) u?—2 (h—c)=0
= = — — _ —
a 1 n uz 1 n uz C c)u au C
a++Va? + b2 —
> U, = — = 01,2 = 2 arctan(ul,z)

only if argument is real, else no solution
Robotics 1 13

A planar 3R arm

workspace and number/type of inverse solutions

[n=3m=2

=
>
Q
w
i)
=
|
N
|
0w
|

WS, = {p € R?:||p|| < 31} c R?
WS, ={p € R*|Ipll <1} c R?

any planar orientation is feasible in WS,

-
-
-
-
-
-
-’
-

Y
Px

1. in int(WS,), except for case 3. ool regular solutions, e N~
at which the E-E can take a continuum of oo -

orientations (but not all orientations in the plane!) Z

)\

r
| =)

7\
\ g

2. if ||p]] = 3L: only 1 solution, singular %z
3. if ||p]| = [: oot solutions, 3 of which singular

~ I~

OO T - .
77 w2 77

4. if ||p|| < l: oot regular solutions (that are never singular)
Robotics 1 14

Workspace of a planar 3R arm

with generic link lengths

lma:v = max {lza L= 13 25 3} » Rout — lmin + lmed + lmaa: — ll + 12 + l3
l'min = min {lu i =]-> 23 3} Rin = max {O,Ima:z: - (lmed + lmin)}

a) l1 - 1, l2 - 04, l3 =0.3 [rn] = lma:z: = ll = 1, lmed = lg = 04, lmm: l3 = 0.3

11,=1;]=0.1

Exercise #3 in
classroom test
of 21 Nov 2014

b) ll = 05, 12 = 07, l3 = 0.5 [m] = lma:c = 12 = 07, lmed = lmzn = 11(01' lg) = 0.5

» R;, =0, Rout.: 17
Robotics 1 15

Multiplicity of solutions

summary of the general cases

s ifm=n
= 7 solutions
= a finite number of solutions (regular/generic case)

= degenerate” solutions: infinite or finite set, but anyway
different in number from the generic case (singularity)

= if m < n (robot is kinematically redundant for the task)
= A solutions
= 00"~ golutions (regular/generic case)
= a finite or infinite number of singular solutions

= use of the term singularity will become clearer when dealing

with differential kinematics
= instantaneous velocity mapping from joint to task velocity

= lack of full rank of the associated mXxn Jacobian matrix J(q)
Robotics 1 16

Dexter 8R robot arm

= m = 6 (position and orientation of E-E)
= 1 = 8 (all revolute joints)
= o? inverse kinematic solutions (redundancy degree = n — m = 2)

video

exploring inverse kinematic solutions by a robot self-motion
Robotics 1 17

Solution methods

ANALYTICAL solution N

(in closed form)

= preferred, if it can be found™

= use ad-hoc geometric inspection

= algebraic methods (solution of
polynomial equations)

= systematic ways for generating a
reduced set of equations to be
solved

* sufficient conditions for 6-dof arms

e 3 consecutive rotational joint axes are
incident (e.q., spherical wrist), or

e 3 consecutive rotational joint axes are
parallel

D. Pieper, PhD thesis, Stanford University, 1968

Robotics 1

NUMERICAL solution
(in iterative form)

certainly needed if n > m
(redundant case) or at/close to
singularities

slower, but easier to be set up

in its basic form, it uses the
(analytical) Jacobian matrix of the
direct kinematics map

(@) = df-(q)

aq
Newton method, Gradient method,
and so on...

18

direct kinematics
Dy = lic1 + 15¢45

py = 1151 + 13512
_'_I
x) data @1, @2 unknowns

“squaring and summing” the equations of the direct kinematics
ps + szz — (If +13) = 2l11,(c1012 + 51512) = 2L415¢,

and from this
C'F = (p,% +p5—(f + l%))/lelz, Sy = %N/l —¢5 gy = atan2{s,, c2}|
must be in [—1,1] (else, point P 2 solutions in analy'/T’;icaI form

is outside robot workspace!)
Robotics 1 19

by geometric inspection
g1 =a—p

X l«
2 solutions

(one for each value of s,) 91 = atan2{p,, px} — atan2{l,s,, ly + lr¢,}

note: difference of atan2’s needs
to be re-expressed in (—m,]!

