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Abstract

To solve the inverse kinematics problem, we obtain with little
effort a reduced and complete set of equations by a conve-
nient choice of end-effector frame and application of rotation
orthogonality. This approach does not require computation of
the forward kinematics and can be used with manipulators of
any geometry, although it is most efficient when applied to
orthogonal manipulators, a class of robot arms defined in

this paper. For manipulators requiring numerical techniques,
but for which knowledge of one joint variable allows closed-
form solutions of the remaining joint variables, an iterative
inverse kinematic method, simple and fast enough to be
suitable for real-time manipulator control, has been devel-
oped. The concepts and techniques presented in this paper are
illustrated with two examples. The iterative method devel-
oped here performs a kinematic inversion of a 6-degree-of-
freedom manipulator with no closed-form solutions in less
than 30 ms using a desktop computer, an order of magnitude
faster than times found in the literature.

1. Introduction

The inverse kinematics problem is to find a set of
joint-variable values that will place the end-effector of
a robot manipulator into a given pose (i.e., position
and orientation). This problem is an important part of
computer control algorithms for open serial kinematic
chains (manipulators). Some 6- and 5-degree-of-free-
dom (DOF) arms with simple geometries allow
closed-form inverse solutions. Pieper (1968) has shown
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that a sufficient condition for a manipulator to have a
closed-form solution is that three adjacent joint axes
intersect. If the intersecting axes are the last three, the
so-called wrist-partitioned type of manipulator is ob-
tained. Computationally efficient position, velocity,
and acceleration inverse kinematics for this type of
arm have been presented (Featherstone 1983; Holler-
bach and Sahar 1983; Low and Dubey 1986; Paul and
Zhang 1986).

Numerical techniques for determining a manipula-
tor configuration that will position and orient the
end-effector in a desired fashion can be found in the
literature for general geometry arms as well (Golden-
berg, Benhabib, and Fenton 1985; Goldenberg and
Lawrence 1985; Angeles 1985, 1986). These numerical
methods use multidimensional Newton-Raphson or
similar techniques to provide a solution. Their com-
putational efficiency is hindered by the need to com-
pute the inverse Jacobian of the manipulator at several
points.

Tsai and Morgan (1984) described a remarkable
homotopy map method, guaranteed to find all solu-
tions of a system of polynomial equations in several
variables and applied it to the inverse kinematic prob-
lem of 5- or 6-revolute-DOF arms of arbitrary archi-
tecture. The computational complexity of the method
makes it impractical for on-line use. However, in the
process, the inverse kinematic problem is reduced to
four equations in only four of the joint variables. In
this paper, we show that this simplification and con-
siderable algebraic reduction can be obtained with
much less effort by a convenient choice of joint frames
and proper application of rotation orthogonality. The
power of this simplification procedure is enhanced
when applied to orthogonal manipulators, which are
defined in this paper.

The technique for finding a reduced set of equations
is shown to be helpful in solving the inverse kine-
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matics for arms that allow closed-form solutions as
well. The PUMA 560 inverse kinematics problem is
solved to illustrate the power of this approach.

Finally, we present an original and fast iterative
technique, based on the reduced set of equations, that
is suitable for real-time control of manipulators for
which knowledge of one joint variable allows a closed-
form computation of the remaining variables. In our
second example, this iterative technique is applied to
an existing 6-DOF arm and programmed on a desktop
computer. The average inversion time is found to be
less than 30 ms, an inversion time at least one order of
magnitude better than those found in the literature.

2. Notation and Manipulator Frame
Assignment

A manipulator is an open chain of rigid bodies (links)
connected together by joints. Each link is free to rotate
about or slide along a joint axis with respect to the
preceding link. Using the Denavit-Hartenberg parame-
ters (1955), each link i is assigned a frame of reference
F; with a location and orientation entirely described
by the four parameters d;, 6;, a;, a; with respect to the
preceding frame F;_, along the chain. For an #-link,
n-DOF manipulator, the frames are numbered from 0
to n, with frame 0 being the base frame and frame »
the end-effector frame. Link i can either rotate about
or slide along axis z;_, . Since there is no link n + 1,
frame F, can be chosen so that o, = a,=d, =0, if
joint n is revolute, and a,, = a,, = 6, =0, if it is pris¢
matic. Frame F, can be positioned such that d, = 0, if
joint 1 is revolute. These assignments simplify the
computation without loss of generality.

