
Robotics 1

Remote Exam – September 11, 2020

Exercise #1

Given a smooth time-varying rotation matrix R(t) ∈ SO(3), provide a formula to determine the
associated angular acceleration vector ω̇(t) ∈ R3 as a function of R(t) and of the angular velocity
ω(t) ∈ R3. Apply then this formula to compute ω(t) and ω̇(t), given the following rotation matrix:

R(t) =

 cos t 0 sin t

sin2 t cos t − sin t cos t

− sin t cos t sin t cos2 t

 .

Exercise #2

Consider the 6R Universal Robots UR5 manipulator in Fig. 1, where a feasible set of Denavit-
Hartenberg (DH) frames has been assigned. Complete the table of DH parameters and enter also
the associated numerical values (expressed in [rad] or [mm]), including those of the joint variables
q = θ in the configuration shown. In the figure, all data are already given in mm.
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Figure 1: An assignment of DH frames for the UR5 manipulator.

1



Exercise #3

With reference to Fig. 2, two planar manipulators, a 2R robot (labeled as A) and a 3R robot
(labeled as B), both with links of unitary length, should perform a task in cooperation, handing
over an object between their end-effector grippers. The base frames of the two robots are positioned

with respect to a common world frame by wpA =
(
−2.5 1

)T
and wpB =

(
1 2

)T
. The base of

robot B is rotated counterclockwise by an angle αB = π/6 [rad] with respect to xw. Robot A holds

the object while being in the configuration qA =
(
π/3 −π/2

)T
[rad]. Determine a configuration

qB for robot B such that it can grasp the object held by robot A with the correct orientation.

xw

yw

robot B

qB1robot A qB3

qB2

qA1

qA2

xA

yA

xB

yB

world
frame

aB

correct
grasp

robot B

robot A

object

xEA

yEA

xEB yEB

OEA  = OEB

Figure 2: A 2R and a 3R planar manipulators cooperating in a task.

Exercise #4

Consider the 3× 3 Jacobian of a 3R spatial robot, with generic link lengths l2 > 0 and l3 > 0:

J(q) =

 −s1(l2c2 + l3c3) −l2c1s2 −l3c1s3
c1(l2c2 + l3c3) −l2s1s2 −l3s1s3

0 l2c2 l3c3

 , v = J(q)q̇.

Find all (singular) configurations q� where the rank of the Jacobian J(q) is equal to 2 and all
configurations q∗ where the rank is equal to 1. In a singularity with rank 1, determine a basis for
each of the subspaces R{J(q∗)}, N{J(q∗)}, R{JT(q∗)}, and N{JT(q∗)}.

Exercise #5

A mass M = 2 [kg] moves linearly under a bounded force u, with |u| ≤ Umax = 8 [N], according
to differential equation Mẍ = u. The mass starts at t = 0 from xi = x(0) = 0 with a negative
velocity ẋi = ẋ(0) = −2 [m/s], and has to reach the final position xf = x(T ) = 3 [m] at rest (i.e.,
with ẋf = ẋ(T ) = 0) in minimum time T . Determine the minimum time T and the associated
optimal command u∗(t). Sketch the time evolution of x(t), ẋ(t), and ẍ(t).

[240 minutes (4 hours); open books]
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Solution
September 11, 2020

Exercise #1

We have that

Ṙ = S(ω)R, and thus S(ω) = ṘRT ⇒ ω =

 ωx

ωy

ωz

 =

 S3,2(ω)

S1,3(ω)

S2,1(ω)

 .

Differentiating further with respect to time,

R̈ = S(ω̇)R+ S(ω)Ṙ = S(ω̇)R+ S2(ω)R.