{91, 92 }up/LeFT {491, 92 }DOWN/RIGHT

q, and g, have same absolute
value, but opposite signs

»
»

Robotics 1 20

Algebraic solution for g4

another Px = 1161 + 1012 = 116y + 1(c102 — 5157) linear in
solution < and ¢
method... p, =118 + I515 = [151 + 1(51¢; + ¢153) ! !
ll ~+ l2C2 leZ] [
lez ll + l C
) exceptif [{ =1l,and ¢, = —1

det = 1% + l% + 2ll,¢c, > 0 being then g, undefined

(singular case: ool solutions)
g, = atan2{sy, ¢,}

atanZ{(py(ll + 1505) — Pylysy)/det, (pe (L + Lrcy) + pylzsz)/det}

notes: a) this method provides directly the result in (—m, 7]

b) when evaluating atan2, det > 0 can be in fact eliminated

from the expressions of s; and c¢; (not changing the result)
Robotics 1 21

Inverse kinematics of polar (RRP) arm

N

note: here Pzl
0y IS .NOT a Px = q3C2Cq
2 direct _
: = §2C>S
DH variable! Kinematics Py = (3251
p, = dq + q35;

r U N

4, pZ+pi+(p,—di)?*=4q35

p
s g3 = +\/p§ +p5 + (p, — dp)?

Dy q1 ./ our choice: take here only the positive value...

if g3 = 0, then g, and g, remain both undefined (stop); else

(if we stop, it is
q; = atan2 {(Pz —dy1)/q3, i\/l%% + P)zz/%} a singular case:

002 or ool

if pz + py = 0, then g, remains undefined (stop); else solutions)

g1 = atan?2 {py/cz ,px/cz} (2 regular solutions {q4, 95, q3})

Robotics 1 eliminating g3 > 0 from both arguments >

{u, d}: elbow up, down/__,,—

=

ds

{f, b}: facing, backingi P

&/ point p = (P, Py,P;); Py

v

symmetric structure without offsets
e.g., first 3 joints of Mitsubishi PA10 robot

A R X 4

WS, = {spherical shell centered at (0,0, d),
with outer radius R,,; = L, + L4
and inner radius R;,, = |L, — L3|}

4 regular inverse
kinematics solutions in W5,

more details (e.g., full handling of singular cases)
can be found in the solution of Exercise #1
in written exam of 11 Apr 2017

Robotics 1 23

Inverse kinematics of 3R elbow-type arm
step 1

Dx = €1(Lpcy + L3Ccy3)
Py = S1(Lac; + L3cy3)
pz; = di + LS, + L3So3

direct
kinematics

R R

pi+pi+ (p, —dy)? =ci(Lycy + Lycy3)? + 57 (Lycy + Lycysz)® 4+ (Lys, + Lysys)?
— L% + L:zg + 2L2L3(C2C23 + 52523) = L% —+ L:23 + 2L2L3C3
C3 = (p% + pjz, + (p, —dy)?* — LZ2 — L23)/2L2L3 € |—1,+1] (else, p is out of workspace!)