A vector expression in frame F; and its expression
in frame F;_, are related by the homogeneous matrix
transforms A; and (A,)~! given by

C —Stu So aG
S, Cn —Co; a;S;
A=
0 0; T; d; )
0 0 0 |

C,' Si 0 —a,-
-St;, Cg; o0 —od;
! = iti iti i i%i
A) So;, —Co; v —1d; 2
| 0 0 0 1 )
_[ RF  (RMY
|0 0 0 1 ’

where C; = cos 6;, S; =sin 6,, 7, = cos ;, and g; =
sin ¢;. The upper left 3 X 3 matrix in A, is the rotation
matrix R; necessary to align the unit vectors of F; with
those of F;_,. Rotation matrices are orthogonal, so
R;7!'=RT. Vector ;= [a,C;, a,S,, d;]T positions the
origin of F; with respect to F;_,.

Given an end-effector pose P expressed with respect
to the base frame F;, by the matrix

nx bx tx px \
P=nybytypy=nbtp
n, b, t, p, 0 0 01 3)
[0 O 1
=- R p
[0 0 0 1)
where
7, ] [ b, L,
n=|n |, b=|b ], t=|¢],
| 7, | | b, L
-pxq _nx {bx tx
p=|pl|s R=|m b, &},
_pZ_ _nZ bZ tz

the basic inverse kinematic problem for an n-DOF
arm is to find the values of all joint variables for which
the following matrix equation holds

A AALALA - -A, =P, @)

At least 6 DOF are required to arbitrarily position
and orient a rigid body in space. If # is larger than six,
the manipulator is redundant, and the system of equa-
tions implied by (4) is underconstrained. If #n < 6, the
system becomes overconstrained. In this paper we will
restrict our discussion to the exactly specified system
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obtained with n = 6, although the simplification tech-
niques presented below can be of assistance for other
values of n as well.

In the following, a leading superscript will be used
to designate the frame of expression of a given vector
(for example *p represents vector p expressed in frame
3).

3. Inverse Kinematics Equations

For a 6-DOF arm, Eq. (4) yields 12 nontrivial scalar
equations in the six unknown variables. It is desirable
to reduce this system to a minimal number of equa-
tions involving as few of the joint variables as possible.
For all-revolute, 6-DOF manipulators, Tsai and Mor-
gan (1984) have identified that with respect to frame
F;, the z-component of the position vector *p and that
of vector 3t along with the inner products (°t - 3p) and
(p - *p) provide four equations in only four of the
unknowns, thereby reducing the complexity of the
problem. The process of obtaining these four equations
involved multiplying the 4 matrices and simplifying
the expressions obtained for the elements of 3t and 3p.
Besides being lengthy, this method does not allow
insight into the mechanisms that make the simplifica-
tions possible. The approach presented here provides
the same results with much less effort and greater
insight by taking advantage of the properties of rota-
tion transformations.

By writing the product of two 4 matrices in the form

_[ RR,  ®RL+1)
Ay [0 0 0 1 ’

we can divide Eq. (4) into a position equation and an
orientation equation, which can be expressed, respec-
tively, as

P =R,(Ry(R3(Ry(Rslg +15) + 1) + 1) + 1) +1; (5)

and

R= R1R2R3R4R5R6. (6)

54

= B

With the frame assignment conventions discussed,
1, = 0 when joint 6 is revolute. Equation (5) then sim-
plifies to

p= Rn(Rz(Rs(R4ls +1)+1L)+L)+ L. (5)

Three independent scalar equations for p,, p,, and p,
can be obtained from (5) and three more equations
can be selected out of the nine scalar equations implied
by (6).

Since rotations are orthogonal transformations, they
leave inner products invariant.

Qu-Qv=u-v @)

for any rotation matrix Q and any vectors u and v. A
special case of (7) that is sometimes useful is

Qu-v=u-Q'v. 8)

These properties are extremely efficient in eliminating
algebraic terms and unnecessary joint variables when
applied to Egs. (5) and (6), provided it is further recog-
nized that

R; 'l = [a;, dio;, A" ©)
and

R;'z=[0, g;, 7] where z=[0, 0, 117  (10)
are independent of 6;, when joint i is revolute. Also,
due to the frame assignments discussed earlier, R¢z =z
in all cases, since frame F, can be chosen to force a;s = 0.

