
Robotics I
September 12, 2016

Exercise 1

The last three revolute joints (labeled from 4 to 6) of the 6-dof Universal Robot UR10 constitute
a non-spherical wrist and are described by the Denavit-Hartenberg parameters in Tab. 1.

i αi ai di (mm) θi

4 −π/2 0 d4 = 163.9 q4

5 π/2 0 d5 = 115.7 q5

6 0 0 d6 = 92.2 q6

Table 1: Denavit-Hartenberg parameters of the non-spherical wrist of the UR10 robot.

• Provide the analytic expressions of the inverse kinematic mapping, which takes as input a
desired orientation of the (end-effector) frame 6, as expressed by a rotation matrix R, and
provides as output all solutions for the wrist angles (q4, q5, q6) in the regular case. Charac-
terize also the singular cases, and explain what happens in such situations.

• Apply your formulas to solve the inverse kinematics for the UR10 robot wrist, given the
following numerical input:
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 .

Exercise 2

Consider the planar RPR robot in Fig. 1. The prismatic axis of the second joint is skewed by an
angle β = 45◦ with respect to the first link.
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Figure 1: A planar RPR robot with its joint coordinates q1, q2 and q3.

• Using the coordinates shown, provide the Jacobian matrix J(q) that relates q̇ =
(
q̇1 q̇2 q̇3

)T
to the velocity ṗ =

(
ṗx ṗy

)T of the end effector and find the singularities of this mapping.

• Let the robot be at q0 =
(
π/2 0.2 −π/4

)T [rad,m,rad], with kinematic data `1 = 1 and

`3 = 0.5 [m]. For a desired end-effector velocity ṗd =
(
−1 0

)T [m/s], determine numerically

– the minimum norm (least squares) solution q̇LS ;
– another solution q̇0 6= q̇LS , such that J(q0)q̇0 = ṗd.

[120 minutes; open books]
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Solution
September 12, 2016

Exercise 1

From Tab. 1, we build the rotation matrices

3R4(q4) =

 cos q4 0 − sin q4
sin q4 0 cos q4

0 −1 0

 , 4R5(q5) =

 cos q5 0 sin q5
sin q5 0 − cos q5

0 1 0

 ,

5R6(q6) =

 cos q6 − sin q6 0
sin q6 cos q6 0

0 0 1

 .

Using the usual compact notation for trigonometric functions, the orientation of the end-effector
frame expressed w.r.t. frame 3 of the UR10 robot (which is taken here as reference frame for the
wrist kinematics) is given by

4R6(q) = 3R4(q4) 4R5(q5) 5R6(q6) =

 c4c5c6 − s4s6 −s4c6 − c4c5s6 c4s5

c4s6 + s4c5c6 c4c6 − s4c5s6 s4s5

−s5c6 s5s6 c5

 , (1)

where q =
(
q4 q5 q6

)T .

Let Rij (i, j = 1, 2, 3) be the elements of the desired orientation matrix R. We solve then the
matrix equation 4R6(q) = R by inspecting the structure of the scalar elements in (1). It is easy
to see that

q5 = ATAN2
{
±
√
R2

13 +R2
23, R33

}
, (2)

providing in the regular case two solutions q+5 and q−5 (with equal modulus and opposite signs).
Provided that R2

13 +R2
23 = sin q5 6= 0, namely that q5 6= 0 and 6= π as a result of (2), we can solve

for the other two angles in an unique way as

q4 = ATAN2
{

R23

sin q±5
,
R13

sin q±5

}
, q6 = ATAN2

{
R32

sin q±5
,
−R31

sin q±5

}
, (3)

yielding the two pairs (q+4 , q
+
6 ) and (q−4 , q

−
6 ), associated respectively to the two choices q+5 and q−5

in (2).

In the singular case, sin q5 = 0, cos q5 = ±1, only the sum or the difference of the two other joint
angles will be defined.

When the formulas (2–3) are applied to the desired orientation R, they yield the two solutions

q+ =

 π/2
3π/4
π

 =

 1.5708
2.3562
3.1416

 , q− =

 −π/2
−3π/4

0

 . (4)
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Exercise 2

For a generic skew angle β, the direct kinematics of the RPR planar robot in Fig. 1 is

p = f(q) =

(
`1 cos q1 + q2 cos(β + q1) + `3 cos(β + q1 + q3)
`1 sin q1 + q2 sin(β + q1) + `3 sin(β + q1 + q3)

)
and its Jacobian J = ∂f/∂q is given by

J(q) =

(
−`1 sin q1 − q2 sin(β + q1)− `3 sin(β + q1 + q3) cos(β + q1) −`3 sin(β + q1 + q3)
`1 cos q1 + q2 cos(β + q1) + `3 cos(β + q1 + q3) sin(β + q1) `3 cos(β + q1 + q3)

)
.

(5)
To find the singularities of the differential kinematics, namely the configurations where the resulting
matrix J(q) loses rank, we compute the three minors obtained by deleting, respectively, the third,
second, or first column of J(q). We obtain

det J [−3] = − (q2 + `1 cosβ + `3 cos q3) ,

det J [−2] = −`3 (`1 sin(β + q3) + q2 sin q3) ,

det J [−1] = `3 cos q3.

All three determinants are simultaneously equal to zero if and only if

cos q3 = 0, q2 = −`1 cosβ.

When this happens, the rank of the Jacobian J in (5) falls down to 1. If we plug in now the given
value β = π/4, we find the singularity at q2 = −`1

√
2/2, q3 = ±π/2 (for any value of q1)1.

Next, at the configuration q0 =
(
π/2 0.2 −π/4

)T and with the kinematic data β = π/4, `1 = 1,
and `3 = 0.5, the Jacobian in (5) becomes

J(q0) =

(
−1.6414 −0.7071 −0.5
−0.1414 0.7071 0

)
,

which is of full rank. For ṗd =
(
−1 0

)T , the minimum norm solution is obtained using the
pseudoinverse of the Jacobian2

q̇LS = J#(q0)ṗd =

 0.5185
0.1037
0.1512

 . (6)

Other solutions can be obtained in many ways. For instance, when ‘freezing’ the prismatic joint
(q̇2 = 0) we would still have a non-singular sub-Jacobian J [−2](q0). Thus, by computing(

q̇0,1

q̇0,3

)
= J−1

[−2](q0)ṗd =

(
0
2

)
,

1Another notable case is when β = ±π/2, i.e., the prismatic joint is orthogonal to the first link. In that case,
the singularity occurs when q2 = 0 and q3 = ±π/2.

2Note that the units of the solution vector in (6) are non-homogeneous, namely [rad/s] for the first and third
joints and [m/s] for the second joint. In this context, the concept of (unweighted) norm is not a properly defined
one. Nonetheless, the use of a pseudoinverse solution is still a common practice even in such cases.
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a different feasible solution is obtained as

q̇0 =

 q̇0,1

0
q̇0,3


 0

0
2

 . (7)

Note that only the last joint is eventually used in this case in order to realize the desired end-
effector motion. Indeed, the norm of this joint velocity, ‖q̇0‖ = 2, is larger than the one of the
pseudoinverse solution, ‖q̇LS‖ = 0.55.

∗ ∗ ∗ ∗ ∗
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