— qgﬂ = atan2{ss, c3}

g5 = atan2{—s3, c;} = — g5

Robotics 1) 24

+s;=+ [1—cZ M two solutions -

Inverse kinematics of 3R elbow-type arm
step 2

Dx = c1(Lycy + L3cp3)

direct _

kinematics Py = °1 (Lz¢z + L3Czs)

pz; = dq + Lysy; + L3Sy3

Dy q1 \\\\\\\\ : being p% + p32, = (L2C2 + L3C23)2 >0
— 2 2
only when pz +pg >0 ... “1 _px/i\/px+py
(else g, is undefined —infinite solutions!) S, = Py/i\/Pf 4+ Pf;

0l = atan2fp,,]
q; - = atan py» Px

again, two solutions mp -)
91 =atan2{—py, —px}

Robotics 1 25

Inverse kinematics of 3R elbow-type arm
step 3

combine first the two equations of direct
kinematics and rearrange the last one
—Clpx + 510y = Lycy + L3cyg

= (Lz + L3zc3)c, — L3szs,
Py —dy = L3S, + L3S,3

= L3s3c, + (L + Lics)s,

—

L define and solve a linear system Ax = b
i T i/ in the algebraic unknowns x = (c,, s,)

R R

y

{+-3 - - 4 regular solutions for

Ly + Lic; —L3s c - {+-} g q2,

i {:_}3 >3] [Sﬂ = [Cl Px t 21 py] m) depending on the combinations
bess 7 L2t lacs Pz~ @ of {+,—} from g, and ¢
coefficient matrix A known vector b ‘
provided det4A = p; + p; + (p, —d1)* # 0 qg{f b} {u,d}}

(else g, is undefined —infinite solutions!) — atan? {Sé{f,b},{u,d}}’ Cg{f,b},{u,d}}}

Robotics 1 26

Inverse kinematics
for robots with spherical wrist

- > | last 3 joints RRR, with
- .

e N zy y6x axes intersecting in W
6

O¢ =D

/ 7 first 3 robot joints
/ of any type (RRR, RRP, PPP, ...) //{/’

- I 4 dg

find g4, '+, gg from the input data

= p (origin Og)
» R=[n s a] (orientation of RF)

> Vo

W=p—-dga = q1,92, q3 (inverse “position” kinematics for main axes)

R = °R3(q1,92,93) 356(614,61546) = 3R (q4.95.6) = RER = q4, 95, q6

Euler zy;zr or ZX7 (inverse “orientation”

i ix Wi two regular - kinematics for the wrist
rotation matrix with solutions ematics 10r the st)

Robotics 1 44,95,96 (04,05,06) 27

6R robot Unimation PUMA 600

spherical
wrist

a function of
d1, 92, q3 only!

TABLEI
LINK PARAMETERS FOR PUMA ARM
Joint - a® ° ¢ a Range
I -90° ¢ 0 0 8,:+ /- 160°
2 - 0; 0 oy 84S~ —225°
3 %0° 6y dy ay 6y:225° — ~45°
4 ~%0° 6, d, 0 8+ /=170°
- 0° 6 0 0 B+ /—138°
6 0 b5 0 g+ /—170°
a;= 1700 a,=0.75§ |
dy =497 d,=17.000
here dg = 0,
Robotics 1 SO that Og = W directly

n, - C'[C:)(C‘C5C6 - S‘So) - S_w].gs(},l. A
~ SUSCCo+ CuSy)

+C (S Gy + G Sy

= —SII.J(CACSCQ =~ S¢8) — CiuSCG

= = Cp(CiCs S + S54Cg) + 5335554))
=Si[=S5GSe + CG)

0, = S\~ Co3(CCsSg + SuGs) + 523545)

+Cy[—S.GsSs + CG)

0: = Syy(CaCsSe + S4Gy) + €y 545

a,= C(CpCeSs+ 535C5) — 85455

a, = 5)(Co3CaSs + 533Cs) + €545

a.= —SpCeSs+ CpyC J

R
|

J

P = C(d(Syy T ayCyy + a,Cy) = §,dy
Py = S(d Sy v+ ayCyy + a,Gy) + Cdy
P:= =(—d,Cyy+ a Sy + a,5,).