Since

S2(ω) =

 0 −ωz ωy

ωz 0 −ωx
−ωy ωx 0


 0 −ωz ωy

ωz 0 −ωx
−ωy ωx 0


=

 −
(
ω2
y + ω2

z

)
ωxωy ωxωz

ωxωy −
(
ω2
x + ω2

z

)
ωyωz

ωxωz ωyωz −
(
ω2
x + ω2

y

)
 = ωωT − I ‖ω‖2,

we obtain finally

R̈ =
(
S(ω̇) + ωωT − I ‖ω‖2

)
R, and thus S(ω̇) = R̈RT + I ‖ω‖2 − ωωT

⇒ ω̇ =

 ω̇x

ω̇y

ω̇z

 =

 S3,2(ω̇)

S1,3(ω̇)

S2,1(ω̇)

 .

For the given time-varying rotation matrix, we obtain

R(t) =

 cos t 0 sin t

sin2 t cos t − sin t cos t

− sin t cos t sin t cos2 t

 ⇒ Ṙ(t) =

 − sin t 0 cos t

2 sin t cos t − sin t sin2 t− cos2 t

sin2 t− cos2 t cos t −2 sin t cos t

 ,

and thus, after simplifications,

S(ω(t)) = Ṙ(t)RT(t) =

 0 − sin t cos t

sin t 0 −1

− cos t 1 0

 ⇒ ω(t) =

 1

cos t

sin t

 .

Moreover, one can evaluate

R̈(t) =

 − cos t 0 − sin t

2
(
cos2 t− sin2 t

)
− cos t 4 sin t cos t

4 sin t cos t − sin t 2
(
sin2 t− cos2 t

)

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and then compute

S(ω̇(t)) = R̈(t)RT(t)+I‖ω(t)‖2−ω(t)ωT(t) =

 0 − cos t − sin t

cos t 0 0

sin t 0 0

 ⇒ ω̇(t) =

 0

− sin t

cos t

 .

However, as one could have expected, we can also obtain ω̇(t) = dω(t)/dt by direct differentiation
(or from S(ω̇(t)) = dS(ω(t))/dt).

Instead, the analytic formula is strictly required in case R, ω, and R̈ are known only numerically
at a given instant of time. For example, if we had

R = I, ω =

 1

1

0

 , R̈ =

 −1 0 0

2 −1 0

0 0 −2

 ,

we would then compute

S(ω̇) = R̈RT + I‖ω‖2 − ωωT =

 0 −1 0

1 0 0

0 0 0

 ⇒ ω̇ =

 0

0

1

 ,

which is nothing else than the considered case for t = 0.

Exercise #2

The Denavit-Hartenberg parameters (in mm or rad) of the UR5 manipulator associated to the
frames specified in Fig. 1 are given in Tab. 1. Note that both parameters a2 and a3 are negative.
In fact, to reach O2 from O1 we move in the opposite direction of x2, thus a2 < 0. Similarly, to
reach O3 from O2 we move in the opposite direction of x3, thus a3 < 0.

i αi ai di θi

1 π/2 0 89.2 q1 = 0

2 0 −425 0 q2 = −π/2

3 0 −392 0 q3 = 0

4 −π/2 0 109.3 q4 = π/2

5 π/2 0 94.75 q5 = 0

6 0 0 82.5 q6 = 0

Table 1: DH parameters of the UR5 manipulator, with values of q in the configuration of Fig. 1.

Exercise #3

To accomplish the cooperative task we need to find the desired position and orientation of the
end-effector of robot B, as expressed in its own base reference frame. For this, we will use the
mathematics of 4 × 4 homogeneous transformations, starting from the definition of the position
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and orientation of the end-effector of robot A, as computed from the direct kinematics of the
task in the world frame. Although the entire problem is planar, with positions in R2 and scalar
orientations expressed by an angle around the normal to the plane (xw,yw), we will embed objects
in 3D. Once the target pose of the end-effector of robot B is available, the configuration qB of
robot B is found by solving a standard inverse kinematics problem.

With the given data of the problem, the base reference frames of robot A and B are located
respectively by

wTA =

(
wRA

wpA

0T 1

)
=

 I3×3

−2.5
1
0

0T 1


and

wTB =

(
wRB

wpB

0T 1

)
=


cosαB − sinαB 0
sinαB cosαB 0

0 0 1

1
2
0

0T 1

 =


0.8660 −0.5 0

0.5 0.8660 0
0 0 1

1
2
0

0T 1

 .

