
Robotics I
July 11, 2017

Exercise 1

Consider the 5-dof GMF M-100 manipulator sketched in Fig. 1, having a RPP (cylindric) sequence
for the first three main joints and two more revolute joints with intersecting axes at the wrist.

Figure 1: The GMF M-100, a 5-dof manipulator with a RPP-RR sequence of joints.

• Assign the link frames according to the Denavit-Hartenberg convention and derive the as-
sociated table of parameters. Place the origin of the reference frame (frame 0) at the robot
base on the floor, and choose the origin of the last frame (frame 5) such that d5 = 0.

• Derive the direct kinematics for the position p = p(q) ∈ R3 of the origin of the last frame.
What if we use cylindrical coordinates pcyl =

(
φ h r

)T to describe this Cartesian position?
• Derive the explicit expression of the 6× 5 geometric Jacobian J(q) and analyze if and when

this matrix loses full rank.

Exercise 2

For a rest-to-rest motion of a robot joint by a given amount ∆q, we plan polynomial trajectories
qi(t) of degree i, with i = 3, 5, 7. In each case, we impose all possible derivatives to zero at the
initial and final instants t = 0 and t = T . If there is a limit |q̇i(t)| ≤ V on the velocities, which is the
fastest possible trajectory among the three? Which are the ratios between the achievable minimum
times Ti, for i = 3, 5, 7? What if there is instead only a limit |q̈i(t)| ≤ A on the accelerations?

Exercise 3

• Shortly present (in the form of a table) which are the pros’ and cons’ of using incremental
vs. absolute encoders as position sensors in a robot manipulator.

• What are the dis-/advantages of mounting an optical encoder on the motor side rather than
on the link side of a motion transmission/reduction element in a robot joint?

• Describe as many as possible direct or indirect ways to measure the current position of the
tip of a tool mounted as end effector of a robot.

[180 minutes, open books but no computer or smartphone]
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Solution
July 11, 2017

Exercise 1

A Denavit-Hartenberg (DH) frame assignment for the 5-dof GMF M-100 manipulator is shown in
Fig. 2. The associated parameters are given in Tab. 1.
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Figure 2: A DH frame assignment for the GMF M-100 manipulator, with the associated joint
variables (numerical values are shown for the revolute joints in the this configuration).

i αi ai di θi

1 0 0 0 q1

2 −π/2 0 q2 −π/2
3 π/2 0 q3 0
4 −π/2 0 d4 < 0 q4

5 0 0 0 q5

Table 1: Table of DH parameters of the frame assignment in Fig. 2 for the GMF M-100 manipulator.
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Accordingly, the homogeneous transformation matrices are:

0A1(q1) =


cos q1 − sin q1 0 0
sin q1 cos q1 0 0

0 0 1 0
0 0 0 1

 ,

1A2(q2) =


0 0 1 0
−1 0 0 0
0 −1 0 q2

0 0 0 1

 , 2A3(q3) =


1 0 0 0
0 0 −1 0
0 1 0 q3

0 0 0 1

 ,

3A4(q4) =


cos q4 0 − sin q4 0
sin q4 0 cos q4 0

0 −1 0 d4

0 0 0 1

 , 4A5(q5) =


cos q5 − sin q5 0 0
sin q1 cos q1 0 0

0 0 1 0
0 0 0 1

 .

From these, we compute

phom =


px
py
pz
1

 = 0A1(q1)

1A2(q2)

2A3(q3)

3A4(q4)

4A5(q5)


0
0
0
1







= 0A1(q1)

1A2(q2)

2A3(q3)

3A4(q4)


0
0
0
1






= 0A1(q1)

1A2(q2)

2A3(q3)


0
0
d4

1





= 0A1(q1)

1A2(q2)


0
−d4

q3
1




= 0A1(q1)


q3
0

q2 + d4

1

 =


q3 cos q1
q3 sin q1
q2 + d4

1

 ⇒ p =

 q3 cos q1
q3 sin q1
q2 + d4

 .