8 different (regular) inverse

f
) S,lC:,(C[CSC, = 5.8) — SuS5G) >

n = %4(q)
r s =Y6(q)
- a=0z:(q)

p = 06(q)
solutions

that can be found in closed form

28

Finding nice kinematic relations

whiteboard ...

= the most complex inverse kinematics that can be solved in principle in closed
form (i.e., analytically) is that of a 6R serial manipulator, with arbitrary DH table

= ways to systematically generate equations from the direct kinematics that could be
easier to solve = some scalar equations may contain perhaps a single unknown variable!

OT6 = 0A1(91) 1142(92) 5146(96) = U

AT °Tg = Uy (= M4, 5A6) Ty *Agt = Vs (= 4, 4A5)
1A 1 OA 1 0T6 — U2 (_ . 5A6) 0T6 SAgl 4AE V4 (_ . 3A4)
4-145 1A21 OAll 0T6 — U5 (_ 5A6) 0’1-'6 SAgl 414; 1A21 - Vl (_ OAl)

Paul, Shimano, and Mayer: IEEE Transactions on Systems, Man, and Cybernetics, 1981

= generating from the direct kinematics a reduced set of equations to be solved (setting
w.l.o.g. d; = dg = 0) = 4 compact scalar equations in the 4 unknowns 6,, ..., 05
a,=a" @)z |pl*>=p"6)p®)

a py_
A6(0) — pT(Q) 7 pTa = pT(Q) Cl(g)

_[0 0 0 1
=0 o0 1]F

Manseur and Doty: International Journal of Robotics Research, 1988

Robotics 1 29

Numerical solution of
inverse kinematics problems

= use when a closed-form solution g to r; = f,-(q) does not
exist or is “too hard” to be found

= all methods are iterative and need the matrix J,-(q) =
(analytical Jacobian)

= Newton method (here only for m = n, at the kth iteration)

lected
1y = fr(q) = fr(qk) +]r(qk)(q - qk) T O(HCI - qk“) in T(;llgfgeESaision

¢ =q" + J71(a") [ra — £ir(d")]

= convergence for g° (initial guess) close enough to some q*: f-(¢*) = 4

dfr(q)
daq

» problems near singularities of the Jacobian matrix J,-(q)

= in case of robot redundancy (m < n), use the pseudoinverse J#(q)
= has quadratic convergence rate when near to a solution (fast!)

Robotics 1 30

Operation of Newton method

= in the scalar case, also known as “method of the tangent”

= for a differentiable function f(x), find a root x* of f(x*) = 0 by
iterating as

)1

A

f (i)

et = ke T f(xy)

an approximating sequence

» X
k
{X]_, xz: x3; x4) x5) ."} — X /
animation from

http://en.wikipedia.org/wiki/File:NewtonlIteration_Ani.gif

function
tangent

Robotics 1 31

Numerical solution of
inverse kinematics problems (contd)

= Gradient method (max descent)
= minimize the error function

H(q) == llra — fr(@II? = (ra — (@) (a — £(@))

qk+1 — qk —«a qu(qk)
from)
V,H(9) = 0H(@)/00)" = = ((ra = @) @f(9)/00)) = ~JL @)ra = £, (@)
we get

¢t =q* + a JF (@) (rs — £,(@))

» the scalar step size @ > 0 should be chosen so as to guarantee
a decrease of the error function at each iteration: too large
values for ¢ may lead the method to “"miss” the minimum

s When the step size is too small, convergence is extremely slow
Robotics 1 32

Revisited as a feedback scheme
qEO)

ta t e q q —
@ — | . Ta = COSt

fr(@)

e=1r3—f(q)> 0 < closed-loop equilibrium e = 0
is asymptotically stable

1
V= > ele>0 is a Lyapunov candidate function

. d
V=elée= QTE(Td — (@) =—e" . (@q = —e"] (@]} (@e <0

V=0 © eeN(JI(g) in particular, e = 0

null space asymptotic stability
Robotics 1 33

Properties of Gradient method

= computationally simpler: use the Jacobian transpose, rather
than its (pseudo)inverse