By using Egs. (7) and (8) repeatedly, we obtain four
reduced equations:

t, equation
t,=t-z=(Rz) -z,
;= (RRR;R4RsR¢7) - 2, a1
;= (R,R,R3R,Rs2) - 2,
t,=z - (R5'R;'R3'R7'R7'2).
D, equation

p=R,R,R;R,q
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with

q=15+R7'(1, + R3'(1; + Ry '(1, + RT'1,))), (12)
P:=p z=q " (R{'R7'R7'R7 Mz

p.t equation

p-t=R5'q-z (13)

p.p equation

P P=pP’=q-q=¢ (14)
Since R7'l; and Ry'z are independent of ©, (Egs. (9)
and (10)), vector q and Egs. (11)~(14) are easily seen
to be independent of the first and last joint variables
and therefore form a system of four equations in four
unknowns,

These four equations determine candidate solutions
for joint variables 2, 3, 4, and 5. Once this system of
equations is solved, the remaining two variables can be
found using more equations from (4) and then tested
for consistency. The power of this approach will be-
come apparent for specific manipulators, since further
simplification using Egs. (7)-(10) becomes obvious.
Furthermore, simplification by use of rotation inner
product invariance is not only computationally eco-
nomical, but it also provides greater insight into the
structure and properties of the inverse kinematic equa-
tions. ,

Equations (7)-(10) are necessary, but not sufficient.
Although they are satisfied by all solution sets of Eq.
(4), they are also, in general, satisfied by extraneous
solutions. This problem was reported by Tsai and
Morgan (1984) as well.

Another problem with considering Egs. (11)-(14)
alone is the presence of sign ambiguities. In many
practical situations, one of the equations will allow a
closed-form solution for either the sine or the cosine
function of a revolute variable ©. The other function
needs to be computed using the Pythagorean identity,
which offers two values opposite in sign. Although
both signs can be tried in the search for a solution, in
some cases the number of sign ambiguities can be
reduced by considering more constraints from Egs. (5)
and (6). Additional equations will also help filter out
extraneous solutions and in some cases will ease the

solution finding process rather than complicate it. The
x- and y-components of vectors t and p provide con-
venient additional constraints at the cost of introduc-
ing the variable ©,. Equations

= R1R2R3R4Rsz * X, (]5)

t,=R,RR;R,Rsz - y, (16)

Px= (Ri(Ry(Ry(Ryls + 1) + 1) + 1) +1) - x, (17)
Dy =(Ry(Ry(Ry(Ryls +1) + 1) + 1) +1)) -y, (18)

where x =[1, 0, 0]T and y = [0, 1, 0]T are the usual
canonical unit vectors, are still independent of 6.

\
4. Orthogonal Manipulators

Definition

An n-axis, serial kinematic chain of revolute or
prismatic joints is orthogonal if all twist angles o,
i=1,...,n,along the chain are 0 or 7/2. An
open orthogonal kinematic chain will be called an
orthogonal manipulator (Doty 1986).

Six-DOF orthogonal manipulators can be classified
in terms of the values of their twist angles o,
i=1,...,6.Since o can always be chosen 0, there
are only 2° = 32 distinct classes of orthogonal manip-
ulators, 8 of which have four or more adjacent paral-
lel joint axes, which reduces their capability to less
than 6 DOF. As a result, there are only 24 types of six
joints orthogonal manipulators with full spatial posi-
tion and orientation capability.

A convenient notation for this classification of or-
thogonal manipulators is obtained by assigning a 6-bit ,‘
binary number to each of these 24 types in which bit i
is 0 if o; = 0 and bit i is 1 if o; = m/2. For example, a
manipulator with twist angles a = 0, a5 = 7/2,
oy =1/2, 3 =0, a, =0, and o, = 7/2 belongs to the
class 011-001 of orthogonal manipulators. Twist
angle a is always 0. Thus, the leading bit can be omit-
ted, and a 5-bit notation for all 24 classes can be used.

Since most industrial robot arms are orthogonal, it
is worthwhile to consider the inverse kinematic prob-
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lem with respect to these manipulators. The A-matri-
ces associated with orthogonal arms have one of the
two following forms:

Ci _Si 0 a,C,
S, C 0 af,
Afla=0=| & | 4, | (19)
0 0 0 1
or
¢ 0 S aGC
S,' 0 = Ci a,~S,~
Ala=z)=| " | d, (20)
0 0 O 1

Further computational simplification is obtained
with orthogonal manipulators since

Rz=R;'z=z ifq;=0

and \

Ri'lz=y ifo;=mn/2.