It is easy to recognize that the expression in cylindrical coordinates is

pcyl =

 φ

h

r

 =

 q1

q2 + d4

q3

 .
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The geometric Jacobian is also very simple

J(q)=

(
JL(q)

JA(q)

)
=


∂p(q)
∂q

z0 0 0 z3 z4(q)

=



−q3 sin q1 0 cos q1 0 0
q3 cos q1 0 sin q1 0 0

0 1 0 0 0

0 0 0 0 cos(q1 + q3)
0 0 0 0 sin(q1 + q3)
1 0 0 1 0


.

This matrix has full (column) rank equal to 5 if and only if q3 6= 0. When q3 = 0, the rank drops
to 4.

Exercise 2

It is convenient to work with doubly normalized expressions of the three polynomial trajectories
interpolating q0 at t = 0 with q0 + ∆q at t = T . Let τ = t/T ∈ [0, 1]. For the cubic polynomial,
imposing zero velocity at the two boundaries, we have

q3(τ) = q0 + ∆q
(
3τ2 − 2τ3

)
. (1)

For the quintic polynomial, imposing zero velocity and acceleration at the two boundaries, we have

q5(τ) = q0 + ∆q
(
10τ3 − 15τ4 + 6τ5

)
. (2)

Finally, for the 7th-degree polynomial, imposing zero velocity, acceleration, and jerk at the two
boundaries, we have

q7(τ) = q0 + ∆q
(
35τ4 − 84τ5 + 70τ6 − 20τ7

)
. (3)

The three velocities take the expressions

q̇3(τ) =
∆q
T

(
6τ − 6τ2

)
=

6∆q
T

τ (1− τ) , (4)

q̇5(τ) =
∆q
T

(
30τ2 − 60τ3 + 30τ4

)
=

30∆q
T

τ2
(
1− 2τ + τ2

)
=

30∆q
T

τ2 (1− τ)2 , (5)

and
q̇7(τ) =

∆q
T

(
140τ3 − 420τ4 + 420τ5 − 140τ6

)
=

140∆q
T

τ3
(
1− 3τ + 3τ2 − τ3

)
=

140∆q
T

τ3 (1− τ)3 ,
(6)

while the accelerations are

q̈3(τ) =
∆q
T 2

(6− 12τ) =
6∆q
T 2

(1− 2τ) (7)

q̈5(τ) =
∆q
T 2

(
60τ − 180τ2 + 120τ3

)
=

60∆q
T 2

τ
(
1− 3τ + 2τ2

)
=

60∆q
T 2

τ (1− τ) (1− 2τ) , (8)

and

q̈7(τ) =
∆q
T 2

(
420τ2 − 1680τ3 + 2100τ4 − 840τ5

)
=

420∆q
T 2

τ2
(
1− 4τ + 5τ2 − 2τ3

)
=

420∆q
T 2

τ2
(
1− 2τ + τ2

)
(1− 2τ) =

420∆q
T 2

τ2 (1− τ)2 (1− 2τ) .
(9)
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The maximum velocity is always attained at the trajectory halftime t = T/2, or τ = 0.5, where
the acceleration is in fact zero in all cases. Indeed, for the cubic trajectory this is the only instant
where the acceleration q̈3 is zero. For the quintic trajectory, the factorization in (8) shows that the
acceleration q̈5 has (by construction) a zero also at the boundaries (where the velocity is anyway
zero, together with the acceleration). Similarly, for the 7th-degree trajectory, the factorization
in (9) shows that the acceleration q̈7 has (by construction) a zero of multiplicity 2 also at the
boundaries (where the velocity is anyway zero, together with acceleration and jerk). Therefore, in
all three cases we evaluate the presence of a symmetric bound V on the velocity as

|q̇3(τ)| ≤ V, max
τ∈[0,1]

|q̇3(τ)| = |q̇3(0.5)| = 3|∆q|
2T

⇒ T3 (= min TV for q3(τ)) =
3|∆q|
2V

, (10)

|q̇5(τ)| ≤ V, max
τ∈[0,1]

|q̇5(τ)| = |q̇5(0.5)| = 15|∆q|
8T

⇒ T5 (= min TV for q5(τ)) =
15|∆q|

8V
, (11)

and

|q̇7(τ)| ≤ V, max
τ∈[0,1]

|q̇7(τ)| = |q̇7(0.5)| = 35|∆q|
16T

⇒ T7 (= min TV for q7(τ)) =
35|∆q|
16V

. (12)