= Same use also for robots that are redundant (n > m) for the task
= May not converge to a solution, but it never diverges
= the discrete-time evolution of the continuous scheme

q**t = q* + AT JT (@) (ra — £r(d")), a =AT
is equivalent to an iteration of the Gradient method
= the scheme can be accelerated by using a gain matrix K > 0

q=Jr(q) Ke =Jr (@) K(ra — fr(@))

note: K — K + K., with K skew-symmetric, can be used also to “escape”
from being stuck in a statlonary point of IV == eTK e, by rotating the error

Ke out of the null space of JI (when a smgularlty is encountered)

Robotics 1 34

A case study

analytic expressions of Newton and gradient iterations

= 2R robot with [; = [, = 1, desired end-effector position r; = p; = (1,1)
= direct kinematic function and error

F@=(2132) e=pa-f@=(7)-f@

S1 + S12

= Jacobian matrix

0@ (—(s;+54,) =S
Jr(a) = dq _(C11+ 5122 01;2)

= Newton versus Gradient iteration
det]‘l‘(q) r
\ l (C12 S12) ek
sy N Tlet) —(sFs1p))) gk (1 —(cq + Clz))
X
—(s1 +513) ¢4 +cqy 1— (51 +512)
a

qk+1:qk+<
lq=q"

52
\ —S12 €12 /|q=¢*

Error function

= 2R robot with [; = [, = 1 and desired end-effector position p; = (1,1)

squared Cartesian distance from solutions for p = (1,1) iso-levels of Cartesian distance from the two solutions (*) for p = (1,1)

e =pq — fr(q)

T T T T T

two local minima
(inverse kinematic solutions)

plot of ||e||? as a function of ¢ = (q4,q2)

Robotics 1 36

Configuration space of 2R robot

whiteboard ...

= can we represent the correct “distance” between two configurations g’ and q"’
of this robot on a (square) region in R??

d>
N\
77: I} | / | ________,___'
‘ ! . | - -
. : i ' join the T join the
' ' two sides '
> g4 i : SicK & two_5|des
close or far? =, L y 1= 7T y q, = —T
q cand g, =1 q and q, =7
° | @ 1 PY
_77" I . R ee————————
—7TT T

= configuration space is a torus SO(1) x SO(1), i.e., the surface of a “donut”

e
A’/. \\l\
11 I’ 5
("\ ! /
2 _\:\‘.f ~(/010)
dz

= the right metric is a geodesic on the torus ...

Robotics 1 37

Error reduction by Gradient method

= flow of iterations along the negative (or anti-) gradient
= two possible cases: convergence or stuck (at zero gradient)

iso-levels of Cartesian distance from the two solutions (*) forp = (1,1) iso-levels of Cartesian distance from the two solutions (*) forp = (1,1)
T T R T 111 T T T T L

T .
BT r—

rj_u_'._i"e;}\solutlon (!

a*o"

(stop if |

,,,,,, CHL AL T TV AN N s s s "1 -

.............................

AR A A S A B e e R B N SR TR AR S

. R e T . T)

(q1,92)" = (0,7/2) (211; q2)" = (n/2,—m/2) \(QLQZ)max = (—3”/4:03 (91, 92)saddie = (7T/4»0),

Y
Robotics 1 e e N(JI(q)! 38

Convergence analysis

when does the gradient method get stuck?

= lack of convergence occurs when
» the Jacobian matrix J.-(q) is not full rank (the robot is in a “singular configuration”)

= AND the error e is in the null space of],T(q)
p
o _(1-2
Opd=(i) Pa /e—pd P (1_\/§>

_(Sl + 512) 1 + C12
q @ =
2/\ ----------- (q) (\/__Sl\j_ €12)lq:anddle
(2 2
q1 Pa @ - (_\/E \/z)

e
/ (91, 92)sadate = (1/4,0) e € NUTT (q))

pe € ENUr (@) !