Using this approach, Doty (1986) has shown that, of
the 24 classes of nontrivial orthogonal manipulators,
those with two nonzero twist angles (classes 01 -001,
01-010, 01-100, 10-100, and 10-010) have closed-
form solutions. The inverse kinematic analysis of the
remaining classes is still under investigation.

5. Closed-Form Example: PUMA 560
Inverse Kinematics

A popular orthogonal manipulator geometry, the
PUMA 560, is described by the kinematic parameters
given in Table 1. This manipulator has a spherical
wrist and therefore allows closed-form solutions
(Pieper 1968). Inverse kinematic solutions have been
proposed by numerous authors for this type of arm
(Lee and Ziegler 1984; Craig 1986; Paul and Zhang
1986). This example is included here to demonstrate

56

Table 1. PUMA 560 Kinematic Parameters

Joint d (C] a « »

1 0 0, 0 7/2
2 0 0, a, 0
3 d, 0, a, n/2
4 d, o, 0 n/2
5 0 O, 0 n/2
6 0 (K 0 0

the utility of the approach already outlined and to
contrast it with the geometric and algebraic approaches
taken by the previous authors.

In the following equations C;; and S; stand for the
cosine and sine of ©; + ©;, respectively. Without com-
puting the forward kinematics, we will illustrate how
Egs. (11)-(14) may be easily obtained. For quick ref-
erence in the following discussion, we write the equa-
tions immediately.

t,= 8,3CeSs + CysCs, 1)

P, = 4,8, + 4383 — dyCos, (12')

p * t=(a; + a,C;5)C,S;s (13%)
+ d3S,Ss — Co(dy + a555)

W-B-d-B-d2a

= d4S3 + a3C3._

To illustrate the simplification obtained by the
frame assignment described earlier and inner-product
invariance under rotations, we give in detail the devel-
opment of Eq. (14’). With 1, =1,=14=0 and
1, =d,z, Eq. (5) yields

P = R (Ry(R;l, +15) + 1),
p = R,R,R,[l, + R3'l; + R7'R3'L,].

By orthogonality, the inner product p - p has the same
value as the inner product of the term in brackets; hence

pp=[L+R3'; +R7'R;'L,] - [L + R3],
_+R3'R7L,]

The inner product of each term in brackets with itself
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is the square of the length of that vector. For example,
R;'R7'L, - R3'Ry'L =1, L, =a} + d}= 13.

These inner-product manipulations represent a con-
siderable algebraic simplification that requires little or
no mental effort. Further, they provide a methodology
and considerable insight into how to find other alge-
braic reductions.

Some of the cross terms also reduce; for instance,

R;Il3 * R;le_llz =l3 * R;llz.

Complete expansion of Eq. (14) and application of the
reduction techniques just discussed lead to

(P’ —B-B—-1/2=1, - [R;'l; + R;'R; 1]
+ 13 * R;llz.

For this manipulator, vectors 1, = [0, 0, d,]* = d,z,
R3'l; = [as, d3, 0], and R3 ', = [a,, 0, 0] =a,x
allow us to simplify the last equation:

(@’ -B-18)/2=d,z - [R3'l; + a,R5"'x]
+ a213 * X,

(e.g., 14 - R3'ly is obviously 0, which eliminates ©,
from this equation).

Without any matrix multiplication required, we
obtain the fully simplified relation involving O, only:

(p*—ai— a3—di—dy))2= a)(dySs + a;Cy).

The last equation is of the form aS + bC = d, where
S and C are the sine and cosine of some angle 6. Such
an equation has two solutions, when a2 + b2 = 42,

O = atan2[d, £Va? + b? — d?] — atan2(b, a)

where atan2(v, w) returns the angle Arctan(v/w) ad-
Justed to the proper quadrant according to the sign of
the real numbers v and w.

At this point Eq. (14’) can be solved for ©,, yielding
two solutions. After applying trigonometric identities
for angle sums to (12’), we get

D:= 438, + a5(5,C; + S5C,) — d(CC5— S,83),

and grouping terms, we obtain
(a; + a3C3 + dyS5)S, + (a3S; — dsC3)C, = p,.