The direct kinematics of the planar 2R robot A (from its base to the end-effector frame EA), taking
into account the unitary length of the links, is computed as

ATEA =

(
AREA

ApEA

0T 1

)

=


cos(qA1 + qA2) − sin(qA1 + qA2) 0
sin(qA1 + qA2) cos(qA1 + qA2) 0

0 0 1

cos qA1 + cos(qA1 + qA2)
sin qA1 + sin(qA1 + qA2)

0

0T 1



=


0.8660 0.5 0
−0.5 0.8660 0

0 0 1

1.3660
0.3660

0

0T 1

 .

Finally, the correct grasping condition by robot B requires that the two end-effector frames have
the same origin (OEB = OEA) and opposite orientations (i.e., with a relative rotation of π around
the common zw axis). Therefore, the associated homogeneous transformation is

EATEB =

(
EAREB

EApEB

0T 1

)
=


−1 0 0

0 −1 0
0 0 1

0
0
0

0T 1

 .

We can write now the kinematic equation of the task using the above homogeneous transformation
matrices, equating the end-effector pose wTEB of robot B in the world frame, as evaluated from
the side of robot A and from the side of robot B:

wTA
ATEA

EATEB = wTB
BTEB .
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Thus, the desired pose of the end-effector of robot B expressed in the reference frame B is:

BTEB,d =

(
BREB,d

BpEB,d

0T 1

)
= (wTB)

−1 wTA
ATEA

EATEB

=


−0.5 −0.8660 0
0.8660 −0.5 0

0 0 1

−2.1651
0.5179

0

0T 1

 =


cosφB,d − sinφB,d 0
− sinφB,d cosφB,d 0

0 0 1

BpEB,dx
BpEB,dy

0

0T 1


The inverse kinematics problem for the planar 3R robot B requires the solution of

BTEB,d = BTEB(qB)

=

 cos(qB1 + qB2 + qB3) − sin(qB1 + qB2 + qB3) 0
sin(qB1 + qB2 + qB3) cos(qB1 + qB2 + qB3) 0

0 0 1

cos qB1 + cos(qB1 + qB2) + cos(qB1 + qB2 + qB3)
sin qB1 + sin(qB1 + qB2) + sin(qB1 + qB2 + qB3)

0
0T 1


in terms of the unknown joint variables qB = (qB1, qB2, qB3). The desired angle φB,d characterizing
the orientation in the plane of the end-effector frame of robot B can be extracted from the elements
of the rotation matrix BREB,d as

φB,d = ATAN2 {sinφB,d, cosφB,d} = ATAN2
{
BREB,d21 ,

BREB,d11

}
= ATAN2 {0.8660,−0.5} = 2.0944 [rad] = 120◦,

the above is equivalent to solving the three nonlinear equations cos qB1 + cos(qB1 + qB2) + cos(qB1 + qB2 + qB3)

sin qB1 + sin(qB1 + qB2) + sin(qB1 + qB2 + qB3)

qB1 + qB2 + qB3

 =

 BpEB,dx
BpEB,dy
φB,d

 =

 −2.1651

0.5179

2.0944

 .

As usual, this inverse kinematics problem for the planar 3R robot can be decomposed in two parts.
First, we solve for the two joint variables qB1 and qB2 in order to place the tip position pt2 of the
second link (or, the base of the third link) in the necessary position. Taking again into account
the unitary length of the robot links, we have

pt2 =

( BpEB,dx
BpEB,dx

)
−
(

cosφB,d

sinφB,d

)
=

(
−2.1651

0.5179

)
−
(
−0.5

0.8660

)
=

(
−1.6651

−0.3481

)
[m].