T the algorithm will
e € N(J,(q)) proceed in this case,
moving out of
p the singularity

—

(91, 92) max = (—=31/4,0) == (91,92) = (11/9,0)

Robotics 1 39

Issues in implementation

= initial guess g°
= only one inverse solution is generated for each guess
= multiple initializations for obtaining other solutions

= optimal step size @ > 0 in Gradient method
= a constant step may work good initially, but not close to the
solution (or vice versa)

= an adaptive one-dimensional line search (e.g., Armijo’s rule) could
be used to choose the best a at each iteration

= stopping criteria

Cartesian error _

k algorithm
(possibly, separate for ””'"d — ﬁr(q)|| <e€ g
position and orientation)

k+1 _ .k
increment ||q 1 ” = &

= understanding closeness to singularities

" good numerical conditioning
Umin{]r (CI)} = 0y of Jacobian matrix (SVD)
(or a simpler test on its determinant, for m = n)

Robotics 1 40

Numerical tests on RRP robot

= RRP/polar robot: desired E-E position r; = p; = (1,1,1)
—see slide #22, with d; = 0.5
= the two (known) analytical solutions, with g3 = 0, are

q* = (0.7854,0.3398, 1.5)
q" = (q; —mm—q3,q3) = (—2.3562,2.8018, 1.5)

= norms & = 107> (max Cartesian error), e, = 10~° (min joint increment)
s k., = 15 (max # iterations), |det J.(q)| < 10~* (singularity closeness)

= numerical performance of Gradient (with different steps «) vs. Newton
= test 1: ¢° = (0,0, 1) as initial guess
s test 2: ¢ = (—m/4,m/2,1) — “singular” start, since ¢, = 0 (see slide #22)
s test 3: ¢ = (0,7m/2,0) — “doubly singular” start, since also g; = 0
= solution and plots with MATLAB code

Robotics 1 41

norm of Cartesian position error [m]

Numerical test - 1

= test 1: ¢ = (0,0,1) as initial guess; evolution of the error norm

Gradient method with constant step = 0.5

Gradient: a = 0.5

slow, 15 (max):
iterations

norm of Cartesian position error [m]

1.4

1.2

1

08

Gradient method with constant step = 1

Gradient method with constant step = 0.7

Gradient: a = 1

too large, oscillates
around solution

norm of Cartesian position error [m]

Gradient: « = 0.7

good, converges|
in 11 iterations -

% 7 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 % 7 2 3 4 5 6 7 8 =8 10 n
flerations o o flerations o Cartesian error components flerations
» Novion me , ” : '] 0.57-10°
. Newton g o2 <
- o ex
- - 0.2 L i J
£, Cartesian errors ¢ 1 : s ' s
E -
component-wise
£ 08 !
: very fast, converges ‘ T, ‘
é . - . o e
in 5 iterations y
8 00 1 2 3 4 5
[=3
E 0.4
¢ 06
“ E 0'4\,_/\
E o2 |
. : "o €z
0 1 2 3 4 5 0.2 L L L J
iterations 0 1 5 1 0_8 o ! : iterations :) ’

42

q, [rad)

q,[m)

Numerical test - 1

= test 1: ¢ = (0,0,1) as initial guess; evolution of joint variables

Joint variables 08 Joint variables ' Joint variables
06 | 0.8
=) T 06
E o4 £
o & 04
02 0.2
0 i A L A A L L A A A A 0
0 1 2 3 4 5 6 7 8 9 10 1 0 2 3 4 5
1 : 0.4 - - - . , ' 08
0.3 . 0.6
05} 1 = 5
E o2 £ o4
0 E & &
0.1 . 0.2
0.5\ ' L L ' ' I F SN W N T S S— N— 0 n 1 I L 1 n I 1 0
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 o 1+ 2 3 4 5 6 7 8 9 10 1 0 2 3 4 s
18; . — . 1.8 18
16} 16 1.6
= E
ol — E = 14
14 r) 1.4)
1.2} 1.2 1.2
1 Il Il 1 L