With ©; known, two values can be obtained for 0,.
Doty (1986) has shown that all 4-DOF manipulators
have closed-form solutions with at most two distinct
solution sets. This means that if two angles of a 6-DOF
manipulator can be found in closed form, the entire
angle set is solvable.

With 6, and ©; known, (11’) and (13’) become
functions of ©, and 65 only. Although this system of
two equations in two unknowns can theoretically be
solved, its solution is not obvious. A simpler solution
exists if Eqs. (15)-(18) are considered.

P x =Ry(Ry(R;l, +1;) th)-x=p, 17)
\

P Y=R(RR3l, +15)+1)-y=p, (18)

or

(d4Sy3 + a3Cy3 + a,C)Cy + d3S, =p,,
—dyCy + (dySy + a3Cy + a,Cy)S, = Dy.

The last two equations form a linear system in S| and
C} and provide a unique value for 0, .

Equations (15) and (16) along with (11’) provide a
way to solve for ©, and O;:

1y = C1Cy3CySs + 8,885 — C,.52Cs, (159

ty s S|C23C4S5 - C|S4S5 - Sl S23C5 . (16,)
Solving for Cs in (11’) and substituting in the last two
equations give (after grouping terms)

C1CySs + 81Cp3848s = 1,Cyy + 1,C 1523,
51C4Ss — C1Cy38,8s = 6,Cys + 1,5,8,;.

This linear system can be solved uniquely for the
products C,S;s and §,S5. When S # 0, two solutions
for ©, are then obtained:

0, = atan2(S,Ss, C,S;) or
94 = atanz(_ S4S5 g = C4S5).
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When S5 = 0, joint axes z; and z; are aligned and the
manipulator loses 1 DOF. Only the sum 6, + 6, can
be found by use of Egs. (5) and (6).

With 6, known, the ¢, and ¢, equations constitute a
linear system of equations that yields a unique solu-
tion for ©s. The last joint variable 64 can then be
obtained from two more equations from (6) such as
the n, and b, equations. This procedure will yield eight
solutions, which must then be checked for joint-vari-
able range limitations. We end the discussion of the
PUMA example with the observation that the forward
kinematics were never determined in order to obtain
the inverse kinematic solution!

6. Iterative Procedure

For many manipulator geometries, closed-form solu-
tions cannot be found; therefore numerical techniques
must be used to solve the inverse kinematic system of
equations. The numerical techniques found in the
literature are based on multidimensional Newton-
Raphson, or similar, methods that require use of the
manipulator inverse Jacobian (Goldenberg, Benhabib,
and Fenton 1985; Goldenberg and Lawrence 1985;
Angeles 1985, 1986). The method proposed here takes
advantage of the reduced set of inverse kinematic
equations discussed earlier to provide an algebraically
simpler and computationally faster iterative tech-
nique. This new technique can be applied to any
6-DOF manipulator for which all joint variables can
be found in closed form when one joint variable is
known. For manipulators satisfying this last condition,
the inverse kinematic problem can be reduced to a
one-dimensional root-finding process for which simple
and fast numerical techniques, such as the one-dimen-
sional Newton-Raphson or the secant method, are
well suited.

Equation (4) can also be expressed as

A2A3A4A5A6 — Al_lP = lP

in 'p It Ip 21)
1o 0o 0 1)
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where the right side is a function only of ©,. Assuming
6, known, the problem reduces to five unknowns and,
for many manipulators, can be solved in closed form
by the techniques presented here.

From Eq. (21),

'p = Ry(Ry(Ryls + 1)) +15) + 1, = R,R;R, !q (22)
with

'g =15+ Ry'(, + R3'(I; + R3'1y)). (23)

Again with repetitive use of rotation orthogonality, we
have

ltz — lt e A R2R3R4R5z *Z

=7 (R;lR;lR;le—l)z, (24)
1 =1 P | —1p—-Iip-1
p:='p-z="q Ry'R3'Ry'z
—R'(p-1) 1, (23)
Ip-'t=Rs'q-z=p-t (26)
'p-'p='q-q (27)

Equations (24)-(27) provide four equations indepen-
dent of 6, and of 6. These equations are the basis of
the iterative technique proposed here; however, to

- alleviate the problem of extraneous solutions and sign

ambiguities, the following additional equations, which
introduce the variable 6,, can be of assistance.