As a result —not really unexpected— the fastest trajectory under a maximum velocity bound is
the cubic one, followed by the quintic, and then by the 7th-degree polynomial (T3 < T5 < T7).
The ratios of the minimum times are independent from ∆q and V and equal to:

T7

T5
=

3
2

= 1.5,
T5

T3
=

5
4

= 1.25,
T7

T3
=

15
8

= 1.875. (13)

In order to solve the same minimum time problem when only a symmetric bound A is set on the
acceleration, we compute first the jerk for the three polynomial trajectories:

...
q 3(τ) = −12∆q

T 3
6= 0, (14)

...
q 5(τ) =

60∆q
T 3

(
1− 6τ + 6τ2

)
=

60∆q
T 3

(
1− 6

3−
√

3
τ

)(
1− 6

3 +
√

3
τ

)
, (15)

and
...
q 7(τ) =

840∆q
T 3

τ
(
1− 6τ + 10τ2 − 5τ3

)
=

840∆q
T 3

τ (1− τ)
(
1− 5τ + 5τ2

)
=

840∆q
T 3

τ (1− τ)
(

1− 10
5−
√

5
τ

)(
1− 10

5 +
√

5
τ

)
.

(16)

The jerk of the cubic trajectory is constant over the motion interval (τ ∈ [0, 1]), so that the
maximum acceleration in this closed interval is at its boundaries. Because of the symmetric
behavior, we have from |q̈3(τ)| ≤ A:

max
τ∈[0,1]

|q̈3(τ)| = |q̈3(0)| = |q̈3(1)| = 6 |∆q|
T 2

⇒ T ′
3 (= min TA for q3(τ)) =

√
6 |∆q|
A

. (17)

From (15), the jerk of the quintic trajectory has two roots, i.e.,

τ5,1 = 0.5−
√

3
6

and τ5,2 = 0.5 +
√

3
6
, (18)
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in the interval τ ∈ [0, 1], placed in symmetric positions w.r.t. the motion halftime. Since the
acceleration is anyway zero at the boundaries, the maximum acceleration in the closed interval
occurs only in the two instants specified in (18). Because of the symmetric behavior, we have from
|q̈5(τ)| ≤ A:

max
τ∈[0,1]

|q̈5(τ)| = |q̈5(τ5,1)| = |q̈5(τ5,2)| = 5.7735 |∆q|
T 2

⇒ T ′
5 (= min TA for q5(τ)) =

√
5.7735 |∆q|

A
.

(19)
Finally, from (16) the jerk of the 7th-degree trajectory has two internal roots, i.e.,

τ7,1 = 0.5−
√

5
10

and τ7,2 = 0.5 +
√

5
10
, (20)

in the interval τ ∈ [0, 1], placed again in symmetric positions w.r.t. the motion halftime, and two
other roots coincident with the boundaries, where the acceleration is anyway zero. Thus, the
maximum acceleration in the closed interval occurs in the two instants specified in (20). Because
of the symmetric behavior, we have from |q̈7(τ)| ≤ A:

max
τ∈[0,1]

|q̈7(τ)| = |q̈7(τ7,1)| = |q̈7(τ7,2)| = 3.36 |∆q|
T 2

⇒ T ′
7 (= min TA for q7(τ)) =

√
3.36 |∆q|

A
.

(21)
As a result —maybe with a certain surprise— the situation is now reversed with respect to the
previous case: the fastest trajectory under a maximum acceleration bound is in fact the 7th-degree
polynomial, followed by the quintic, and then by the cubic one (T ′

7 < T ′
5 < T ′

3 ). The ratios of the
minimum times are again independent from ∆q and V and equal to:

T ′
3

T ′
5

=

√
6

5.7735
= 1.0194,

T ′
5

T ′
7

=

√
5.7735
3.36

= 1.3108,
T ′

3

T ′
7

=

√
6

3.36
= 1.3363. (22)

Indeed, limiting the acceleration is already a request targeting increased smoothness of the trajec-
tory. This explains de facto why a polynomial of higher degree performs better in this case.

Exercise 3

This exercise asks for a free text. Completeness, technical accuracy, and clarity in writing are
evaluated.

∗ ∗ ∗ ∗ ∗
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