" 1 1 1 Il 1 1 1 Il
0o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
iterations

Gradient: o =1

not converging
to a solution

0 1 2 3 4 5 6 7 8 9 10 11 °

Gradient: o = 0.7

converges in

11 iterations
l

Newton

converges in

5 iterations
|

|

both to the same solution q* = (0.7854, 0.3398, 1.5)

Robotics 1

43

Numerical test - 2

m test 2: = (—m/4,7/2,1): sinqular start
q,ﬁ.m(,,m / /) g Nowonmorws with check of

< singularity:

s ’ z® blocked at start
E 1.
o 147 :g 1.8) .
= . | | <= without check:
s 1. Lol it diverges!
O Gradient g

@ =07 o
starts toward
solution, but 90 D S S S S O B o o e

slowly stops
(in singularity):
when Cartesian error
vector e € NV (J1(q))

q, [rad)

joint variables

o™
o o o
h_ & & .
(~
- 4 -
! »
{ -
q;[m]

-2
s 4 7T w n
- ! 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Robotics 1 ferations 44

Numerical test - 3

s ftest 3: q° = (—n/4, n/2 1): doubly singular start

1.5
E
1.
c
o 2
‘@
c g
S i
o
= s 0.96-107
L § n
() 2
00 l é é 4 g é 7 8 9 1011 12 13 14 15 16 17 18 19
Car
E
@™ 0
m -0.
| -
. P ———
v B o.sx 4
c - ey
(o] 0 1
U) _05 AAAAAAAAAAAAAAAAAAA
-Iq—)) 012345678910111213141516171819
| -
[{v) 06

o, [m]

Robotics 1

Gad nt me! hodwhconstant p 0.7

Gradient (with a = 0.7)

@ starts toward solution

@ exits the double singularity

® slowly converges in 19
iterations to the solution

\,| g =(0.7854,0.3398,1.5)

iterations Joint variables

Newton

is either
blocked at start
or (w/o check)

explodes!

= "NaN" in MATLAB

sian error components
1 S vt i 06}
3
05} 4 X 04}
e ¢
I | X 02}t

\

0 I PR P R S
5 P S S S S S SR S S S S P L 0 1 2w3 4 5 6 7 8 9 101
5
01 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 @

s

12 13 14 15 16 17 18 19

vvvvvvvv

AAAAAAAAAAA

01234567891011

o $

Vs
........
12 13 14 15 16 17 18 19

joint variables
g, [rad]

a, (m]

04F
02}
0

Ol
01 2 3 4 5 6 7 8 910111213141516171819

AAAAAAAAAAAAA

0
iterations 01234567891011
terations

12 13 14 15 16 17 18 19

45

Final remarks

= an efficient iterative scheme can be devised by combining
= initial iterations using Gradient (“sure but slow”, linear convergence rate)
= switch then to Newton method (quadratic terminal convergence rate)
= joint range limits are considered only at the end
= check if the solution found is feasible, as for analytical methods
= 0Or, an optimization criterion and/or constraints included in the search
= drive iterations toward an inverse kinematic solution with nicer properties
= if the problem has to be solved on-line
= execute iterations and associate an actual robot motion: repeat steps at
timest,, t; =t, +T, ..., t, =t,_4 +T (e.g., every T = 40 ms)
= a “good” choice for the initial guess q° at t, is the solution of the previous
problem at ¢, _, (provides continuity, requires only 1-2 Newton iterations)
= crossing of singularities and handling of joint range limits need special care
= Jacobian-based inversion schemes are used also for kinematic control,
moving along/tracking a continuous task trajectory 14 (t)
Robotics 1 46