't,=z- (RF'RI'RF'R7)x=R7't-x, (28)
'ty=z- (RF'RF'RF'R;)y=Ri't -y, (29)
1 S | -1 ~1R-1PR-1
px—p'z—q'R4R3R2X 30
—R7(p—1)- % (0
py=1p - 2='q R'R7'R7'y (31)

=Ri'(p—1) -y

The application examples below will illustrate this
discussion and elaborate the general steps involved in
implementing the method for an arbitrary manipulator.
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6.1. Outline of the Iterative Method

1. Derive explicitly Egs. (24)-(31).

2. Assume 6, known and verify that the other
joint variables can be obtained in closed form
from a proper selection of Eqs. (24)-(31). This is
a condition for the applicability of this method.

3. Find a real-valued function of 8, by using one
of the equations that can be computed for any
value of ©,. For example, if given ©; and using
the remaining equations, Eq. (26) can be eval-

_ uated, then a good candidate function is

f(6,) =R5!
X (15 + R7'(14 + R3'(1; + R3'1,))
Xz—p-t

4. Implement a Newton-Raphson or other nu-
merical method for finding a root of the func-
tion ffrom an initial guess of ©,.

Once a root of fis found, the values of the remaining
joint variables can then be computed in closed form.

6.2. Computing the Derivative of f

If Newton-Raphson is to be used, then the derivative
of the function /' must be computed as well as the
function itself. From Eq. (11), it can be seen that the
derivative of the right side can be explicitly computed
as a function of 6,.

Again using the example function of step 3 and
assuming an all-revolute 6-DOF arm, df/d0, will de-
pend on the values of C,, S;, dC;/d®,, and dS;/d®, for
i =3, 4, 5. By differentiating Eqs. (24)-(31) as neces-
sary, we obtain dC;/dO, and dS;/dO, for i=3, 4, 5. A
useful additional relation is provided by differentiating
the Pythagorean constraint on C; and S; with respect
to 6,:

C?+8?= 32)
so that
dC, ds;
Ci— 0, + S, — 0, =0. (33)

Table 2. GP66 Manipulator Kinematic Parameters
(joint 3 is prismatic)

Joint d (<] a «a
1 0 0, 0 /2
2 0 0, a, n/2
3 d, 0 0 0
4 0 0, 0 n/2
5 ds SN 0 /2
6 0 (SH 0 0

In practical situations, the derivative of fcan be
approximated numerically by

i =f(el +9) —f(©)
do, )

3
with a small value of .
A root of f'will correspond to a true solution of the

inverse kinematic problem or to an extraneous solu-
tion. To avoid extraneous solutions, select f'so that its

- computation requires the use of several of the con-

straint equations, Egs. (24)-(31). In several applica-
tions, satisfactory results were obtained by selecting ei-
ther (26) or (27) to define the function f;

With this method, sometimes a division by S, or G
needs to be performed. If either of these variables be~
comes zero, a pertinent value of ©; from the set {0,
/2, m, 3n/2} along with the current value of 6, should
allow solving for the remaining variables in closed
form for that particular iteration.

7. Iterative Method Example: GP66
Manipulator

Consider the manipulator geometry with kinematic
parameters given in Table 2. This robot arm is an
existing industrial manipulator that belongs to the 11 -
011 class of orthogonal arms and does not allow
closed-form solutions. An iterative method that exactly
computes the position, but approximates the orienta-
tion, was proposed for this type of geometry by Lu-
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melsky (1984). The technique presented here differs in
that it solves for both the orientation and the position
with the same precision, and it is applicable to a larger
variety of manipulators.

Assuming a guess of ©6,, we can compute the corre-
sponding x- and z-components of !p and 't:

lpx = pxCl ‘s pySl ’ (343)

lpz = pxSl - pyCl ) (34b)
t=1C +1S5,, (34c¢)
.=t —1C,. (344)

Next, we derive Eqs. (24)-(27) as applied to this ma-
nipulator. For this robot 1, =1, = 1 =0, R 'l, = a,x,
1, =dsz, 15 = dsz, and R; = I. With these values, (5)
yields

p=R,Ry(dsR,z + dyz + a,x).

After multiplicati?n by Ry},

lp = Rz(d5R4z + d3z + azx). (35)
Vector 't simplifies to
It= ert = R2R4Rsz. (36)

Computing 't,

~ Using Eq. (36), and Eqgs. (7) and (8) as necessary, we
obtain

I,="t-z=Rsz - R;'y.