Thus, a solution for the pair (qB1, qB2) is given by

c2 =
p2t2,x + p2t2,y − 2

2
= 0.4468, s2 =

√
1− c22 = 0.8946

⇒ qB2 = ATAN2 {s2, c2} = 1.1076 [rad] = 63.46◦,

and1

s1 =
pt2,y (1 + c2)− pt2,xs2

2(1 + c2)
= 0.3408, c1 =

pt2,x (1 + c2) + pt2,ys2

2(1 + c2)
= −0.9401

⇒ qB1 = ATAN2 {s1, c1} = 2.7939 [rad] = 160.08◦.

1The common denominator 2(1 + c2) > 0 in the expressions of s1 and c1 can be discarded without affecting the
final result in the evaluation of ATAN2.
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The (arbitrary) choice of the + sign for the square root in s2 results here in an elbow up solution for
the first two links of the 3R robot. Next, with (qB1, qB2) = (2.7939, 1.1076) [rad], the third joint
variable qB3 is recovered from the specification φB,d = 2.0944 [rad] on the end-effector orientation:

qB3 = φB,d − (qB1 + qB2) = −1.8071 [rad] = −103.54◦.

The above solution of the inverse kinematics problem is coded in Matlab by the instructions (for
unitary lenghts):

p_t2=p_Bd-[cos(phi_Bd); sin(phi_Bd)]

px=p_t2(1);

py=p_t2(2);

c2=(px^2+py^2-2)/2

s2=sqrt(1-c2^2) % sign + on sqrt results in elbow up solution (arbitrary choice)

q_B2=atan2(s2,c2)

s1=py*(1+c2)-px*s2 % denominator (> 0) discarded in s1 and c1

c1=px*(1+c2)+py*s2

q_B1=atan2(s1,c1)

q_B3=phi_Bd-(q_B1+q_B2)

Exercise #4

This exercise can be solved with ease either by hand or using the symbolic instructions of Matlab
(with caution on simplifications)2. To determine the singularities of J(q), it is useful to get rid of
the dependence of the Jacobian on q1, by expressing the velocity v in the rotated frame 1 as3

1v =
(
0R1

)T
v =

(
0R1

)T
J(q)q̇ = 1J(q)q̇.

Thus, we obtain

1J(q) =
(
0R1

)T
J(q) =

 c1 s1 0

−s1 c1 0

0 0 1

J(q) =

 0 −l2s2 −l3s3
l2c2 + l3c3 0 0

0 l2c2 l3c3

 .

The determinant is
detJ(q) = det 1J(q) = l2l3s2−3 (l2c2 + l3c3) .

Therefore, the singularities occur when

sin(q2 − q3) = 0 ⇐⇒ q3 = {q2, q2 ± π} (third link stretched or folded w.r.t. the second link)4,

or when

l2c2 + l3c3 = 0 (end-effector located along the axis of the first joint),

2The robot considered in this exercise is similar to the one in Ex. #3 of June 5, 2020. However, absolute angles
w.r.t. the horizontal are used here for joints 2 and 3, and the lengths of links 2 and 3 are generic rather than unitary.

3Because of the arbitrary definition of frame 0, we know that the variable q1 will never enter in the definition of
singularities of a serial robot manipulator —in this case in the expression of detJ(q).

4This comment and the next one follow from the fact that the given Jacobian is associated to a 3R spatial robot
of the elbow type, with q2 and q3 defined as absolute link angles w.r.t. the horizontal plane.
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or when both situations occur. In the first two cases, the rank of J drops by one unit. We have5

J(q�) = J(q)|sin(q2−q3)=0 =

 −(l2 ± l3)s1c2 −l2c1s2 ∓l3c1s2
(l2 ± l3)c1c2 −l2s1s2 ∓l3s1s2

0 l2c2 ±l3c2

 , rankJ(q�) = 2,

where c2 6= 0, otherwise also l2c2 + l3c3 = 0 would follow. Similarly, we have

J(q�) = J(q)|l2c2+l3c3=0 =

 0 −l2c1s2 −l3c1s3
0 −l2s1s2 −l3s1s3
0 l2c2 l3c3

 , rankJ(q�) = 2.