Since Rsz = [Ss, = Cs, 0]T and R;ly = [S4, O, == C4]T,
the preceding equation becomes

ltz‘_- S4S5. (37)

Computing 'p,
Since !p, = 'p - z, from Eq. (35), Eq. (8), and R; 'z =y,

'p, = (dsR4z+ dsz + a5x) - y,
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which is easily seen to produce

le = _d5C4- (38)

Computing 't - 'p
Equations (35) and (36) and use of Egs. (7) and (8) yield
It-lp=t-p=Rsz - (dsz + d;R;'z + a,R7'x).

With R7'z =y and Rsz - dsz = 0, this equation re-
duces to

t- P= _d3C5 + 02C4S5. (39)
Computingp - p
The inner product directly produces
'p-'p=p-p=d}i+d}+a}+2a,d;S, (40)

without any matrix operations.
Equation (39) can be used to define a real function
of 6,:

J©) =—d;Cs+ a,CySs—t - p. (39)
Values of 6, that yield a solution to the inverse kine-
matics of this manipulator must be zeros of the func-
tion f. Equations (40), (38), and (37) provide a way to
compute f, given ©,. With ©, known, Eq. (34) gives
'pes 'p2, 'Ly, and '¢,. Equation (38) gives

C4=_‘pz/d5 (41) .

and
Ss = u, Trig (Cy), (42)
where u, = 1 or — 1 expresses a sign ambiguity and the
function Trig is defined by Trig (x) = (1 — x2)!2,
The prismatic variable d, can then be found from
(40):
dy=(p* — a3 — d} — 2a,d;sS,)"". (43)

From (37), the value of S5 can be computed, if S, is
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not zero:

Ss="1./S, 44)

and

Cs = us Trig (Ss), (45)
where us = 1 or — 1 is another sign ambiguity. This
additional sign ambiguity can be avoided if more
equations involving 6, are considered. Indeed, Egs.
(30) and (31), when applied to this manipulator, yield
a system of two equations that can be readily solved
for S, and C;:

Sy = (ds'px + kop)/(d3 + KF), (462)

Cy = (ko'ps— d3 p)/(d5 + K3), (46b)
where k, = (a, + dsS,). The value of Cs can then be
obtained from either (29),

Cs = (tz — $,C4S5)/ Cy, “47)

or (28),

Cs = (C,C4S5 — '1)/S,. 47
With the computed values of d;, Cy, Cs, and Ss, the
value of f(6,) is fully determined.

The derivative of f'can also be evaluated. By differ-
entiating (38) with respect to ©,, we obtain dC,/dO,:

dC,/d®, =—"p,/ds, (48)

where we substituted d('p,)/d©, = 'p,. Using (33), we
find the value of dS,/d6;:

das, dC4> / Cy'px
— T — S = ——— " 4
ae, Ca (de, Sa S.d; (45)
Differentiating (40) yields
dd, (dS4) /
= i ds,
do, do, (50)

_a:d_3 - —a,dsCy'py
do, Sidsds

and from (37), we get dSs/dO,:

5[5, (42)]/
0, [ t,— Ss 0, AV (51)
Once again, using (33), we have

acs _ _ ﬁ) /

%= ( o)/ S (52)

and we finally obtain dff/dO, by differentiating (39"):

if“_az(C4'd_S'i+Ssig)

e, do, , 5
_(,; 9Cs , - dds
(485, 22),

\
From the one-dimensional Newton-Raphson itera-
tive method, we get a new estimate for O, :

_o _J6)
el,ucw - el df/d@l .

Once O, is obtained to the desired accuracy, the re-
maining joint variables 6,, 6,, ©; are then computed
from the values of their sines and cosines as obtained,
along with d;, from the last iteration. A vector equa-
tion in 64 can be obtained from (6) by right multiply-
ing both sides by Rz 'R5'z:

RRs'y =R R,;Rz, (54)
where we used R5'z =y. This equation can be solved
uniquely for 6.

When the O, estimate is close enough to a solution,
the complexity can be reduced by computing df/dO,
numerically at any iteration using the values of ©, and
f(86)) in the preceding iteration:

(_d[_)i=fi—l _fi
de, e-'—-6i’

where the superscript represents the iteration number
at which the variable is computed. This saves the com-
putational cost of Eqs. (48)-(53) and avoids the prob-
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Table 3. GP66 Trajectory Tracking Points (all angles
are in degrees, a, = 0.36, d; = 0.19)

6, 6, 4 0, 5 65

—19.072 54.427 1.192 —140.114 —137.013 —121.439
—15.319 54.980 1.090 —135.196 —135.357 —125.247
—11.061 55.823 0.992 —129.853 —133.343 —129.428
—6.234 57.063 0.901. —124.100 —130.873 —134.024
—0.773 58.831 0.820 —118.000 —127.817 —139.068
5.374 61.276 0.751 —111.700 —124.006 —144.568
12.239 64.532 0.697 —105.467 —119.245 —150.474
19.805 68.657 0.662 —99.716 —113.360 —156.644
27.968 73.551 0.649 —94.958 —106.315 —162.840
36.488 78.908 0.660 —91.649 —98.352 —168.788
45.000 84.279 0.694 —90.000 —90.000 —174.278

lem of special cases that occur when division by a
number close to zero is needed in any of those equa-
tions.

The procedure just described was programmed to
compute the joint variables for 10 equidistant points
on a linear trajectory with constant orientation that
will move the end-effector from the initial pose

V272 0 V272 1
B = V272 0 =272 —%
0o 1 0 -4
0 0 0 1

to the position [4, 4, &]%.

Table 3 shows the output of the program. The max-
imum number of iterations needed per point was six.
The guess for each point was the value of O, at the
preceding point. The experiment was started with a
guess of —20°. Convergence at every point was ob-
tained when six or more points were taken along the
trajectory. Although Table 3 gives the joint variables to
only three decimal places, they were computed with a
precision of 10~%. The program was written in C and
run on an AT&T 3B2/310 desktop computer. The
kinematic inversion for the 11 points took 0.32 s,
which gives an average time per kinematic inversion
of 29.1 ms, clearly suitable for real-time high-precision
inverse kinematics.
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8. Conclusion

This paper has addressed the inverse kinematics prob-
lem of 6-DOF manipulators. The problem is simpli-
fied by a convenient choice of base and end-effector
frames for manipulators with revolute first and last
joints. The invariance of inner product under rotation
is then shown to allow full simplification of the in-
verse kinematic equations without multiplying out the
homogeneous matrices and performing the usual
lengthy simplifications of the scalar equations. This
simplification process also provides better insight into
the structure of the inverse kinematic problem. We
have also shown how the same techniques allow re-
duction of the complexity of the problem to four
equations in only four of the unknowns. Although in
this paper we only show this when the equations are
expressed in base or first frames, it still holds in any of
the frames along the manipulator structure (Doty 1986).

The paper also defines the important set of orthogo-
nal manipulators and shows that there are only 24
distinct classes of orthogonal manipulators with
6-DOF capability. A simple notation for the 24 classes
is proposed. It can be shown that the five classes of
6-DOF orthogonal manipulators with only two of the
six twist angles equal to 7z/2 will always yield closed-
form solutions.

Finally we provide a fast iterative inverse kinematic
method based on a one-dimensional Newton-Raphson
technique. This method neither requires computation
of the Jacobian nor the inverse Jacobian of the manip-
ulator. Its computational simplicity allows its use in
real-time manipulator control. It can be applied to any
manipulator that does not allow closed-form solutions,
but for which knowledge of one of the joint variables
allows closed-form solutions for the remaining joint
variables. The convergence properties and possible
improvements and generalization of this method are
the subject of ongoing research. The method typically
converges in five iterations for a guess within 10° from
a solution although it has been observed that the con-
vergence depends highly on the end-effector pose to be
solved as well as the manipulator geometry. In some
rare instances, a much closer guess is required before
convergence can OCcCur.

As examples, this paper presented the new inverse
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kinematic approach, based on properties of orthogonal
matrices, applied to a closed-form solution type of
manipulator, namely, the Unimation PUMA 560
robot, and to a manipulator requiring a numerical
technique, the GP66 robot. For the latter, joint values
for points along a straight-line end-effector trajectory
were found with an average inversion time of less than
30 ms per point, on an AT&T 3B2/310 desktop com-
puter. This performance is at least an order of magni-
tude better than that of multidimensional Newton-like
techniques presented in the literature.
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