On the other hand, when both situations occur simultaneously

J(q∗) = J(q)|sin(q2−q3)=0,l2c2+l3c3=0 =

 0 −l2c1s2 ∓l3c1s2
0 −l2s1s2 ∓l3s1s2
0 l2c2 ±l3c2

 , rankJ(q∗) = 1.

Choosing for instance the rank 1 singular configuration q∗ with q2 = q3 = π/2 (and with an
arbitrary q1)6, we have

J(q∗) = J(q)|q2=q3=π/2 =

 0 −l2c1 −l3c1
0 −l2s1 −l3s1
0 0 0

 ,

We obtain the following subspaces:

R{J(q∗)} = span


 c1

s1

0


 , N{J(q∗)} = span


 1

0

0

 ,

 ∗
−l3
l2


 ,

R{JT(q∗)} = span


 0

l2

l3


 , N{JT(q∗)} = span


 −s1c1
∗

 ,

 0

0

1


 .

Exercise #5

The structure of the optimal command u∗(t) for this state-to-rest minimum time motion problem is
found rather intuitively, observing that the net desired displacement is xf−xi = xf−x(0) = xf > 0
and that the mass has an initial velocity in the opposite direction, ẋi = ẋ(0) < 0. Thus, we have
to apply first the maximum positive feasible force Umax > 0 in order to stop as soon as possible
the motion in the negative direction. This will happen in a finite time Td. Then, from the reached
position xd = x(Td) < 0, with ẋ(Td) = 0, we have a standard rest-to-rest minimum time motion
problem for a displacement xf − xd > xf > 0. Since there is no velocity limitation in the problem
formulation, this second problem is solved by a symmetric bang-bang force (and acceleration)
profile in a time Tbb. In particular, we will continue to apply the maximum positive force Umax for
half of the residual motion, switching then to −Umax < 0 so as to decelerate and stop at the final
instant t = T = Td + Tbb.

5The upper signs in the expression of J(q�) apply when q3 = q2, the lower when q3 = q2 +π. The same situation
happens later also in the expression of J(q∗).

6The spatial 3R robot will then be fully stretched along the axis of joint 1. Similar computations can be done
for q2 = q3 = −π/2, for q2 = π/2 and q3 = −π/2, or for q2 = −π/2 and q3 = π/2.
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Figure 3: Minimum time state-to-rest motion: mass position, velocity, and acceleration.

Let Amax = Umax/M = 8/2 = 4 [m/s2] be the maximum feasible acceleration. Applying this from
t = 0 gives the resulting velocity profile

ẋ(t) = ẋ(0) +Amax t = −2 + 4 t
↓
= 0 ⇒ t = Td = − ẋ(0)

Amax
= 0.5 [s].

In the interval t ∈ [0, Td], the position of the mass evolves as

x(t) = x(0) + ẋ(0) t+Amax
t2

2
= 0− 2 t+ 4

t2

2
= 2 t (t− 1) ⇒ xd = x(Td) = −0.5 [m].

Therefore, the rest-to-rest motion should displace the mass by L = xf −xd = 3− (−0.5) = 3.5 [m].
With a symmetric bang-bang acceleration profile, the minimum motion time for this second part
of the task is

Tbb = 2

√
L

Amax
= 1.8708 [s]

and the switching of the command will occur at the middle point xd + (L/2) = 1.25 [m] of this
motion, after Tbb/2 = 0.9354 [s]; in absolute terms, at the instant t = Tsw = Td+Tbb/2 = 1.4354 [s].
The peak velocity reached at this instant is Vmax = AmaxTbb/2 = 3.7417 [m/s]. Finally, the
minimum motion time is

T = Td + Tbb = 2.3708 [s].

The optimal force command will be

u∗(t) =

{
Umax = 8 [N], 0 ≤ t < Tsw = 1.4354 [s],

−Umax = −8 [N], Tsw ≤ t < T = 2.3708 [s].

The profiles of x(t), ẋ(t), and ẍ(t) in the interval t ∈ [0, T ] are shown in Fig. 3. One can clearly
appreciate the asymmetry of the bang-bang acceleration profile.

∗ ∗ ∗ ∗ ∗
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